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 This sixth edition of Physics for the IB Diploma is fully updated to cover the 
content of the IB Physics Diploma syllabus that will be examined in the 
years 2016–2022.

Physics may be studied at Standard Level (SL) or Higher Level (HL). 
Both share a common core, which is covered in Topics 1–8. At HL the 
core is extended to include Topics 9–12. In addition, at both levels, 
students then choose one Option to complete their studies. Each option 
consists of common core and additional Higher Level material. You can 
identify the HL content in this book by ‘HL’ included in the topic title (or 
section title in the Options), and by the red page border. The four Options 
are included in the free online material that is accessible using 
education.cambridge.org/ibsciences.

The structure of this book follows the structure of the IB Physics 
syllabus. Each topic in the book matches a syllabus topic, and the sections 
within each topic mirror the sections in the syllabus. Each section begins 
with learning objectives as starting and reference points. Worked examples 
are included in each section; understanding these examples is crucial to 
performing well in the exam. A large number of test yourself questions 
are included at the end of each section and each topic ends with exam-
style questions. The reader is strongly encouraged to do as many of these 
questions as possible. Numerical answers to the test yourself questions are 
provided at the end of the book; detailed solutions to all questions are 
available on the website. Some topics have additional questions online; 
these are indicated with the online symbol, shown here. 

Theory of Knowledge (TOK) provides a cross-curricular link between 
diff erent subjects. It stimulates thought about critical thinking and how 
we can say we know what we claim to know. Throughout this book, TOK 
features highlight concepts in Physics that can be considered from a TOK 
perspective. These are indicated by the ‘TOK’ logo, shown here.

Science is a truly international endeavour, being practised across all 
continents, frequently in international or even global partnerships. Many 
problems that science aims to solve are international, and will require 
globally implemented solutions. Throughout this book, International- 
Mindedness features highlight international concerns in Physics. These are 
indicated by the ‘International-Mindedness’ logo, shown here.

Nature of science is an overarching theme of the Physics course. The 
theme examines the processes and concepts that are central to scientifi c 
endeavour, and how science serves and connects with the wider 
community. At the end of each section in this book, there is a ‘Nature of 
science’ paragraph that discusses a particular concept or discovery from 
the point of view of one or more aspects of Nature of science. A chapter 
giving a general introduction to the Nature of science theme is available 
in the free online material.

Introduction

INTRODUCTION V



VI
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Additional material to support the IB Physics Diploma course is available 
online. Visit education.cambridge.org/ibsciences and register to access 
these resources.

Besides the Options and Nature of science chapter, you will fi nd 
a collection of resources to help with revision and exam preparation. 
This includes guidance on the assessments, additional Topic questions, 
interactive self-test questions and model examination papers and mark 
schemes. Additionally, answers to the exam-style questions in this book 
and to all the questions in the Options are available.
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Measurement and uncertainties  1
1.1  Measurement in physics
Physics is an experimental science in which measurements made must be 
expressed in units. In the international system of units used throughout 
this book, the SI system, there are seven fundamental units, which are 
defi ned in this section. All quantities are expressed in terms of these units 
directly, or as a combination of them.

The SI system
The SI system (short for Système International d’Unités) has seven 
fundamental units (it is quite amazing that only seven are required). 
These are:
1 The metre (m). This is the unit of distance. It is the distance travelled 

 by light in a vacuum in a time of 
1

299 792 458 seconds.

2 The kilogram (kg). This is the unit of mass. It is the mass of a certain 
quantity of a platinum–iridium alloy kept at the Bureau International 
des Poids et Mesures in France.

3 The second (s). This is the unit of time. A second is the duration of 
9 192 631 770 full oscillations of the electromagnetic radiation emitted 
in a transition between the two hyperfi ne energy levels in the ground 
state of a caesium-133 atom.

4 The ampere (A). This is the unit of electric current. It is defi ned as 
that current which, when fl owing in two parallel conductors 1 m apart, 
produces a force of 2 × 107 N on a length of 1 m of the conductors.

5 The kelvin (K). This is the unit of temperature. It is 
1

273.16
 of the 

 thermodynamic temperature of the triple point of water.
6 The mole (mol). One mole of a substance contains as many particles as 

there are atoms in 12 g of carbon-12. This special number of particles is 
called Avogadro’s number and is approximately 6.02 × 1023.

7 The candela (cd). This is a unit of luminous intensity. It is the intensity 

 of a source of frequency 5.40 × 1014 Hz emitting 
1

683 W per steradian.

You do not need to memorise the details of these defi nitions.
In this book we will use all of the basic units except the last one. 

Physical quantities other than those above have units that are 
combinations of the seven fundamental units. They have derived units. 
For example, speed has units of distance over time, metres per second 
(i.e. m/s or, preferably, m s−1). Acceleration has units of metres per second 
squared (i.e. m/s2, which we write as m s−2 ). Similarly, the unit of force 
is the newton (N). It equals the combination kg m s−2. Energy, a very 
important quantity in physics, has the joule (J) as its unit. The joule is the 
combination N m and so equals (kg m s−2 m), or kg m2 s−2. The quantity 

Learning objectives

• State the fundamental units of 
the SI system.

• Be able to express numbers in 
scientifi c notation.

• Appreciate the order of 
magnitude of various quantities.

• Perform simple order-of-
magnitude calculations mentally.

• Express results of calculations to 
the correct number of signifi cant 
fi gures.
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power has units of energy per unit of time, and so is measured in J s−1. This 
combination is called a watt. Thus:

1 W = (1 N m s−1) = (1 kg m s−2 m s−1) = 1 kg m2 s−3

Metric multipliers
Small or large quantities can be expressed in terms of units that are related 
to the basic ones by powers of 10. Thus, a nanometre (nm) is 10−9 m, 
a microgram (µg) is 10−6 g = 10−9 kg, a gigaelectron volt (GeV) equals 
109 eV, etc. The most common prefi xes are given in Table 1.1.

Power Prefi x Symbol Power Prefi x Symbol

10−18 atto- A 101 deka- da

10−15 femto- F 102 hecto- h

10−12 pico- p 103 kilo- k

10−9 nano- n 106 mega- M

10−6 micro- μ 109 giga- G

10−3 milli- m 1012 tera- T

10−2 centi- c 1015 peta- P

10−1 deci- d 1018 exa- E

Table 1.1 Common prefi xes in the SI system.

Orders of magnitude and estimates
Expressing a quantity as a plain power of 10 gives what is called the order 
of magnitude of that quantity. Thus, the mass of the universe has an order 
of magnitude of 1053 kg and the mass of the Milky Way galaxy has an order 
of magnitude of 1041 kg. The ratio of the two masses is then simply 1012.

Tables 1.2, 1.3 and 1.4 give examples of distances, masses and times, 
given as orders of magnitude.

Length / m

distance to edge of observable universe 1026

distance to the Andromeda galaxy 1022

diameter of the Milky Way galaxy 1021

distance to nearest star 1016

diameter of the solar system 1013

distance to the Sun 1011

radius of the Earth 107

size of a cell 10−5

size of a hydrogen atom 10−10

size of an A = 50 nucleus 10−15

size of a proton 10−15

Planck length 10−35

Table 1.2 Some interesting distances.
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Mass / kg

the universe  1053

the Milky Way galaxy  1041

the Sun  1030

the Earth  1024

Boeing 747 (empty)  105

an apple  0.2

a raindrop  10−6

a bacterium  10−15

smallest virus  10−21

a hydrogen atom  10−27

an electron  10−30

Table 1.3 Some interesting masses.

Time / s

age of the universe  1017

age of the Earth  1017

time of travel by light to nearby star  108

one year  107

one day  105

period of a heartbeat  1

lifetime of a pion  10–8

lifetime of the omega particle  10–10

time of passage of light across a proton  10–24

Table 1.4 Some interesting times.

Worked examples
1.1 Estimate how many grains of sand are required to fi ll the volume of the Earth. (This is a classic problem that 

goes back to Aristotle. The radius of the Earth is about 6 × 106 m.)

The volume of the Earth is:

4
3πR3 ≈ 43 × 3 × (6 × 106)3 ≈ 8 × 1020 ≈ 1021 m3

The diameter of a grain of sand varies of course, but we will take 1 mm as a fair estimate. The volume of a grain of 
sand is about (1 × 10−3)3 m3.

Then the number of grains of sand required to fi ll the Earth is:

1021

(1 × 10−3)3
 ≈ 1030

1.2 Estimate the speed with which human hair grows.

I have my hair cut every two months and the barber cuts a length of about 2 cm. The speed is therefore:

 
2 × 10−2

2 × 30 × 24 × 60 × 60 
m s–1 ≈ 

10−2

3 × 2 × 36 × 104

 ≈ 
10−6

6 × 40 
= 

10−6

240

 ≈ 4 × 10–9 m s–1



4

1.3 Estimate how long the line would be if all the people on Earth were to hold hands in a straight line. Calculate 
how many times it would wrap around the Earth at the equator. (The radius of the Earth is about 6 × 106 m.)

Assume that each person has his or her hands stretched out to a distance of 1.5 m and that the population of Earth 
is 7 × 109 people. 

Then the length of the line of people would be 7 × 109 × 1.5 m = 1010 m. 

The circumference of the Earth is 2πR ≈ 6 × 6 × 106 m ≈ 4 × 107 m.

So the line would wrap 
1010

4 × 107 ≈ 250 times around the equator.

1.4 Estimate how many apples it takes to have a combined mass equal to that of an ordinary family car. 

Assume that an apple has a mass of 0.2 kg and a car has a mass of 1400 kg. 

Then the number of apples is 
1400
0.2  = 7 × 103.

1.5 Estimate the time it takes light to arrive at Earth from the Sun. (The Earth–Sun distance is 1.5 × 1011 m.)

The time taken is 
distance
speed  = 

1.5 × 1011

3 × 108  ≈ 0.5 × 104 = 500 s ≈ 8 min

Signifi cant fi gures
The number of digits used to express a number carries information 
about how precisely the number is known. A stopwatch reading of 3.2 s 
(two signifi cant fi gures, s.f.) is less precise than a reading of 3.23 s (three 
s.f.). If you are told what your salary is going to be, you would like that 
number to be known as precisely as possible. It is less satisfying to be told 
that your salary will be ‘about 1000’ (1 s.f.) euro a month compared to 
a salary of ‘about 1250’ (3 s.f.) euro a month. Not because 1250 is larger 
than 1000 but because the number of ‘about 1000’ could mean anything 
from a low of 500 to a high of 1500. You could be lucky and get the 1500 
but you cannot be sure. With a salary of ‘about 1250’ your actual salary 
could be anything from 1200 to 1300, so you have a pretty good idea of 
what it will be. 

How to fi nd the number of signifi cant fi gures in a number is illustrated 
in Table 1.5.
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Number Number of s.f. Reason Scientifi c notation

504 3 in an integer all digits count (if last digit is 
not zero)

5.04 × 102

608 000 3 zeros at the end of an integer do not count 6.08 × 105

200 1 zeros at the end of an integer do not count  2 × 102

0.000 305 3 zeros in front do not count 3.05 × 10−4

0.005 900 4 zeros at the end of a decimal count, those 
in front do not

5.900 × 10−3

Table 1.5 Rules for signifi cant fi gures.

Scientifi c notation means writing a number in the form a × 10b, where a 
is decimal such that 1 ≤ a < 10 and b is a positive or negative integer. The 
number of digits in a is the number of signifi cant fi gures in the number. 

In multiplication or division (or in raising a number to a power or 
taking a root), the result must have as many signifi cant fi gures as the least 
precisely known number entering the calculation. So we have that: 

× ≈ ×23 578=13294 1.3 10
2 s.f. 3 s.f.

4

2 s.f.
!"# $#% %

 
(the least number of s.f. is shown in red)

! "# $#
%

%
≈ ×

6.244

1.25
=4.9952… 5.00 10 =5.004 s.f.

3 s.f.

0

3 s.f.

≈ ×12.3 =1860.867… 1.86 103

3 s.f.

3

3 s.f.
! "# $#%

≈ ×58900 =242.6932… 2.43 10
3 s.f.

2

3 s.f.
!"# $# ! "# $#

In adding and subtracting, the number of decimal digits in the answer 
must be equal to the least number of decimal places in the numbers added 
or subtracted. Thus: 

≈3.21 + 4.1 =7.32 7.3
2 d.p. 1 d.p. 1 d.p.

! !!
 

(the least number of d.p. is shown in red)

− ≈12.367 3.15=9.217 9.22
3 d.p. 2 d.p. 2 d.p.
!"# $ $

Use the rules for rounding when writing values to the correct number 
of decimal places or signifi cant fi gures. For example, the number 
542.48 = 5.4248 × 102 rounded to 2, 3 and 4 s.f. becomes:

5.4|248 × 102 ≈ 5.4 × 102 rounded to 2 s.f.
5.42|48 × 102 ≈ 5.42 × 102 rounded to 3 s.f.
5.424|8 × 102 ≈ 5.425 × 102 rounded to 4 s.f.

There is a special rule for rounding when the last digit to be dropped 
is 5 and it is followed only by zeros, or not followed by any other digit. 
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This is the odd–even rounding rule. For example, consider the number 
3.250 000 0… where the zeros continue indefi nitely. How does this 
number round to 2 s.f.? Because the digit before the 5 is even we do not 
round up, so 3.250 000 0… becomes 3.2. But 3.350 000 0… rounds up to 
3.4 because the digit before the 5 is odd.

Nature of science
Early work on electricity and magnetism was hampered by the use of 
diff erent systems of units in diff erent parts of the world. Scientists realised 
they needed to have a common system of units in order to learn from 
each other’s work and reproduce experimental results described by others. 
Following an international review of units that began in 1948, the SI 
system was introduced in 1960. At that time there were six base units. In 
1971 the mole was added, bringing the number of base units to the seven 
in use today. 

As the instruments used to measure quantities have developed, the 
defi nitions of standard units have been refi ned to refl ect the greater 
precision possible. Using the transition of the caesium-133 atom to 
measure time has meant that smaller intervals of time can be measured 
accurately. The SI system continues to evolve to meet the demands of 
scientists across the world. Increasing precision in measurement allows 
scientists to notice smaller diff erences between results, but there is always 
uncertainty in any experimental result. There are no ‘exact’ answers.

 9 Give an order-of-magnitude estimate of the 
density of a proton.

 10 How long does light take to traverse the 
diameter of the solar system?

 11 An electron volt (eV) is a unit of energy equal to 
1.6 × 10−19 J. An electron has a kinetic energy of 
2.5 eV.

  a How many joules is that?
  b  What is the energy in eV of an electron that 

has an energy of 8.6 × 10−18 J?
 12 What is the volume in cubic metres of a cube of 

side 2.8 cm?
 13 What is the side in metres of a cube that has a 

volume of 588 cubic millimetres?
 14 Give an order-of-magnitude estimate for the 

mass of:
  a an apple
  b this physics book
  c a soccer ball.

? Test yourself
 1 How long does light take to travel across a proton?
 2 How many hydrogen atoms does it take to make 

up the mass of the Earth?
 3 What is the age of the universe expressed in 

units of the Planck time?
 4 How many heartbeats are there in the lifetime of 

a person (75 years)?
 5 What is the mass of our galaxy in terms of a solar 

mass?
 6 What is the diameter of our galaxy in terms of 

the astronomical unit, i.e. the distance between 
the Earth and the Sun (1 AU = 1.5 × 1011 m)?

 7 The molar mass of water is 18 g mol−1. How 
many molecules of water are there in a glass of 
water (mass of water 300 g)?

 8 Assuming that the mass of a person is made up 
entirely of water, how many molecules are there 
in a human body (of mass 60 kg)?
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 15 A white dwarf star has a mass about that of the 
Sun and a radius about that of the Earth. Give an 
order-of-magnitude estimate of the density of a 
white dwarf.

 16 A sports car accelerates from rest to 100 km per 
hour in 4.0 s. What fraction of the acceleration 
due to gravity is the car’s acceleration?

 17 Give an order-of-magnitude estimate for the 
number of electrons in your body.

 18 Give an order-of-magnitude estimate for the 
ratio of the electric force between two electrons 
1 m apart to the gravitational force between the 
electrons.

 19 The frequency f of oscillation (a quantity with 
units of inverse seconds) of a mass m attached 
to a spring of spring constant k (a quantity with 
units of force per length) is related to m and k. 
By writing f = cmxky and matching units 

  on both sides, show that f = c   
k
m, where c is a 

dimensionless constant.

 20 A block of mass 1.2 kg is raised a vertical distance 
of 5.55 m in 2.450 s. Calculate the power 

  delivered. (P = 
mgh

t  and g = 9.81 m s−2 )

 21 Find the kinetic energy (EK = 12mv2 ) of a block of 
mass 5.00 kg moving at a speed of 12. 5 m s−1.

 22 Without using a calculator, estimate the value 
of the following expressions. Then compare 
your estimate with the exact value found using a 
calculator.

  a 
243
43

  b 2.80 × 1.90

  c 312 × 
480
160

  d 
8.99 × 109 × 7 × 10−16 × 7 × 10−6

(8 × 102 )2

  e 
6.6 × 10−11 × 6 × 1024

(6.4 × 106)2

1.2 Uncertainties and errors
This section introduces the basic methods of dealing with experimental 
error and uncertainty in measured physical quantities. Physics is an 
experimental science and often the experimenter will perform an 
experiment to test the prediction of a given theory. No measurement will 
ever be completely accurate, however, and so the result of the experiment 
will be presented with an experimental error. 

Types of uncertainty
There are two main types of uncertainty or error in a measurement. They 
can be grouped into systematic and random, although in many cases 
it is not possible to distinguish clearly between the two. We may say that 
random uncertainties are almost always the fault of the observer, whereas 
systematic errors are due to both the observer and the instrument being 
used. In practice, all uncertainties are a combination of the two. 

Systematic errors
A systematic error biases measurements in the same direction; the 
measurements are always too large or too small. If you use a metal ruler 
to measure length on a very hot day, all your length measurements will be 
too small because the metre ruler expanded in the hot weather. If you use 
an ammeter that shows a current of 0.1 A even before it is connected to 

Learning objectives

• Distinguish between random 
and systematic uncertainties.

• Work with absolute, fractional 
and percentage uncertainties.

• Use error bars in graphs.
• Calculate the uncertainty in a 

gradient or an intercept.
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m

Figure 1.1 The falling block accelerates the 
cart.

a circuit, every measurement of current made with this ammeter will be 
larger than the true value of the current by 0.1 A. 

Suppose you are investigating Newton’s second law by measuring the 
acceleration of a cart as it is being pulled by a falling weight of mass m 
(Figure 1.1). Almost certainly there is a frictional force f between the cart 
and the table surface. If you forget to take this force into account, you 
would expect the cart’s acceleration a to be:

a = 
mg
 M

where M is the constant combined mass of the cart and the falling block.
The graph of the acceleration versus m would be a straight line through 

the origin, as shown by the red line in Figure 1.2. If you actually do the 
experiment, you will fi nd that you do get a straight line, but not through 
the origin (blue line in Figure 1.2). There is a negative intercept on the 
vertical axis.

a /m s–2

0.1 0.2 0.3 0.4
m / kg

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

Figure 1.2 The variation of acceleration with falling mass with (blue) and without 
(red) frictional forces. 

This is because with the frictional force present, Newton’s second law 
predicts that:

a = 
mg
 M  −  

f
M

So a graph of acceleration a versus mass m would give a straight line with 
a negative intercept on the vertical axis.

Systematic errors can result from the technique used to make a 
measurement. There will be a systematic error in measuring the volume 
of a liquid inside a graduated cylinder if the tube is not exactly vertical. 
The measured values will always be larger or smaller than the true value, 
depending on which side of the cylinder you look at (Figure 1.3a). There 
will also be a systematic error if your eyes are not aligned with the liquid 
level in the cylinder (Figure 1.3b). Similarly, a systematic error will arise if 
you do not look at an analogue meter directly from above (Figure 1.3c).

Systematic errors are hard to detect and take into account.
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Random uncertainties
The presence of random uncertainty is revealed when repeated 
measurements of the same quantity show a spread of values, some too large 
some too small. Unlike systematic errors, which are always biased to be in 
the same direction, random uncertainties are unbiased. Suppose you ask ten 
people to use stopwatches to measure the time it takes an athlete to run a 
distance of 100 m. They stand by the fi nish line and start their stopwatches 
when the starting pistol fi res. You will most likely get ten diff erent values 
for the time. This is because some people will start/stop the stopwatches 
too early and some too late. You would expect that if you took an average 
of the ten times you would get a better estimate for the time than any 
of the individual measurements: the measurements fl uctuate about some 
value. Averaging a large number of measurements gives a more accurate 
estimate of the result. (See the section on accuracy and precision, overleaf.) 

We include within random uncertainties, reading uncertainties (which 
really is a diff erent type of error altogether). These have to do with the 
precision with which we can read an instrument. Suppose we use a ruler 
to record the position of the right end of an object, Figure 1.4.

The fi rst ruler has graduations separated by 0.2 cm. We are confi dent 
that the position of the right end is greater than 23.2 cm and smaller 
than 23.4 cm. The true value is somewhere between these bounds. The 
average of the lower and upper bounds is 23.3 cm and so we quote the 
measurement as (23.3 ± 0.1) cm. Notice that the uncertainty of ± 0.1 cm 
is half the smallest width on the ruler. This is the conservative way 
of doing things and not everyone agrees with this. What if you scanned 
the diagram in Figure 1.4 on your computer, enlarged it and used your 
computer to draw further lines in between the graduations of the ruler. 
Then you could certainly read the position to better precision than 
the ± 0.1 cm. Others might claim that they can do this even without a 
computer or a scanner! They might say that the right end is defi nitely 
short of the 23.3 cm point. We will not discuss this any further – it is an 
endless discussion and, at this level, pointless. 

Now let us use a ruler with a fi ner scale. We are again confi dent that the 
position of the right end is greater than 32.3 cm and smaller than 32.4 cm. 
The true value is somewhere between these bounds. The average of the 
bounds is 32.35 cm so we quote a measurement of (32.35 ± 0.05) cm. Notice 

a b

22

3130 32 33 34 35 36

23 24 25 26 2721

Figure 1.3 Parallax errors in measurements.

Figure 1.4 Two rulers with diff erent 
graduations. The top has a width between 
graduations of 0.2 cm and the other 0.1 cm. 

c
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again that the uncertainty of ± 0.05 cm is half the smallest width on the 
ruler. This gives the general rule for analogue instruments:

The uncertainty in reading an instrument is ± half of the smallest 
width of the graduations on the instrument.

For digital instruments, we may take the reading error to be the smallest 
division that the instrument can read. So a stopwatch that reads time to 
two decimal places, e.g. 25.38 s, will have a reading error of ± 0.01 s, and a 
weighing scale that records a mass as 184.5 g will have a reading error of 
± 0.1 g. Typical reading errors for some common instruments are listed in 
Table 1.6.

Accuracy and precision
In physics, a measurement is said to be accurate if the systematic error 
in the measurement is small. This means in practice that the measured 
value is very close to the accepted value for that quantity (assuming that 
this is known – it is not always). A measurement is said to be precise 
if the random uncertainty is small. This means in practice that when 
the measurement was repeated many times, the individual values were 
close to each other. We normally illustrate the concepts of accuracy and 
precision with the diagrams in Figure 1.5: the red stars indicate individual 
measurements. The ‘true’ value is represented by the common centre 
of the three circles, the ‘bull’s-eye’. Measurements are precise if they are 
clustered together. They are accurate if they are close to the centre. The 
descriptions of three of the diagrams are obvious; the bottom right clearly 
shows results that are not precise because they are not clustered together. 
But they are accurate because their average value is roughly in the centre.

Instrument Reading error

ruler ± 0.5 mm

vernier calipers ± 0.05  mm

micrometer ± 0.005 mm

electronic weighing 
scale

± 0.1 g

stopwatch ± 0.01 s

Table 1.6 Reading errors for some common 
instruments.

not accurate and not precise accurate and precise

not accurate but precise accurate but not precise

not accurate and not precise accurate and precise

not accurate but precise accurate but not precise

Figure 1.5 The meaning of accurate and precise measurements. Four diff erent sets of 
four measurements each are shown.
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Averages
In an experiment a measurement must be repeated many times, if at all 
possible. If it is repeated N times and the results of the measurements are 
x1, x2, …, xN, we calculate the mean or the average of these values (x–) 
using:

x– = 
x1 + x2 + … + xN

N

This average is the best estimate for the quantity x based on the N 
measurements. What about the uncertainty? The best way is to get the 
standard deviation of the N numbers using your calculator. Standard 
deviation will not be examined but you may need to use it for your 
Internal Assessment, so it is good idea to learn it – you will learn it 
in your mathematics class anyway. The standard deviation σ of the N 
measurements is given by the formula (the calculator fi nds this very 
easily):

σ =   
(x1 – x–)2 + (x2 – x–)2 + … + (xN – x–)2

N – 1

A very simple rule (not entirely satisfactory but acceptable for this course) 
is to use as an estimate of the uncertainty the quantity:

∆x = 
xmax − xmin

2

i.e. half of the diff erence between the largest and the smallest value. 
For example, suppose we measure the period of a pendulum (in 

seconds) ten times: 

1.20, 1.25, 1.30, 1.13, 1.25, 1.17, 1.41, 1.32, 1.29, 1.30

We calculate the mean:

t– = 
t1 + t2 + … + t10

10  = 1.2620 s

and the uncertainty:

∆t = 
tmax − tmin

2  = 
1.41 − 1.13

2  = 0.140 s

How many signifi cant fi gures do we use for uncertainties? The general 
rule is just one fi gure. So here we have ∆t = 0.1 s. The uncertainty is in the 
fi rst decimal place. The value of the average period must also be 
expressed to the same precision as the uncertainty, i.e. here to one 
decimal place, t–  = 1.3 s. We then state that:

period = (1.3 ± 0.1) s 

(Notice that each of the ten measurements of the period is subject to a 
reading error. Since these values were given to two decimal places, it is 
implied that the reading error is in the second decimal place, say ± 0.01 s. 

Exam tip
There is some case to be made 
for using two signifi cant fi gures 
in the uncertainty when the 
fi rst digit in the uncertainty 
is 1. So in this example, 
since ∆t = 0.140 s does begin 
with the digit 1, we should 
state ∆t = 0.14 s and quote 
the result for the period as 
‘period = (1.26 ± 0.14) s’. 
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This is much smaller than the uncertainty found above so we ignore the 
reading error here. If instead the reading error were greater than the error 
due to the spread of values, we would have to include it instead. We will 
not deal with cases when the two errors are comparable.)

You will often see uncertainties with 2 s.f. in the scientifi c 
literature. For example, the charge of the electron is quoted as 
e = (1.602 176 565 ± 0.000 000 035) × 10−19 C and the mass of the electron 
as me = (9.109 382 91 ± 0.000 000 40) × 10−31 kg. This is perfectly all right 
and refl ects the experimenter’s level of confi dence in his/her results. 
Expressing the uncertainty to 2 s.f. implies a more sophisticated statistical 
analysis of the data than is normally done in a high school physics course. 
With a lot of data, the measured values of e form a normal distribution 
with a given mean (1.602 176 565 × 10−19 C) and standard deviation 
(0.000 000 035 × 10−19 C). The experimenter is then 68% confi dent that 
the measured value of e lies within the interval [1.602 176 530 × 10−19 C, 
1.602 176 600 × 10−19 C].

Worked example
1.6 The diameter of a steel ball is to be measured using a micrometer caliper. The following are sources of error:

1 The ball is not centred between the jaws of the caliper.
2 The jaws of the caliper are tightened too much.
3 The temperature of the ball may change during the measurement.
4 The ball may not be perfectly round.

 Determine which of these are random and which are systematic sources of error.

Sources 3 and 4 lead to unpredictable results, so they are random errors. Source 2 means that the measurement of 
diameter is always smaller since the calipers are tightened too much, so this is a systematic source of error. Source 1 
certainly leads to unpredictable results depending on how the ball is centred, so it is a random source of error. But 
since the ball is not centred the ‘diameter’ measured is always smaller than the true diameter, so this is also a source 
of systematic error.

Propagation of uncertainties
A measurement of a length may be quoted as L = (28.3 ± 0.4) cm. The value 
28.3 is called the best estimate or the mean value of the measurement 
and the 0.4 cm is called the absolute uncertainty in the measurement. 
The ratio of absolute uncertainty to mean value is called the fractional 
uncertainty. Multiplying the fractional uncertainty by 100% gives the 
percentage uncertainty. So, for L = (28.3 ± 0.4) cm we have that:
• absolute uncertainty = 0.4 cm

• fractional uncertainty = 
0.4
28.3 = 0.0141

• percentage uncertainty = 0.0141 × 100% = 1.41%
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In general, if a = a0 ± ∆a, we have:
• absolute uncertainty = ∆a

• fractional uncertainty = 
∆a
a0

• percentage uncertainty = 
∆a
a0

 × 100%

Suppose that three quantities are measured in an experiment: a = a0 ± ∆a, 
b = b0 ± ∆b, c = c0 ± ∆c. We now wish to calculate a quantity Q in terms of 
a, b, c. For example, if a, b, c are the sides of a rectangular block we may 
want to fi nd Q = ab, which is the area of the base, or Q = 2a + 2b, which 
is the perimeter of the base, or Q = abc, which is the volume of the block. 
Because of the uncertainties in a, b, c there will be an uncertainty in the 
calculated quantities as well. How do we calculate this uncertainty?

There are three cases to consider. We will give the results without proof.

Addition and subtraction
The fi rst case involves the operations of addition and/or subtraction. For 
example, we might have Q = a + b or Q = a − b or Q = a + b − c. Then, 
in all cases the absolute uncertainty in Q is the sum of the absolute 
uncertainties in a, b and c.

Q = a + b ⇒ ∆Q = ∆a + ∆b
Q = a − b ⇒ ∆Q = ∆a + ∆b
Q = a + b − c ⇒ ∆Q = ∆a + ∆b + ∆c

Worked examples
1.7 The side a of a square, is measured to be (12.4 ± 0.1) cm. Find the perimeter P of the square including the 

uncertainty.

Because P = a + a + a + a, the perimeter is 49.6 cm. The absolute uncertainty in P is:

∆P = ∆a + ∆a + ∆a + ∆a

∆P = 4∆a

∆P = 0.4 cm

Thus, P = (49.6 ± 0.4) cm.

1.8 Find the percentage uncertainty in the quantity Q = a − b, where a = 538.7 ± 0.3 and b = 537.3 ± 0.5. Comment 
on the answer.

The calculated value is 1.7 and the absolute uncertainty is 0.3 + 0.5 = 0.8. So Q = 1.4 ± 0.8.

The fractional uncertainty is 
0.8
1.4 = 0.57, so the percentage uncertainty is 57%. 

The fractional uncertainty in the quantities a and b is quite small. But the numbers are close to each other so their 
diff erence is very small. This makes the fractional uncertainty in the diff erence unacceptably large.

The subscript 0 indicates the mean 
value, so a0 is the mean value of a.

Exam tip
In addition and subtraction, 
we always add the absolute 
uncertainties, never subtract.

The subscript 0 indicates the mean 
 is the mean value of 

The subscript 0 indicates the mean 
 is the mean value of 
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Multiplication and division
The second case involves the operations of multiplication and division. 
Here the fractional uncertainty of the result is the sum of the 
fractional uncertainties of the quantities involved:

Q = ab ⇒ 
∆Q
Q0

 = 
∆a
a0

 + 
∆b
b0

Q = 
a
b ⇒ 

∆Q
Q0

 = 
∆a
a0

 + 
∆b
b0

Q = 
ab
c  ⇒ 

∆Q
Q0

 = 
∆a
a0

 + 
∆b
b0

 + 
∆c
c0

Powers and roots
The third case involves calculations where quantities are raised to powers 
or roots. Here the fractional uncertainty of the result is the fractional 
uncertainty of the quantity multiplied by the absolute value of the 
power:

Q = an ⇒ 
∆Q
Q0

 = |n| 
∆a
a0

 

Q = 
n√a ⇒ 

∆Q
Q0

 = 
1
n 

∆a
a0

Worked examples
1.9 The sides of a rectangle are measured to be a = 2.5 cm ± 0.1 cm and b = 5.0 cm ± 0.1 cm. Find the area A of the 

rectangle.

The fractional uncertainty in a is:

∆a
a  = 

0.1
2.5 = 0.04 or 4%

The fractional uncertainty in b is:

∆b
b  = 

0.1
5.0 = 0.02 or 2%

Thus, the fractional uncertainty in the area is 0.04 + 0.02 = 0.06 or 6%.

The area A0 is:

 A0 = 2.5 × 5.0 = 12.5 cm2

and 
∆A
A0

 = 0.06

⇒ ∆A = 0.06 ×12.5 = 0.75 cm2

Hence A = 12.5 cm2 ± 0.8 cm2 (the fi nal absolute uncertainty is quoted to 1 s.f.).
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1.10 A mass is measured to be m = 4.4 ± 0.2 kg and its speed v is measured to be 18 ± 2 m s−1. Find the kinetic 
energy of the mass.

The kinetic energy is E = 12mv2, so the mean value of the kinetic energy, E0, is:

E0 = 12 × 4.4 × 182 = 712.8 J

Using:

∆E
E0

 = 
∆m
m0

 + 2×  
∆v
v0

we fi nd:

∆E
712.8 = 

0.2
4.4  

= 2 × 
2
18  = 0.267

So:

∆E = 712.8 × 0.2677 = 190.8 J

To one signifi cant fi gure, the uncertainty 
is ∆E = 200 = 2 × 102 J; that is E = (7 ± 2) × 102 J.

1.11 The length of a simple pendulum is increased by 4%. What is the fractional increase in the pendulum’s 
period?

The period T is related to the length L through T = 2π   
L
g . 

Because this relationship has a square root, the fractional uncertainties are related by:

∆T
T0

 =  
1
2 

 ×  
∆L
L0

We are told that 
∆L
L0

 = 4%. This means we have :

∆T
T0

 = 
1
2 × 4% = 2%

because of 
the square

because of the 
square root

Exam tip
The fi nal absolute uncertainty must be expressed to one 
signifi cant fi gure. This limits the precision of the quoted 
value for energy.
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1.12 A quantity Q is measured to be Q = 3.4 ± 0.5. Calculate the uncertainty in a 
1
Q and b Q2.

a  
1
Q = 

1
3.4 = 0.294 118

  
∆(1/Q)

1/Q  = 
∆Q
Q  

⇒  ∆(1/Q) = 
∆Q
Q2  = 

0.5
3.42 = 0.043 25

Hence: 
1
Q = 0.29 ± 0.04

b  Q2 = 3.42 = 11.5600

  ∆(Q2 )
Q2  = 2 × 

∆Q
Q

⇒  ∆(Q2 ) = 2Q × ∆Q = 2 × 3.4 × 0.5 = 3.4

Hence: Q2 = 12 ± 3

1.13 The volume of a cylinder of base radius r and height h is given by V = πr2h. The volume is measured with an 
uncertainty of 4% and the height with with an uncertainty of 2%. Determine the uncertainty in the radius.

We must fi rst solve for the radius to get r =    
V
πh. The uncertainty is then:

( )× × ×∆ ∆ ∆r
r

V
V

h
h

100% = 1
2

+ 100% = 1
2

(4 + 2) 100% = 3%

Best-fi t lines
In mathematics, plotting a point on a set of axes is straightforward. In 
physics, it is slightly more involved because the point consists of measured 
or calculated values and so is subject to uncertainty. So the point 
(x0 ± ∆x, y0 ± ∆y) is plotted as shown in Figure 1.6. The uncertainties are 

x0 – ∆x x0 + ∆x

2∆x

2∆y

0

y0 + ∆y

y0 – ∆y

y0

x0 x

y

Figure 1.6 A point plotted along with its error bars.
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represented by error bars. To ‘go through the error bars’ a best-fi t line 
can go through the area shaded grey.

In a physics experiment we usually try to plot quantities that will give 
straight-line graphs. The graph in Figure 1.7 shows the variation with 
extension x of the tension T in a spring. The points and their error bars 
are plotted. The blue line is the best-fi t line. It has been drawn by eye by 
trying to minimise the distance of the points from the line – this means 
that some points are above and some are below the best-fi t line.

The gradient (slope) of the best-fi t line is found by using two points 
on the best-fi t line as far from each other as possible. We use (0, 0) and 
(0.0390, 7.88). The gradient is then:

gradient = 
∆F
∆x

gradient = 
7.88 − 0

0.0390 – 0

gradient = 202 N m−1

The best-fi t line has equation F = 202x. (The vertical intercept is 
essentially zero; in this equation x is in metres and F in newtons.)

F / N

1 2 3 4
x /cm

0

1

2

3

4

5

6

7

8

∆x

∆F

Figure 1.7 Data points plotted together with uncertainties in the values for the 
tension. To fi nd the gradient, use two points on the best-fi t line far apart from 
each other.
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On the other hand it is perfectly possible to obtain data that cannot 
be easily manipulated to give a straight line. In that case a smooth curve 
passing through all the error bars is the best-fi t line (Figure 1.8).

From the graph the maximum power is 4.1 W, and it occurs when 
R = 2.2 Ω. The estimated uncertainty in R is about the length of a square, 
i.e. ± 0.1 Ω. Similarly, for the power the estimated uncertainty is ± 0.1 W.

P / W

10 2 3 4
R /Ω

0

1

3

4

5

2

Figure 1.8 The best-fi t line can be a curve. 

Uncertainties in the gradient and intercept
When the best-fi t line is a straight line we can easily obtain uncertainties 
in the gradient and the vertical intercept. The idea is to draw lines of 
maximum and minimum gradient in such a way that they go through 
all the error bars (not just the ‘fi rst’ and the ‘last’ points). Figure 1.9 
shows the best-fi t line (in blue) and the lines of maximum and minimum 
gradient. The green line is the line through all error bars of greatest 
gradient. The red line is the line through all error bars with smallest 
gradient. All lines are drawn by eye. 

The blue line has gradient kmax = 210 N m−1 and intercept −0.18 N. The 
red line has gradient kmin = 193 N m−1 and intercept +0.13 N. So we can 
fi nd the uncertainty in the gradient as:

∆k = 
kmax − kmin

2  = 
210 − 193

2  = 8.5 ≈ 8 Nm−1
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The uncertainty in the vertical intercept is similarly:

∆intercept = 
0.13 − (−0.18)

2  = 0.155 ≈ 0.2 N

We saw earlier that the line of best fi t has gradient 202 N m−1 and 
zero intercept. So we quote the results as k = (2.02 ± 0.08) ×102 and 
intercept = 0.0 ± 0.2 N.

Nature of science
A key part of the scientifi c method is recognising the errors that are 
present in the experimental technique being used, and working to 
reduce these as much as possible. In this section you have learned how to 
calculate errors in quantities that are combined in diff erent ways and how 
to estimate errors from graphs. You have also learned how to recognise 
systematic and random errors.

No matter how much care is taken, scientists know that their results 
are uncertain. But they need to distinguish between inaccuracy and 
uncertainty, and to know how confi dent they can be about the validity of 
their results. The search to gain more accurate results pushes scientists to 
try new ideas and refi ne their techniques. There is always the possibility 
that a new result may confi rm a hypothesis for the present, or it may 
overturn current theory and open a new area of research. Being aware of 
doubt and uncertainty are key to driving science forward. 

F / N

1 2 3 4
x /cm

0

1

2

3

4

5

6

7

8

Figure 1.9 The best-fi t line, along with lines of maximum and minimum gradient.
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31  In a similar experiment to that in question 30, 
the following data was collected for current 
and voltage: (V, I ) = {(0.1, 27), (0.2, 44), (0.3, 
60), (0.4, 78)} with an uncertainty of ± 4 mA in 
the current. Plot the current versus the voltage 
and draw the best-fi t line. Suggest whether the 
current is proportional to the voltage.

32 A circle and a square have the same perimeter. 
Which shape has the larger area?

33 The graph shows the natural logarithm of 
the voltage across a capacitor of capacitance 
C = 5.0 µF as a function of time. The voltage is 
given by the equation V = V0 e−t/RC, where R is 
the resistance of the circuit. Find:

 a the initial voltage
 b  the time for the voltage to be reduced to half 

its initial value
 c the resistance of the circuit.

34 The table shows the mass M of several stars and 
their corresponding luminosity L (power emitted).

 a Plot L against M and draw the best-fi t line.
 b  Plot the logarithm of L against the logarithm 

of M. Use your graph to fi nd the relationship 
between these quantities, assuming a power 
law of the kind L = kMα. Give the numerical 
value of the parameter α.

Mass M (in solar 
masses)

Luminosity L (in terms 
of the Sun’s luminosity)

1.0 ± 0.1 1 ± 0

3.0 ± 0.3 42 ± 4

5.0 ± 0.5 230 ± 20

12 ± 1 4700 ± 50

20 ± 2 26 500 ± 300

ln V

50 10 15 20
t /s

2.0

2.5

3.0

3.5

4.0

? Test yourself
23 The magnitudes of two forces are measured to 

be 120 ± 5 N and 60 ± 3 N. Find the sum and 
diff erence of the two magnitudes, giving the 
uncertainty in each case.

24 The quantity Q depends on the measured values 
a and b in the following ways:

 a Q = 
a
b, a = 20 ± 1, b = 10 ± 1

 b Q = 2a + 3b, a = 20 ± 2, b = 15 ± 3
 c Q = a − 2b, a = 50 ± 1, b = 24 ± 1
 d Q = a2, a = 10.0 ± 0.3

 e Q = 
a2

b2, a = 100 ± 5, b = 20 ± 2

 In each case, fi nd the value of Q and its 
uncertainty.

25 The centripetal force is given by F = mv2

r . The 
mass is measured to be 2.8 ± 0.1 kg, the velocity 
14 ± 2 m s−1 and the radius 8.0 ± 0.2 m; fi nd the 
force on the mass, including the uncertainty.

26 The radius r of a circle is measured to be 
2.4 cm ± 0.1 cm. Find the uncertainty in:

 a the area of the circle
 b the circumference of the circle.
27 The sides of a rectangle are measured as 

4.4 ± 0.2 cm and 8.5 ± 0.3 cm. Find the area and 
perimeter of the rectangle.

28 The length L of a pendulum is increased by 2%. 
Find the percentage increase in the period T. 

   T = 2π   
L
g

29 The volume of a cone of base radius R and  
height h is given by V = πR2h

3 . The uncertainty  
in the radius and in the height is 4%. Find the 
percentage uncertainty in the volume.

30  In an experiment to measure current and voltage 
across a device, the following data was collected: 
(V, I ) = {(0.1, 26), (0.2, 48), (0.3, 65), (0.4, 90)}.
The current was measured in mA and the 
voltage in mV. The uncertainty in the current 
was ± 4 mA. Plot the current versus the voltage 
and draw the best-fi t line through the points. 
Suggest whether the current is proportional to 
the voltage.
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1.3 Vectors and scalars
Quantities in physics are either scalars (i.e. they just have magnitude) or 
vectors (i.e. they have magnitude and direction). This section provides the 
tools you need for dealing with vectors. 

Vectors
Some quantities in physics, such as time, distance, mass, speed and 
temperature, just need one number to specify them. These are called 
scalar quantities. For example, it is suffi  cient to say that the mass of a 
body is 64 kg or that the temperature is −5.0 °C. On the other hand, 
many quantities are fully specifi ed only if, in addition to a number, a 
direction is needed. Saying that you will leave Paris now, in a train moving 
at 220 km/h, does not tell us where you will be in 30 minutes because we 
do not know the direction in which you will travel. Quantities that need 
a direction in addition to magnitude are called vector quantities. Table 
1.7 gives some examples of vector and scalars.

A vector is represented by a straight arrow, as shown in Figure 1.10a. 
The direction of the arrow represents the direction of the vector and the 
length of the arrow represents the magnitude of the vector. To say that 
two vectors are the same means that both magnitude and direction are 
the same. The vectors in Figure 1.10b are all equal to each other. In other 
words, vectors do not have to start from the same point to be equal.

We write vectors as italic boldface a. The magnitude is written as |a| 
or just a.

Learning objectives

• Distinguish between vector and 
scalar quantities.

• Resolve a vector into its 
components.

• Reconstruct a vector from its 
components.

• Carry out operations with 
vectors.

Vectors Scalars

displacement distance

velocity speed

acceleration mass

force time

weight density

electric fi eld electric potential

magnetic fi eld electric charge

gravitational fi eld gravitational 
potential

momentum temperature

area volume

angular velocity work/energy/power

Table 1.7 Examples of vectors and scalars.

Figure1.11 Multiplication of vectors by a 
scalar.

a

2a

–0.5a

a b

Figure 1.10 a Representation of vectors by arrows. b These three vectors are equal to 
each other.

Multiplication of a vector by a scalar
A vector can be multiplied by a number. The vector a multiplied by the 
number 2 gives a vector in the same direction as a but 2 times longer. The 
vector a multiplied by −0.5 is opposite to a in direction and half as long 
(Figure 1.11). The vector −a has the same magnitude as a but is opposite 
in direction. 

Learning objectivesLearning objectives
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d d

d + e
O

e
e

a b c

d

d + e
e

To add two vectors: 
1 Draw them so they start at a common point O. 
2 Complete the parallelogram whose sides are d and e. 
3 Draw the diagonal of this parallelogram starting at O. This is the vector 

d + e.
Equivalently, you can draw the vector e so that it starts where the vector d 
stops and then join the beginning of d to the end of e, as shown in Figure 
1.12c.

Figure 1.12 a Vectors d and e. b Adding two vectors involves shifting one of them 
parallel to itself so as to form a parallelogram with the two vectors as the two sides. 
The diagonal represents the sum. c An equivalent way to add vectors.

Exam tip

Vectors (with arrows pointing in the same sense) forming closed 
polygons add up to zero.

Figure 1.13

Subtraction of vectors
Figure 1.14 shows vectors d and e. We want to fi nd the vector that equals 
d − e. 

To subtract two vectors: 
1 Draw them so they start at a common point O. 
2 The vector from the tip of e to the tip of d is the vector d − e.
(Notice that is equivalent to adding d to −e.)

Exam tip
The change in a quantity, and 
in particular the change in a 
vector quantity, will follow us 
through this entire course. You 
need to learn this well.

d

d
d

d – e

d – e

O
–e

e
–e

e e

ba c

Figure 1.14 Subtraction of vectors.

Addition of vectors
Figure 1.12a shows vectors d and e. We want to fi nd the vector that equals 
d + e. Figure 1.12b shows one method of adding two vectors.
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Worked examples
1.14 Copy the diagram in Figure 1.15a. Use the diagram to draw the third force that will keep the point P 

in equilibrium. 

We fi nd the sum of the two given forces using the parallelogram rule and then draw the opposite of that vector, as 
shown in Figure 1.15b. 

1.15 A velocity vector of magnitude 1.2 m s−1 is horizontal. A second velocity vector of magnitude 2.0 m s−1 must 
be added to the fi rst so that the sum is vertical in direction. Find the direction of the second vector and the 
magnitude of the sum of the two vectors.

We need to draw a scale diagram, as shown in Figure 1.16. Representing 1.0 m s−1 by 2.0 cm, we see that the 
1.2 m s−1 corresponds to 2.4 cm and 2.0 m s−1 to 4.0 cm. 

First draw the horizontal vector. Then mark the vertical direction from O. Using a compass (or a ruler), mark a 
distance of 4.0 cm from A, which intersects the vertical line at B. AB must be one of the sides of the parallelogram 
we are looking for. 

Now measure a distance of 2.4 cm horizontally from B to C and join O to C. This is the direction in which the 
second velocity vector must be pointing. Measuring the diagonal OB (i.e. the vector representing the sum), we fi nd 
3.2 cm, which represents 1.6 m s−1. Using a protractor, we fi nd that the 2.0 m s−1 velocity vector makes an angle of 
about 37° with the vertical.

P

a b

Figure 1.15 

Figure 1.16 Using a scale diagram to solve a vector problem.

O
A

BC
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1.16 A person walks 5.0 km east, followed by 3.0 km north and then another 4.0 km east. Find their fi nal position.

The walk consists of three steps. We may represent each one by a vector (Figure 1.17). 
• The fi rst step is a vector of magnitude 5.0 km directed east (OA). 
• The second is a vector of magnitude 3.0 km directed north (AB).
• The last step is represented by a vector of 4.0 km directed east (BC). 

The person will end up at a place that is given by the vector sum of 
these three vectors, that is OA + AB + BC, which equals the vector OC. 
By measurement from a scale drawing, or by simple geometry, the distance 
from O to C is 9.5 km and the angle to the horizontal is 18.4°.

1.17 A body moves in a circle of radius 3.0 m with a constant speed of 6.0 m s−1. 
The velocity vector is at all times tangent to the circle. The body starts at 
A, proceeds to B and then to C. Find the change in the velocity vector 
between A and B and between B and C (Figure 1.18).

For the velocity change from A to B we have to fi nd the diff erence vB − vA.  and for the velocity change from B to 
C we need to fi nd vC − vB. The vectors are shown in Figure 1.19.

Vectors corresponding to line 
segments are shown as bold 
capital letters, for example 
OA. The magnitude of the 
vector is the length OA 
and the direction is from O 
towards A.

O A5 km

4 km

3 km

B C

Figure 1.17 Scale drawing using 1 cm = 1 km.

C

B

A

vC

vA

vB

Figure 1.18 

vA

vB vB – vA

vC

vBvC – vB

Figure 1.19 
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The vector vB − vA is directed south-west and its magnitude is (by the Pythagorean theorem):

   vA
2 + v B2 =    62 + 62

 = √72

 = 8.49 m s−1

The vector vC − vB has the same magnitude as vB − vA but is directed north-west.

Components of a vector
Suppose that we use perpendicular axes x and y and draw vectors on 
this x–y plane. We take the origin of the axes as the starting point of the 
vector. (Other vectors whose beginning points are not at the origin can 
be shifted parallel to themselves until they, too, begin at the origin.) Given 
a vector a we defi ne its components along the axes as follows. From 
the tip of the vector draw lines parallel to the axes and mark the point on 
each axis where the lines intersect the axes (Figure 1.20).

x
x-component

Ay-component

0

y

θ

x

A

0

y

φ
θ

x

A

0

y

φ x

A

0

y

φ

θθ

Figure 1.20 The components of a vector A and the angle needed to calculate the components. 
The angle θ is measured counter-clockwise from the positive x-axis.

The x- and y-components of A are called Ax and Ay. They are given by:

Ax = A cos θ

Ay = A sin θ

where A is the magnitude of the vector and θ is the angle between the 
vector and the positive x-axis. These formulas and the angle θ defi ned 
as shown in Figure 1.20 always give the correct components with the 
correct signs. But the angle θ is not always the most convenient. A more 
convenient angle to work with is φ, but when using this angle the signs 
have to be put in by hand. This is shown in Worked example 1.18.

Exam tip
The formulas given for the 
components of a vector can 
always be used, but the angle 
must be the one defi ned in 
Figure 1.20, which is sometimes 
awkward. You can use other 
more convenient angles, but 
then the formulas for the 
components may change.
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Worked examples
1.18 Find the components of the vectors in Figure 1.21. The magnitude of a is 12.0 units and that of b is 24.0 units.

Taking the angle from the positive x-axis, the angle for a is θ = 180° + 45° = 225° and that for b is 
θ = 270° + 60° = 330°. Thus:

ax = 12.0 cos 225° bx = 24.0 cos 330°

ax = −8.49 bx = 20.8

ay = 12.0 sin 225° by = 24.0 sin 330°

ay = −8.49 by = −12.0

But we do not have to use the awkward angles of 225° and 330°. For vector a it is better to use the angle of 
φ = 45°. In that case simple trigonometry gives:

ax = −12.0 cos 45° = −8.49 and ay = −12.0 sin 45° = −8.49
 ↑  ↑
put in by hand put in by hand

For vector b it is convenient to use the angle of φ = 30°, which is the angle the vector makes with the x-axis. 
But in this case:

bx = 24.0 cos 30° = 20.8 and by = −24.0 sin 30° = −12.0
   ↑

 put in by hand

a b

45° 30°
x

y

Figure 1.21
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1.19 Find the components of the vector W along the axes shown 
in Figure 1.22.

See Figure 1.23. Notice that the angle between the vector W 
and the negative y-axis is θ.

Then by simple trigonometry

Wx = −W sin θ  (Wx is opposite the angle θ so the sine is used)

Wy = −W cos θ  (Wy is adjacent to the angle θ so the cosine is used)

(Both components are along the negative axes, so a minus sign has 
been put in by hand.)

Reconstructing a vector from its components
Knowing the components of a vector allows us to reconstruct it (i.e. to 
fi nd the magnitude and direction of the vector). Suppose that we are 
given that the x- and y-components of a vector are Fx and Fy. We need 
to fi nd the magnitude of the vector F and the angle (θ) it makes with the 
x-axis (Figure 1.24). The magnitude is found by using the Pythagorean 
theorem and the angle by using the defi nition of tangent.

F =    Fx
2 + Fy

2, θ = arctan 
Fy

Fx

As an example, consider the vector whose components are Fx = 4.0 and 
Fy = 3.0. The magnitude of F is:

F =    Fx
2 + Fy

2 =    4.02 + 3.02 =    25 = 5.0

W

θ

W

Wx

y-axis

x-axis

Wy

θ
θ

Figure 1.22 

Figure 1.23

x

FFy

Fx

y

θx

y

Figure 1.24 Given the components of a vector we can fi nd its magnitude and direction.
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and the direction is found from:

θ = arctan 
Fy

Fx
 = arctan 

3
4 = 36.87° ≈ 37°

Here is another example. We need to fi nd the magnitude and direction of 
the vector with components Fx = −2.0 and Fy = −4.0. The vector lies in 
the third quadrant, as shown in Figure 1.25.

The magnitude is:

F =    Fx
2 + Fy

2 =    (−2.0)2 + (−4.0)2 

 =    20 = 4.47 ≈ 4.5

The direction is found from:

φ = arctan 
Fy

Fx
 = arctan 

−4
−2 = arctan 2

The calculator gives θ = tan−1 2 = 63°. This angle is the one shown in 
Figure 1.25. 

In general, the simplest procedure to fi nd the angle without getting 
stuck in trigonometry is to evaluate φ = arctan|Fy

Fx
| i.e. ignore the signs 

in the components. The calculator will then give you the angle between 
the vector and the x-axis, as shown in Figure 1.26. 

Adding or subtracting vectors is very easy when we have the 
components, as Worked example 1.20 shows. 

x
Fx

Fy

y

63.43°
x

Fx

Fy

y

Figure 1.25 The vector is in the third 
quadrant. 

Figure 1.26 The angle φ is given by φ = arctan  
Fy

Fx 

φ
x

y

x

y

φ

x

y

φ x

y

φ
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Worked example
1.20 Find the sum of the vectors shown in Figure 1.27. F1 has magnitude 8.0 units and F2 has magnitude 

12 units. Their directions are as shown in the diagram.

Find the components of the two vectors:
F1x = −F1 cos 42° 
F1x = −5.945

F1y = F1 sin 42° 
F1y = 5.353

F2x = F2 cos 28° 
F2x = 10.595

F2y = F2 sin 28° 
F2y = 5.634

The sum F = F1 + F2 then has components:

Fx = F1x + F2x = 4.650
Fy = F1y + F2y = 10.987

The magnitude of the sum is therefore:

F =    4.6502 + 10.9872

F = 11.9 ≈ 12

and its direction is:

φ = arctan   
10.987
4.65

φ = 67.1 ≈ 67°

F1

F2

F1 + F2

28°42° x

y

Figure 1.27 The sum of vectors F1 and F2 (not to scale).
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38 Find the magnitude and direction of the vectors 
with components:

 a Ax = −4.0 cm, Ay = −4.0 cm
 b Ax = 124 km, Ay = −158 km
 c Ax = 0, Ay = −5.0 m
 d Ax = 8.0 N, Ay = 0
39 The components of vectors A and B are as 

follows: (Ax = 2.00, Ay = 3.00), (Bx = −2.00, 
By = 5.00). Find the magnitude and direction of 
the vectors:

 a A b B c A + B 
d A − B e 2A − B

40 The position vector of a moving object has 
components (rx = 2, ry = 2) initially. After a 
certain time the position vector has components 
(rx = 4, ry = 8). Find the displacement vector.

Nature of science
For thousands of years, people across the world have used maps to 
navigate from one place to another, making use of the ideas of distance 
and direction to show the relative positions of places. The concept of 
vectors and the algebra used to manipulate them were introduced in the 
fi rst half of the 19th century to represent real and complex numbers in a 
geometrical way. Mathematicians developed the model and realised that 
there were two distinct parts to their directed lines – scalars and vectors. 
Scientists and mathematicians saw that this model could be applied to 
theoretical physics, and by the middle of the 19th century vectors were 
being used to model problems in electricity and magnetism. 

Resolving a vector into components and reconstructing the vector 
from its components are useful mathematical techniques for dealing with 
measurements in three-dimensional space. These mathematical techniques 
are invaluable when dealing with physical quantities that have both 
magnitude and direction, such as calculating the eff ect of multiple forces 
on an object. In this section you have done this in two dimensions, but 
vector algebra can be applied to three dimensions and more.

? Test yourself
35 A body is acted upon by the two forces shown 

in the diagram. In each case draw the one force 
whose eff ect on the body is the same as the two 
together.

36 Vector A has a magnitude of 12.0 units and 
makes an angle of 30° with the positive x-axis. 
Vector B has a magnitude of 8.00 units and 
makes an angle of 80° with the positive x-axis. 
Using a graphical method, fi nd the magnitude 
and direction of the vectors:

 a A + B b A − B c A − 2B
37 Repeat the previous problem, this time using 

components.
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41 The diagram shows the velocity vector of a 
particle moving in a circle with speed 10 m s−1 
at two separate points. The velocity vector 
is tangential to the circle. Find the vector 
representing the change in the velocity vector.

42 In a certain collision, the momentum vector of 
a particle changes direction but not magnitude. 
Let p be the momentum vector of a particle 
suff ering an elastic collision and changing 
direction by 30°. Find, in terms of p (= |p|), the 
magnitude of the vector representing the change 
in the momentum vector.

43 The velocity vector of an object moving on a 
circular path has a direction that is tangent to the 
path (see diagram). 

 If the speed (magnitude of velocity) is constant at 
4.0 m s−1, fi nd the change in the velocity vector 
as the object moves:

 a from A to B
 b from B to C.
 c  What is the change in the velocity vector 

from A to C? How is this related to your 
answers to a and b?

44 For each diagram, fi nd the components of 
the vectors along the axes shown. Take the 
magnitude of each vector to be 10.0 units.

45 Vector A has a magnitude of 6.00 units 
and is directed at 60° to the positive x-axis. 
Vector B has a magnitude of 6.00 units and is 
directed at 120° to the positive x-axis. Find the 
magnitude and direction of vector C such that 
A + B + C = 0. Place the three vectors so that one 
begins where the previous ends. What do you 
observe?

46 Plot the following pairs of vectors on a set of 
x- and y-axes. The angles given are measured 
counter-clockwise from the positive x-axis. 
Then, using the algebraic component method, 
fi nd their sum in magnitude and direction.

 a 12.0 N at 20° and 14.0 N at 50°
 b 15.0 N at 15° and 18.0 N at 105°
 c 20.0 N at 40° and 15.0 N at 310° (i.e. −50°)

final initial

A

B

C

x

x

x

x

x

y y

y

y y

40°

35°

68°

48°

30°

AA B

C

D E
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Exam-style questions

1 What is the equivalent of 80 years in seconds?

A 107 B 109 C 1011 D 1013

2 A book has 500 pages (printed on both sides). The width of the book excluding the covers is 2.5 cm. What is the 
approximate width in mm of one sheet of paper?

A 0.01 B 0.1 C 0.5 D 1.0

3 The speed of sound is approximately 330 m s–1. A storm is 3 km away. Approximately how much later after seeing 
lightning will thunder be heard? 

A 0.1 s B 1 s C 3 s D 10 s

4 In which of the following diagrams do the three forces add up to zero?

A B C D

A B C D

5 Three forces act on a body as shown.

 Which fourth force is required so that the four forces add up to zero?

6 A force of 25 N acts normally on a surface of area 5.0 cm2. What is the pressure on the surface in N m– 2?

A 5 B 5 × 104 C 5.0 D 5.0 × 104

7 The side of a cube is measured with an uncertainty of 2%. What is the uncertainty in the volume of the cube?

A 2% B 4% C 6% D 8%
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 8 The fl ow rate Q through a tube of length L and radius r whose ends are kept at a pressure diff erence ∆P is given 

 by Q = 
cr4∆P

L , where c is a constant. The percentage uncertainty of which quantity has the largest eff ect on the 
 percentage uncertainty in Q?

A r
B ∆P
C L
D r, L and ∆P each give the same contribution 

 9 The force of air resistance F on a car depends on speed v through the formula F = av2 + bv, where a and b are 
constants. Which of the following graphs will result in a straight-line graph?

A F against v
B F against v2

C 
F
v  against v

D 
F
v  against 

1
v

10 The diagram shows the temperature of a liquid before and after heating. 

20 25 30 35 60 65 70

 What is the best estimate for the temperature increase of the liquid?

A (44.0 ± 0.5) degrees
B (44 ± 1.0) degrees
C (44 ± 1) degrees
D (44.0 ± 2.0) degrees

11 A student wishes to measure the acceleration of free fall by letting a ping pong ball drop from one fi xed height 
from the fl oor. He measures the height. Using a stopwatch, he measures the time for the ball to drop to the fl oor. 
He then uses the equation h = 12 gt 

2 to calculate g.

 State and discuss three improvements to the student’s lab experiment. [6]
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12 A man wants to cross a river with a motorboat. The speed of the motorboat in still water is 4.0 m s–1. The river is 
30 m wide. There is a current in the river whose speed with respect to the shore is 3.0 m s–1.

P

current

T / s

F / N
20 4 6 8

0.0

1.0

0.2

0.4

0.6

0.8

1.2

1.4

a The man aims the boat towards P. Determine the distance from P at which he will reach the shore. [2]
b A woman in an identical boat leaves from the same spot as the man but wants to land at P. Determine the 

direction in which she has to turn her boat to do this. [3]
c Determine which person reaches the shore in the least time. [2]

13 A student investigated the oscillation period, T, of a clamped rod for various loads F applied to the rod. 

 She graphed the following results.

a Copy the graph and draw the best-fi t line for these data. [2]
b Predict the period of oscillation of the rod when no load is applied to it. [1]
c The student claims that T is proportional to F. Explain to the student how the results show she is 

not correct. [2]
d Determine the absolute uncertainty in T2 for the data point corresponding to F = 5.5 N. [2]
e Another student suspects that T2 is proportional to F. By drawing a graph of T2 against F discuss 

whether this student’s claim is correct. [4]
f Calculate the slope of the graph drawn in e, including its uncertainty. [3]
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Mechanics  2
2.1 Motion
This section is an introduction to the basic concepts used in describing 
motion. We will begin with motion in a straight line with constant 
velocity and then constant acceleration. Knowledge of uniformly 
accelerated motion allows analysis of more complicated motions, such as 
the motion of projectiles.

Kinematical quantities
We will begin our discussion of motion with straight line motion in one 
dimension. This means that the particle that moves is constrained to move 
along a straight line. The position of the particle is then described by its 
coordinate on the straight line (Figure 2.1a). If the line is horizontal, we 
may use the symbol x to represent the coordinate and hence the position. 
If the line is vertical, the symbol y is more convenient. In general, for an 
arbitrary line we may use a generic name, s, for position. So in Figure 2.1, 
x = 6 m, y = −4 m and s = 0.

Learning objectives

• Understand the diff erence 
between distance and 
displacement.

• Understand the diff erence 
between speed and velocity.

• Understand the concept of 
acceleration.

• Analyse graphs describing 
motion.

• Solve motion problems using 
the equations for constant 
acceleration.

• Discuss the motion of a 
projectile.

• Show a qualitative understanding 
of the eff ects of a fl uid resistance 
force on motion.

• Understand the concept of 
terminal speed.

0 1–1–2–3–4 2
a cb

3 4 5 6 7 8 x /m

y/m

s /m0
1

–1
–2
–3
–4

2
3
4

0
1

–1
–2

–3
–4

2
3

4

t

s

∆ t

0

∆ s
∆ t

∆ s

As the particle moves on the straight line its position changes. In 
uniform motion the graph of position against time is a straight line 
(Figure 2.2). In equal intervals of time, the position changes by the same 
amount. This means that the slope of the position–time graph is constant. 
This slope is defi ned to be the average velocity of the particle:

v = 
∆s
∆t

where ∆s is the change in position. 

The average velocity during an interval of time Δt is the ratio of 
the change in position Δs during that time interval to Δt. 

Figure 2.1 The position of a particle is determined by the coordinate on the number 
line. 

Figure 2.2 In uniform motion the graph of 
position versus time is a straight line.
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(In uniform motion velocity is constant so the term ‘average’ is 
unnecessary. The velocity is the same at all times.)

Positive velocity means that the coordinate s that gives the position is 
increasing. Negative velocity means that s is decreasing. 

Suppose we choose a time interval from t = 0 to some arbitrary time t 
later. Let the position at t = 0 (the initial position) be si and the position at 
time t be s. Then:

v = 
s − si
t − 0

which can be re-arranged to give:

s = si + vt

This formula gives, in uniform motion, the position s of the moving 
object t seconds after time zero, given that the velocity is v and the initial 
position is si.

Worked example
2.1 Two cyclists, A and B, start moving at the same time. The initial position of A is 0 m and her velocity is 

+20 km h−1. The initial position of B is 150 km and he cycles at a velocity of −30 km h−1. Determine the time 
and position at which they will meet.

The position of A is given by the formula: sA = 0 + 20t

The position of B is given by the formula: sB = 150 − 30t

They will meet when they are the same position, i.e. when sA = sB. This implies:

 20t = 150 − 30t

 50t = 150

 t = 3.0 hours

The common position is found from either sA = 20 × 3.0 = 60 km or sB = 150 − 30 × 3.0 = 60 km.

Consider two motions shown in Figure 2.3. In the fi rst, the particle leaves 
its initial position si at −4 m and continues to its fi nal position at 16 m. 
The change in position is called displacement and in this case equals 
16 − (−4) = 20 m. The distance travelled is the actual length of the path 
followed and in this case is also 20 m.

Displacement = change in position
Distance = length of path followed

In the second motion, the particle leaves its initial position at 12 m, arrives 
at position 20 m and then comes back to its fi nal position at 4.0 m. 

0 2–2–4 4 6 8 10 12 14 16 18 20 s /m

0 2–2–4 4 6 8 10 12 14 16 18 20 s /m

Figure 2.3 A motion in which the particle 
changes direction.
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The second motion is an example of motion with changing direction. 
The change in the position of this particle, i.e. the displacement is 
Δs = sf − si = 4.0 − 12 = −8.0 m. But the distance travelled by the particle 
(the length of the path) is 8.0 m in the outward trip and 16 m on the 
return trip, making a total distance of 24 m. So we must be careful 
to distinguish distance from displacement. Distance is a scalar but 
displacement is a vector. Numerically, they are diff erent if there is a 
change of direction, as in this example.

For constant velocity, the graph of velocity versus time gives a 
horizontal straight line (Figure 2.4a). An example of this type of motion is 
coasting in a straight line on a bicycle on level ground (Figure 2.4b).

Time

Velocity

0

But we now observe that the area under the graph from t = 0 to time t 
is vt. From s = si + vt we deduce that this area is the change in position or 
the displacement.

Uniformly accelerated motion
In the last section we discussed uniform motion. This means motion in 
a straight line with constant velocity. In such motion the graph of 
position versus time is a straight line. 

In most motions velocity is not constant. In uniformly accelerated 
motion the graph of velocity versus time is a non-horizontal straight line 
(Figure 2.5).

In equal intervals of time the velocity changes by the same amount. The 
slope of the velocity–time graph is constant. This slope is defi ned to be the 
acceleration of the particle:

a = 
∆v
∆t

Acceleration is the rate of change of velocity.

When the acceleration is positive, the velocity is increasing (Figure 2.6). 
Negative acceleration means that v is decreasing. The plane reaches a take-off  
speed of 260 km h–1 (about 72 m s–1) in about 2 seconds, implying an average 
acceleration of about 36 m s–2. The distance travelled until take-off  is about 72 m.

Figure 2.4 a In uniform motion the graph of velocity versus time is a horizontal 
straight line. b This motion is a good approximation to uniform motion.

t

v

∆ t

0

∆v
∆ t

∆v

Figure 2.5 In uniformly accelerated motion 
the graph of velocity versus time is a straight 
line with non-zero slope.

Figure 2.6 This F/ A-18C is accelerating!

a b
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Suppose we choose a time interval from t = 0 to some arbitrary time t 
later. Let the velocity at t = 0 (the initial velocity) be u and the velocity at 
time t be v. Then:

a = 
v − u
t − 0

which can be re-arranged to:

v = u + at

For uniformly accelerated motion, this formula gives the velocity v of the 
moving object t seconds after time zero, given that the initial velocity is u 
and the acceleration is a.

Worked example
2.2 A particle has initial velocity 12 m s−1 and moves with a constant acceleration of −3.0 m s−2. Determine the 

time at which the particle stops instantaneously.

The particle is getting slower. At some point it will stop instantaneously, i.e. its velocity v will be zero.

We know that v = u + at. Just substituting values gives:

0 = 12 + (−3.0) × t

3.0t = 12

Hence t = 4.0 s.

Defi ning velocity in non-uniform motion
But how is velocity defi ned now that it is not constant? We defi ne the 
average velocity as before:

ν– = 
∆s
∆t

But since the velocity changes, it has diff erent values at diff erent times. 
We would like to have a concept of the velocity at an instant of time, 
the instantaneous velocity. We need to make the time interval Δt very 
small. The instantaneous velocity is then defi ned as:

ν = lim 
∆s
∆t

In other words, instantaneous velocity is the average velocity obtained 
during an interval of time that is very, very small. In calculus, we learn that 

lim 
∆s
∆t  has the following meaning: look at the graph of position s versus 

time t shown in Figure 2.7a. As there is uniform acceleration, the graph is 
a curve. Choose a point on this curve. Draw the tangent line to the curve 
at the point. The slope of the tangent line is the meaning of  lim Δs

Δt and 
therefore also of velocity. 

∆t→0

∆t→0

∆t→0
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In Figure 2.7b the tangent is drawn at t = 3.0 s. We can use this to fi nd 
the instantaneous velocity at t = 3.0 s. The slope of this tangent line is:

25 − 1.0
5.0 − 1.0 = 6.0 m s−1

To fi nd the instantaneous velocity at some other instant of time we must 
take another tangent and we will fi nd a diff erent instantaneous velocity. At 
the point at t = 0 it is particularly easy to fi nd the velocity: the tangent is 
horizontal and so the velocity is zero.

Instantaneous velocity can be positive or negative. The magnitude of 
the instantaneous velocity is known as the instantaneous speed.

We defi ne the average speed to be the total distance travelled divided 
by the total time taken. The average velocity is defi ned as the change in 
position (i.e. the displacement) divided by the time taken:

average speed = 
total distance travelled

total time taken

average velocity = 
displacement

total time taken

Consider the graph of velocity versus time in Figure 2.8. Imagine 
approximating the straight line with a staircase. The area under the 
staircase is the change in position since at each step the velocity is 
constant. If we make the steps of the staircase smaller and smaller, the area 
under the line and the area under the staircase will be indistinguishable 
and so we have the general result that:

The area under the curve in a velocity versus time graph is the 
change in position.

From Figure 2.8 this area is (the shape is a trapezoid):

∆s =  
u + v

2 t

s /m

10 2

b
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t /s
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Figure 2.7 a In uniformly accelerated motion the graph of position versus time is a curve. b The slope of the tangent at a particular 
point gives the velocity at that point.

Time

Velocity

v

u

t0

Figure 2.8 The straight-line graph may be 
approximated by a staircase.

The slope of the tangent to the 
graph of position versus time is 
velocity
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But v = u + at, so this becomes:

∆s =  
u + u + at

2 t = ut + 12 at 
2

So we have two formulas for position in the case of uniformly accelerated 
motion (recall that ∆s = s − si):

s = si +  
u + v

2 t

s = si + ut + 12 at 
2

We get a fi nal formula if we combine s = si + ut + 12 at 
2 with v = u + at. From 

the second equation write t = 
v − u

a  and substitute in the fi rst equation to get:

s − si = u 
v - u

a  + 
1
2  

v + u
a

2

After a bit of uninteresting algebra this becomes:

v2 = u2 + 2a(s − si)

This is useful in problems in which no information on time is given.
Graphs of position versus time for uniformly accelerated motion are 

parabolas (Figure 2.9). If the parabola ‘holds water’ the acceleration is 
positive. If not, the acceleration is negative.

t
0

a b

0
t

s s

Figure 2.9 Graphs of position s against time t for uniformly accelerated motion. a Positive 
acceleration. b Negative acceleration.

Exam tip
The table summarises the meaning of the slope and area for the diff erent motion graphs.

Graph of … Slope Area

position against time velocity

velocity against time acceleration change in position

acceleration against time change in velocity

These formulas can be used for constant acceleration only (if the initial position is zero, 
∆s may be replaced by just s).

v = u + at  ∆s = ut + 12at
2  ∆s =   

u + v
2 t  v2 = u2 + 2a∆s
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Worked examples
2.3 A particle has initial velocity 2.00 m s−1 and acceleration a = 4.00 m s−2. Find its displacement after 10.0 s.

Displacement is the change of position, i.e. ∆s = s − si. We use the equation:

∆s = ut + 12at
2

∆s = 2.00 × 10.0 + 12 × 4.00 × 10.02

∆s = 220 m

2.4 A car has an initial velocity of u = 5.0 m s−1. After a displacement of 20 m, its velocity becomes 7.0 m s−1. 
Find the acceleration of the car.

Here, ∆s = s − si = 20 m. So use v2 = u2 + 2a∆s to fi nd a.

 7.02 = 5.02 + 2a × 20

 24 = 40a

Therefore a = 0.60 m s−2.

2.5 A body has initial velocity 4.0 m s−1. After 6.0 s the velocity is 12 m s−1. Determine the displacement of the 
body in the 6.0 s.

We know u, v and t. We can use:

∆s =  
v + u

2 t

to get:

∆s =  
12 + 4.0

2 × 6.0

 ∆s = 48 m

A slower method would be to use v = u + at to fi nd the acceleration:

 12 = 4.0 + 6.0a

⇒ a = 1.333 m s−2

Then use the value of a to fi nd ∆s:

∆s = ut + 12at
2

∆s = 4.0 × 6.0 + 12 × 1.333 × 36

∆s = 48 m
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2.6 Two balls start out moving to the right with constant velocities of 5.0 m s−1 and 4.0 m s−1. The slow ball starts 
fi rst and the other 4.0 s later. Determine the position of the balls when they meet.

Let the two balls meet t s after the fi rst ball starts moving. 

The position of the slow ball is: s = 4t 

The position of the fast ball is: 5(t − 4)

(The factor t − 4 is there because after t s the fast ball has actually been moving for only t − 4 seconds.)

These two positions are equal when the two balls meet, and so:

 4t = 5t − 20

⇒ t = 20 s

Substituting into the equation for the position of the slow ball, the position where the balls meet is 80 m to the 
right of the start.

2.7 A particle starts out from the origin with velocity 10 m s−1 and continues moving at this velocity for 5 s. 
The velocity is then abruptly reversed to −5 m s−1 and the object moves at this velocity for 10 s. For this 
motion fi nd:

 a the change in position, i.e. the displacement
 b the total distance travelled
 c the average speed
 d the average velocity.

The problem is best solved using the velocity–time graph, 
which is shown in Figure 2.10.

a The initial position is zero. Thus, after 5.0 s the position is 10 × 5.0 m = 50 m (the area under the fi rst part of the 
graph). In the next 10 s the displacement changes by −5.0 × 10 = −50 m (the area under the second part of the 
graph). The change in position, i.e. the displacement, is thus 50 − 50 = 0 m. 

b Take the initial velocity as moving to the right. The object moved toward the right, stopped and returned to its 
starting position (we know this because the displacement was 0). The distance travelled is 50 m in moving to the 
right and 50 m coming back, giving a total distance travelled of 100 m.

c The average speed is 
100 m
15 s  = 6.7 m s−1.

d The average velocity is zero, since the displacement is zero. 

5 10 15
t /s0

–5

–10

5

10v /m s–1

Figure 2.10
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2.8 An object with initial velocity 20 m s−1 and initial position of −75 m experiences a constant acceleration of 
−2 m s−2. Sketch the position–time graph for this motion for the fi rst 20 s.

Use the equation s = ut + 12at
2. Substituting the values we know, the displacement is given by s = −75 + 20t − t2. 

This is the function we must graph. The result is shown in Figure 2.11.

Figure 2.11 

At 5 s the object reaches the origin and overshoots it. It returns to the origin 10 s later (t = 15 s). The furthest it gets 
from the origin is 25 m. The velocity at 5 s is 10 m s−1 and at 15 s it is −10 m s−1. At 10 s the velocity is zero.

A special acceleration
Assuming that we can neglect air resistance and other frictional forces, 
an object thrown into the air will experience the acceleration of free 
fall while in the air. This is an acceleration caused by the attraction 
between the Earth and the body. The magnitude of this acceleration is 
denoted by g. Near the surface of the Earth g = 9.8 m s−2. The direction 
of this acceleration is always vertically downward. (We will sometimes 
approximate g by 10 m s−2.)

Worked example
2.9 An object is thrown vertically upwards with an initial velocity of 20 m s−1 

from the edge of a cliff  that is 30 m from the sea below, as shown in 
Figure 2.12.

 Determine:
 a the ball’s maximum height
 b the time taken for the ball to reach its maximum height
 c the time to hit the sea
 d the speed with which it hits the sea. 
 (You may approximate g by 10 m s−2.)

–80

–60

5 10 15 20
t /s0

–20

–40

20

40s /m

20 m s–1

30 m

Figure 2.12 A ball is thrown 
upwards from the edge of a cliff .
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We have motion on a vertical line so we will use the symbol y for position (Figure 2.13a). We make the vertical 
line point upwards. The zero for displacement is the ball’s initial position.

a The quickest way to get the answer to this part is to use v2 = u2 − 2gy. 
(The acceleration is a = −g.) At the highest point v = 0, and so:

  0 = 202 − 2 × 10y

⇒  y = 20 m

b At the highest point the object’s velocity is zero. Using v = 0 in v = u − gt gives:

 0 = 20 − 10 × t

 t = 
20
10 = 2.0 s 

c There are many ways to do this. One is to use the displacement 
arrow shown in blue in Figure 2.13a. Then when the ball hits the sea, 
y = −30 m. Now use the formula y = ut − 12gt

2 to fi nd an equation that 
only has the variable t:

 −30 = 20 × t − 5 × t2

 t2 − 4t − 6 = 0

 This is a quadratic equation. Using your calculator you can fi nd the two 
roots as −1.2 s and 5.2 s. Choose the positive root to fi nd the answer 
t = 5.2 s. 

 Another way of looking at this is shown in Figure 2.13b. Here we start 
at the highest point and make the line along which the ball moves point 
downwards. Then, at the top y = 0, at the sea y = +50 and g = +10 m s−2. 
Now, the initial velocity is zero because we take our initial point to be at 
the top. 

 Using y = ut + 12gt
2 with u = 0, we fi nd:

  50 = 5t2

⇒  t = 3.2 s

 This is the time to fall to the sea. It took 2.0 s to reach the highest point, so the total time from launch to hitting 
the sea is:

 2.0 + 3.2 = 5.2 s.

d Use v = u − gt and t =5.2 s to get v = 20 − 10 × 5.2 = −32 m s−1. The speed is then 32 m s−1. 

 (If you preferred the diagram in Figure 2.13b for working out part c and you want to continue this method 
for part d, then you would write v = u + gt with t =3.2 s and u = 0 to get v = 10 × 3.2 = +32 m s−1.)

20 m s–1

a

y /m

30 m

0

b

y /m

50 m

0

Figure 2.13 Diagrams for solving 
the ball’s motion. a Displacement 
upwards is positive. b The highest 
point is the zero of displacement.
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Projectile motion
Figure 2.14 shows the positions of two objects every 0.2 s: the fi rst was 
simply allowed to drop vertically from rest, the other was launched 
horizontally with no vertical component of velocity. We see that in the 
vertical direction, both objects fall the same distance in the same time.

y / m

x /m
0 20 40 60 80 100

–5

–4

–3

–2

–1

0

Figure 2.14 A body dropped from rest and one launched horizontally cover the same 
vertical displacement in the same time.

How do we understand this fact? Consider Figure 2.15, in which 
a black ball is projected horizontally with velocity v. A blue ball 
is allowed to drop vertically from the same height. Figure 2.15a 

shows the situation when the balls are released as seen by an observer X 
at rest on the ground. But suppose there is an observer Y, who moves to 
the right with velocity v2 with respect to the ground. What does Y see? 
Observer Y sees the black ball moving to the right with velocity v2 and the 
blue ball approaching with velocity −v

2 (Figure 2.15b)The motions of the 
two balls are therefore identical (except for direction). So this observer 
will determine that the two bodies reach the ground at the same time. 
Since time is absolute in Newtonian physics, the two bodies must reach the 
ground at the same time as far as any other observer is concerned as well.

X

v

v
2

Y

a b

v
2

Xv
2– Y

v
2–

Figure 2.15 a A ball projected horizontally and one simply dropped from rest 
from the point of view of observer X. Observer Y is moving to the right with 

velocity 
v
2 with respect to the ground. b From the point of view of observer Y, 

 the black and the blue balls have identical motions.
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The discussion shows that the motion of a ball that is projected at some 
angle can be analysed by separately looking at the horizontal and the 
vertical directions. All we have to do is consider two motions, one in the 
horizontal direction in which there is no acceleration, and another in the 
vertical direction in which we have an acceleration, g. 

Consider Figure 2.16, where a projectile is launched at an angle θ to 
the horizontal with speed u. The components of the initial velocity vector 
are ux = u cos θ and uy = u sin θ . At some later time t the components of 
velocity are vx and vy. In the x-direction we do not have any acceleration 
and so:

vx = ux

vx = u cos θ

In the y-direction the acceleration is −g and so:

vy = uy − gt

vy = u sin θ − gt

The green vector in Figure 2.17a shows the position of the projectile t 
seconds after launch. The red arrows in Figure 2.17b show the velocity 
vectors.

θ

u

ux

uy

Figure 2.16 A projectile is launched at an 
angle θ to the horizontal with speed u.
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Figure 2.17 a The position of the particle is determined if we know the x- and y-components of the position vector. 
b The velocity vectors for projectile motion are tangents to the parabolic path.

We would like to know the x- and y-components of the position 
vector. We now use the formula for position. In the x-direction:

x = uxt

x = ut cos θ

And in the y-direction:

y = uyt − 12gt
2

y = ut sin θ − 12gt
2

Exam tip
All that we are doing is using 
the formulas from the previous 
section for velocity and 
position v = u + at and 
s = ut + 12at

2 and rewriting them 
separately for each direction 
x and y.

In the x-direction there is 
zero acceleration and in 
the y-direction there is an 
acceleration −g.
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Let us collect what we have derived so far. We have four equations with 
which we can solve any problem with projectiles, as we will soon see:

θ θv u v u gt= cos , = cos –x

x

y

y-velocity -velocity
! "# $# ! "## $##

θ θx ut y ut gt= cos , = sin – 1
2

x y-displacement

2

-displacement
! "# $# ! "## $##

The equation with ‘squares of speeds’ is a bit trickier (carefully review the 
following steps). It is:

v2 = u2 − 2gy

Since v2 = vx
2 + vy

2 and u2 = ux
2 + uy

2, and in addition vx
2 = ux

2, this is also 
equivalent to:

vy
2 = uy

2 − 2gy

Worked examples
2.10 A body is launched with a speed of 18.0 m s−1 at the following angles:

a 30° to the horizontal
b 0° to the horizontal 
c 90° to the horizontal.

 Find the x- and y-components of the initial velocity in each case.

a vx = u cos θ vy = u sin θ

 vx = 18.0 × cos 30° vy = 18.0 × sin 30°

 vx = 15.6 m s−1 vy = 9.00 m s−1

b vx = 18.0 m s−1 vy = 0 m s−1

c vx = 0 vy = 18.0 m s−1

2.11 Sketch graphs to show the variation with time of the horizontal and vertical components of velocity for a 
projectile launched at some angle above the horizontal.

The graphs are shown in Figure 2.18.

Figure 2.18

Exam tip
Always choose your x- and 
y-axes so that the origin is the 
point where the launch takes 
place.

Time

vx

0
Time

0

vy
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2.12 An object is launched horizontally from a height of 20 m above the ground with speed 15 m s−1. Determine:
 a the time at which it will hit the ground
 b the horizontal distance travelled
 c the speed with which it hits the ground.
 (Take g = 10 m s−2.)

a The launch is horizontal, i.e. θ = 0°, and so the formula for vertical displacement is just y = −1
2 gt

2.

 The object will hit the ground when y = −20 m.

 Substituting the values, we fi nd:

  −20 = −5t2

 ⇒ t = 2.0 s

b The horizontal distance is found from x = ut. Substituting values:

 x = 15 × 2.0 = 30 m

 (Remember that θ = 0°).

c Use v2 = u2 − 2gy to get:

 v2 = 152 − 2 × 10 × (−20)

 v = 25 m s−1

2.13 An object is launched horizontally with a velocity of 12 m s−1. Determine:
 a the vertical component of velocity after 4.0 s
 b the x- and y-components of the position vector of the object after 4.0 s.

a The launch is again horizontal, i.e. θ = 0°, so substitute this value in the formulas. The horizontal component of 
velocity is 12 m s−1 at all times.

 From vy = −gt, the vertical component after 4.0 s is vy = −20 m s−1. 

b The coordinates after time t are:

 x = ut and y = −1
2 gt

2 

 x = 12.0 × 4.0  y = −5 × 16

 x = 48 m  y = −80 m

Figure 2.19 shows an object thrown at an angle of θ = 30° to the 
horizontal with initial speed 20 m s−1. The position of the object is shown 
every 0.2 s. Note how the dots get closer together as the object rises (the 
speed is decreasing) and how they move apart on the way down (the 
speed is increasing). It reaches a maximum height of 5.1 m and travels a 
horizontal distance of 35 m. The photo in Figure 2.20 show an example 
of projectile motion.

Exam tip
This is a basic problem – 
you must know how to do this!
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At what point in time does the vertical velocity component become 
zero? Setting vy = 0 we fi nd:

 0 = u sin θ − gt

⇒ t = 
u sin θ

g

The time when the vertical velocity becomes zero is, of course, the time 
when the object attains its maximum height. What is this height? Going 
back to the equation for the vertical component of displacement, we fi nd 
that when: 

t = 
u sin θ

g

y is given by:

ymax = u 
u sin θ

g  sin θ − 
1
2 g  

u sin θ
g

2

ymax = 
u2 sin2 θ

2g

What about the maximum displacement in the horizontal direction 
(sometimes called the range)? At this point the vertical component of 
displacement y is zero. Setting y = 0 in the formula for y gives:

0 = ut sin θ − 12  gt
2

0 = t (u sin θ − 1 
2  gt)

and so: 

t = 0  and  t = 
2u sin θ

g
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Figure 2.19 A launch at of θ = 30° to the horizontal with initial speed 20 m s−1.

Figure 2.20 A real example of projectile 
motion!

Exam tip
You should not remember 
these formulas by heart. You 
should be able to derive them 
quickly.



50

The fi rst time t = 0 is, of course, when the object fi rst starts out. The 
second time is what we want – the time in which the range is covered. 
Therefore the range is:

x = 
2u2 sin θ cos θ

g

A bit of trigonometry allows us to rewrite this as:

x = 
u2 sin (2θ )

g

One of the identities in trigonometry is 2 sin θ cos θ = sin 2θ

The maximum value of sin 2θ is 1, and this happens when 2θ = 90° (i.e. 
θ = 45°); in other words, we obtain the maximum range with a launch 
angle of 45°. This equation also says that there are two diff erent angles 
of launch that give the same range for the same initial speed. These two 
angles add up to a right angle (can you see why?).

Worked examples
2.14 A projectile is launched at 32.0° to the horizontal with initial speed 25.0 m s−1. Determine the maximum 

height reached. (Take g = 9.81 m s−2.)

The vertical velocity is given by vy = u sin θ − gt and becomes zero at the highest point. Thus:

t = 
u sin θ

g

t = 
25.0 × sin 32.0°

9.81

t = 1.35 s

Substituting in the formula for y, y = ut sin θ − 12  gt
2, we get: 

y = 25 × sin 32.0° × 1.35 − 12 × 9.81 × 1.352

y = 8.95 m
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2.15 A projectile is launched horizontally from a height of 42 m above the ground. As it hits the ground, the 
velocity makes an angle of 55° to the horizontal. Find the initial velocity of launch. (Take g = 9.8 m s−2.)

The time it takes to hit the ground is found from y = 12  gt
2 (here θ = 0° since the launch is horizontal). 

The ground is at y = −42 m and so:

 −42 = −1
2 × 9.8t2

⇒ t = 2.928 s

Using v = u – at, when the projectile hits the ground:

vy = 0 − 9.8 × 2.928

vy = −28.69 m s−1

We know the angle the fi nal velocity makes with the ground (Figure 2.21). Hence:

tan 55° =|vy

vx
|

⇒ vx = 
28.69
tan 55°

 vx = 20.03 ≈ 20 m s−1

Fluid resistance
The discussion of the previous sections has neglected air resistance forces. 
In general, whenever a body moves through a fl uid (gas or liquid) it 
experiences a fl uid resistance force that is directed opposite to the 
velocity. Typically F = kv for low speeds and F = kv2 for high speeds (where 
k is a constant). The magnitude of this force increases with increasing speed.

Imagine dropping a body of mass m from some height. Assume that the 
force of air resistance on this body is F = kv. Initially, the only force on the 
body is its weight, which accelerates it downward. As the speed increases, 
the force of air resistance also increases. Eventually, this force will become 
equal to the weight and so the acceleration will become zero: the body 
will then move at constant speed, called terminal speed, vT. This speed 
can be found from:

mg = kvT

which leads to:

vT = 
mg
k

θ

tan θ =

vx

vy vy
vx

Figure 2.21



52

Figure 2.22 shows how the speed and acceleration vary for motion with 
an air resistance force that is proportional to speed. The speed eventually 
becomes the terminal speed and the acceleration becomes zero. The initial 
acceleration is g.

The eff ect of air resistance forces on projectiles is very pronounced. 
Figure 2.23 shows the positions of a projectile with (red) and without 
(blue) air resistance forces. With air resistance forces the range and 
maximum height are smaller and the shape is no longer symmetrical. The 
projectile hits the ground with a steeper angle.
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Figure 2.22 The variation with time of a 
speed and b acceleration in motion with an 
air resistance force proportional to speed.
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Figure 2.23 The eff ect of air resistance on projectile motion.

Worked example
2.16 The force of air resistance in the motion described by Figure 2.22 is given by F = 0.653v. Determine the 

mass of the projectile.

The particle is getting slower. At some point it will stop instantaneously, i.e. its velocity v will be zero.

We know that v = u + at. Just substituting values gives:

0 = 12 + (−3.0) × t

3.0t = 12

Hence t = 4.0 s.

The terminal speed is 30 m s−1 and is given by vT = 
mg
k . Hence:

 m = 
kvT
g

 m = 
0.653 × 30

9.8

 m ≈ 2.0 kg
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Nature of science
The simple and the complex
Careful observation of motion in the natural world led to the equations 
for motion with uniform acceleration along a straight line that we have 
used in this section. Thinking about what causes an object to move links 
to the idea of forces. However, although the material in this section is 
perhaps some of the ‘easiest’ material in your physics course, it does not 
enable one to understand the falling of a leaf off  a tree. The falling leaf is 
complicated because it is acted upon by several forces: its weight, but also 
by air resistance forces that constantly vary as the orientation and speed 
of the leaf change. In addition, there is wind to consider as well as the fact 
that turbulence in air greatly aff ects the motion of the leaf. So the physics 
of the falling leaf is far away from the physics of motion along a straight 
line at constant acceleration. But learning the principles of physics in a 
simpler context allows its application in more involved situations.

3 Two cyclists, A and B, have displacements 0 km 
and 70 km, respectively. At t = 0 they begin to cycle 
towards each other with velocities 15 km h−1 and 
20 km h−1, respectively. At the same time, a fl y that 
was sitting on A starts fl ying towards B with a 
velocity of 30 km h−1. As soon as the fl y reaches B 
it immediately turns around and fl ies towards A, 
and so on until A and B meet.
a Find the position of the two cyclists and the fl y 

when all three meet.
b Determine the distance travelled by the fl y.

4 An object moving in a straight line has the 
displacement–time graph shown.
a Find the average speed for the trip.
b Find the average velocity for the trip.

Accelerated motion
5 The initial velocity of a car moving on a straight 

road is 2.0 m s−1. It becomes 8.0 m s−1 after 
travelling for 2.0 s under constant acceleration. 
Find the acceleration.

6 A car accelerates from rest to 28 m s−1 in 9.0 s. Find 
the distance it travels.

7 A particle has an initial velocity of 12 m s−1 and is 
brought to rest over a distance of 45 m. Find the 
acceleration of the particle.

8 A particle at the origin has an initial velocity 
of −6.0 m s−1 and moves with an acceleration 
of 2.0 m s−2. Determine when its position will 
become 16 m.

t
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–40

5 10 15 20
t /s0

40

s /m

? Test yourself
Uniform motion
1 A car must be driven a distance of 120 km in 

2.5 h. During the fi rst 1.5 h the average speed was 
70 km h−1. Calculate the average speed for the 
remainder of the journey.

2 Draw the position–time graph for an object 
moving in a straight line with a velocity–time 
graph as shown below. The initial position is zero. 
You do not have to put any numbers on the axes.
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 9 A plane starting from rest takes 15.0 s to take 
off  after speeding over a distance of 450 m on 
the runway with constant acceleration. Find the 
take-off  velocity.

10 A car is travelling at 40.0 m s−1. The driver sees 
an emergency ahead and 0.50 s later slams on the 
brakes. The deceleration of the car is 4.0 m s−2.
a Find the distance travelled before the car stops.
b Calculate the stopping distance if the driver 

could apply the brakes instantaneously 
without a reaction time.

c Calculate the diff erence in your answers to a 
and b.

d Assume now that the car was travelling at 
30.0 m s−1 instead. Without performing any 
calculations, state whether the answer to c 
would now be less than, equal to or larger 
than before. Explain your answer.

11 Two balls are dropped from rest from the same 
height. One of the balls is dropped 1.00 s after 
the other. 

 a  Find the distance that separates the two balls 
2.00 s after the second ball is dropped.

 b  State what happens to the distance separating 
the balls as time goes on.

12 A particle moves in a straight line with an 
acceleration that varies with time as shown in 
the diagram. Initially the velocity of the object is 
2.00 m s−1.
a Find the maximum velocity reached in the 

fi rst 6.00 s of this motion.
b Draw a graph of the velocity versus time.

13 The graph shows the variation of velocity with 
time of an object. Find the acceleration at 2.0 s.

14 The graph shows the variation of the position 
of a moving object with time. Draw the graph 
showing the variation of the velocity of the 
object with time.

0
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15 The graph shows the variation of the position 
of a moving object with time. Draw the graph 
showing the variation of the velocity of the 
object with time.

10 2 3 4 5 6
t /s
7

s
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16 The graph shows the variation of the position 
of a moving object with time. Draw the graph 
showing the variation of the velocity of the 
object with time.

0.50 1 1.5 2
t /s

s

17 The graph shows the variation of the velocity 
of a moving object with time. Draw the graph 
showing the variation of the position of the 
object with time.

0.50 1 1.5 2
t /s

v

18 The graph shows the variation of the velocity 
of a moving object with time. Draw the graph 
showing the variation of the position of the object 
with time (assuming a zero initial position).

10 2 3 4
t /s

v

19 The graph shows the variation of the velocity 
of a moving object with time. Draw the graph 
showing the variation of the acceleration of the 
object with time.

20 Your brand new convertible Ferrari is parked 
15 m from its garage when it begins to rain. You 
do not have time to get the keys, so you begin to 
push the car towards the garage. The maximum 
acceleration you can give the car is 2.0 m s−2 by 
pushing and 3.0 m s−2 by pulling back on the car. 
Find the least time it takes to put the car in the 
garage. (Assume that the car, as well as the garage, 
are point objects.)

21 The graph shows the displacement versus time of 
an object moving in a straight line. Four points 
on this graph have been selected.

a Is the velocity between A and B positive, zero 
or negative?

b What can you say about the velocity between 
B and C?

c Is the acceleration between A and B positive, 
zero or negative?

d Is the acceleration between C and D positive, 
zero or negative?

0.50 1 1.5 2
t /s

v

A

B C

D

x

t0
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22 Sketch velocity–time sketches (no numbers are 
necessary on the axes) for the following motions.
a A ball is dropped from a certain height and 

bounces off  a hard fl oor. The speed just before 
each impact with the fl oor is the same as the 
speed just after impact. Assume that the time 
of contact with the fl oor is negligibly small.

b A cart slides with negligible friction along a 
horizontal air track. When the cart hits the 
ends of the air track it reverses direction with 
the same speed it had right before impact. 
Assume the time of contact of the cart and the 
ends of the air track is negligibly small.

c A person jumps from a hovering helicopter. 
After a few seconds she opens a parachute. 
Eventually she will reach a terminal speed and 
will then land.

23 A stone is thrown vertically up from the edge of 
a cliff  35.0 m from the sea. The initial velocity of 
the stone is 8.00 m s−1. 

 Determine:
a the maximum height of the stone
b the time when it hits the sea
c the velocity just before hitting the sea
d the distance the stone covers
e the average speed and the average velocity for 

this motion.
24 A ball is thrown upward from the edge of a cliff  

with velocity 20.0 m s−1. It reaches the bottom of 
the cliff  6.0 s later.
a Determine the height of the cliff .
b Calculate the speed of the ball as it hits the 

ground. 

v = 8.00 m s–1

35.0 m

Projectile motion
25 A ball rolls off  a table with a horizontal speed of 

2.0 m s−1. The table is 1.3 m high. Calculate how 
far from the table the ball will land.

26 Two particles are on the same vertical line. They 
are thrown horizontally with the same speed, 
4.0 m s−1, from heights of 4.0 m and 8.0 m. 
a Calculate the distance that will separate the 

two objects when both land on the ground.
b The particle at the 4.0 m height is now 

launched with horizontal speed u such that 
it lands at the same place as the particle 
launched from 8.0 m. Calculate u. 

27 For an object thrown at an angle of 40° to the 
horizontal at a speed of 20 m s−1, draw graphs of:
a horizontal velocity against time
b vertical velocity against time
c acceleration against time.

28 Determine the maximum height reached by an 
object thrown with speed 24 m s−1 at 40° to the 
horizontal.

29 An object is thrown with speed 20.0 m s−1 at an 
angle of 50° to the horizontal. Draw graphs to 
show the variation with time of:
a the horizontal position
b the vertical position.

30 A cruel hunter takes aim horizontally at a chimp 
that is hanging from the branch of a tree, as shown 
in the diagram. The chimp lets go of the branch 
as soon as the hunter pulls the trigger. Treating the 
chimp and the bullet as point particles, determine 
if the bullet will hit the chimp.
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31 A ball is launched from the surface of a planet. 
Air resistance and other frictional forces are 
neglected. The graph shows the position of the 
ball every 0.20 s. 

a Use this graph to determine:
  i  the components of the initial velocity of 

the ball
  ii  the angle to the horizontal the ball was 

launched at
  iii the acceleration of free fall on this planet.

b Make a copy of the graph and draw two 
arrows to represent the velocity and the 
acceleration vectors of the ball at t = 1.0 s.

c The ball is now launched under identical 
conditions from the surface of a diff erent 
planet where the acceleration due to gravity is 
twice as large. Draw the path of the ball on your 
graph.

32 A stone is thrown with a speed of 20.0 m s−1 at 
an angle of 48° to the horizontal from the edge 
of a cliff  60.0 m above the surface of the sea.
a Calculate the velocity with which the stone 

hits the sea.
b Discuss qualitatively the eff ect of air resistance 

on your answer to a.
33 a State what is meant by terminal speed. 
 b  A ball is dropped from rest. The force of air 

resistance in the ball is proportional to the 
ball’s speed. Explain why the ball will reach 
terminal speed.
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2.2 Forces
This section is an introduction to Newton’s laws of motion. Classical 
physics is based to a great extent on these laws. It was once thought that 
knowledge of the present state of a system and all forces acting on it 
would enable the complete prediction of the state of that system in the 
future. This classical version of determinism has been modifi ed partly due 
to quantum theory and partly due to chaos theory.

Forces and their direction
A force is a vector quantity. It is important that we are able to correctly 
identify the direction of forces. In this section we will deal with the 
following forces.

Learning objectives

• Treat bodies as point particles.
• Construct and interpret free-

body force diagrams.
• Apply the equilibrium 

condition, ΣF = 0.
• Understand and apply Newton’s 

three laws of motion.
• Solve problems involving solid 

friction.
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Weight
This force is the result of the gravitational attraction between the mass m 
of a body and the mass of the planet on which the body is placed. The 
weight of a body is given by the formula:

W = mg

where m is the mass of the body and g is gravitational fi eld strength of the 
planet (Subtopic 6.2). The unit of g is newton per kilogram, N kg−1. The 
gravitational fi eld strength is also known as ‘the acceleration due to gravity’ 
or the ‘acceleration of free fall’. Therefore the unit of g is also m s−2.

If m is in kg and g in N kg−1 or m s−2 then W is in newtons, N. On 
the surface of the Earth, g = 9.81 N kg−1 – a number that we will often 
approximate by the more convenient 10 N kg−1. This force is always 
directed vertically downward, as shown in Figure 2.24.

The mass of an object is the same everywhere in the universe, but 
its weight depends on the location of the body. For example, a mass of 
70 kg has a weight of 687 N on the surface of the Earth (g = 9.81 N kg−1) 
and a weight of 635 N at a height of 250 km from the Earth’s surface 
(where g = 9.07 N kg−1). However, on the surface of  Venus, where the 
gravitational fi eld strength is only 8.9 N kg−1, the weight is 623 N.

Tension
The force that arises in any body when it is stretched is called tension. A 
string that is taut is said to be under tension. The tension force is the result 
of electromagnetic interactions between the molecules of the material 
making up the string. A tension force in a string is created when two forces 
are applied in opposite directions at the ends of the string (Figure 2.25).

W

Earth

Figure 2.24 The weight of an object is 
always directed vertically downward.

TT

Figure 2.25 A tension force in a string.

To say that there is tension in a string means that an arbitrary point on 
the string is acted upon by two forces (the tension T) as shown in Figure 
2.26. If the string hangs from a ceiling and a mass m is tied at the other 
end, tension develops in the string. At the point of support at the ceiling, 
the tension force pulls down on the ceiling and at the point where the 
mass is tied the tension acts upwards on the mass.

In most cases we will idealise the string by assuming it is massless. This 
does not mean that the string really is massless, but rather that its mass 
is so small compared with any other masses in the problem that we can 
neglect it. In that case, the tension T is the same at all points on the string. 
The direction of the tension force is along the string. Further examples of 
tension forces in a string are given in Figure 2.27. A string or rope that is 
not taut has zero tension in it.

T

T

T

mg

m

T

P

Figure 2.26 The tension is directed along 
the string.
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T

W

string over pulley

T

W

W

string is slack, T = 0 

T

W1

T

W2

Figure 2.27 More examples of tension forces.

Forces in springs
A spring that is pulled so that its length increases will develop a tension 
force inside the spring that will tend to bring the length back to its 
original value. Similarly, if it is compressed a tension force will again try to 
restore the length of the spring, Figure 2.28. Experiments show that for a 
range of extensions of the spring, the tension force is proportional to the 
extension, T = kx, where k is known as the spring constant. This relation 
between tension and extension is known as Hooke’s law. 

Normal reaction contact forces
If a body touches another body, there is a force of reaction or contact 
force between the two bodies. This force is perpendicular to the surface 
of the body exerting the force. Like tension, the origin of this force is also 
electromagnetic. In Figure 2.29 we show the reaction force on several 
bodies.

Figure 2.28 Tension forces in a spring.

natural length

tension due
to extension

tension due to compression

R

W

W
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W

R

Figure 2.29 Examples of reaction forces, R.
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motion

drag

weight

sinking

floating

upthrust weight

upthrust

We can understand the existence of contact reaction forces in a simple 
model in which atoms are connected by springs. The block pushes down 
on the atoms of the table, compressing the springs under the block (Figure 
2.30). This creates the normal reaction force on the block.

Figure 2.31 The drag force on a moving car.

Figure 2.32 Upthrust. f

a

c

W

motion

tendency for
motion down
the plane

f

F

b

RR

W

f

R

W

R

Figure 2.33 Examples of frictional forces, f. In a there is motion to the right, which is 
opposed by a single frictional force that will eventually stop the body. In b the force 
accelerating the body is opposed by a frictional force. In c the body does not move; 
but it does have a tendency to move down the plane and so a frictional force directed 
up the plane opposes this tendency, keeping the body in equilibrium.

block

table

Figure 2.30 A simple model of contact forces. 

Drag forces
Drag forces are forces that oppose the motion of a body through a fl uid 
(a gas or a liquid). Typical examples are the air resistance force experienced 
by a car (Figure 2.31) or plane, or the resistance force experienced by a 
steel marble dropped into a jar of honey. Drag forces are directed opposite 
to the velocity of the body and in general depend on the speed and shape 
of the body. The higher the speed, the higher the drag force.

Upthrust
Any object placed in a fl uid experiences an upward force called upthrust 
(Figure 2.32). If the upthrust force equals the weight of the body, the body 
will fl oat in the fl uid. If the upthrust is less than the weight, the body will 
sink. Upthrust is caused by the pressure that the fl uid exerts on the body.

Frictional forces
Frictional forces generally oppose the motion of a body (Figure 2.33). 
These forces are also electromagnetic in origin.
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Friction arises whenever one body slides over another. In this case we 
have dynamic or kinetic friction. Friction also arises whenever there is 
a tendency for motion, not necessarily motion itself. For example a block 
that rests on an inclined plane has a tendency to slide down the plane, so 
there is a force of friction up the plane. Similarly, if you pull on a block 
on a level rough road with a small force the block will not move. This 
is because a force of friction develops that is equal and opposite to the 
pulling force. In this case we have static friction.

In the simple model of matter consisting of atoms connected by springs, 
pushing the block to the right results in springs stretching and compressing. 
The net result is a force opposing the motion: friction (Figure 2.34). 

A more realistic model involves irregularities (called asperities) in the 
surfaces which interlock, opposing sliding, as shown in Figure 2.35.

Frictional forces are still not very well understood and there is no 
theory of friction that follows directly from the fundamental laws of 
physics. However, a number of simple, empirical ‘laws’ of friction have been 
discovered. These are not always applicable and are only approximately true, 
but they are useful in describing frictional forces in general terms. 

These so-called friction laws may be summarised as follows: 

• The area of contact between the two surfaces does not aff ect 
the frictional force.

• The force of dynamic friction is equal to:
  fd = μdR
 where R is the normal reaction force between the surfaces and 

μd is the coeffi  cient of dynamic friction.
• The force of dynamic friction does not depend on the speed of 

sliding.
• The maximum force of static friction that can develop 

between two surfaces is given by:
  fs = μsR

 where R is the normal reaction force between the surfaces and 
μs is the coeffi  cient of static friction, with μs > μd.

Figure 2.36 shows how the frictional force f varies with a pulling force 
F. The force F pulls on a body on a horizontal rough surface. Initially the 
static frictional force matches the pulling force and we have no motion, 
fs = F. When the pulling force exceeds the maximum possible static 
friction force, μs R, the frictional force drops abruptly to the dynamic 
value of μd R and stays at that constant value as the object accelerates. 
This is a well-known phenomenon of everyday life: it takes a lot of force 
to get a heavy piece of furniture to start moving (you must exceed the 
maximum value of the static friction force), but once you get it moving, 
pushing it along becomes easier (you are now opposed by the smaller 
dynamic friction force).

F

F

Figure 2.34 Friction in the simple atoms-
and-springs model of matter. 

Figure 2.35 Exaggerated view of how 
asperities oppose the sliding of one surface 
over the other.

Exam tip
One of the most common 
mistakes is to think that μsR 
is the formula that gives the 
static friction force. This is not 
correct. This formula gives 
the maximum possible static 
friction force that can develop 
between two surfaces.

no motion accelerated
motion

F

f

μdR

μsR

Figure 2.36 The variation of the frictional 
force f between surfaces with the pulling 
force F. 
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Worked example
2.17 A brick of weight 50 N rests on a horizontal surface. The coeffi  cient of static friction between the brick and 

the surface is 0.60 and the coeffi  cient of dynamic friction is 0.20. A horizontal force F is applied to the brick, 
its magnitude increasing uniformly from zero. Once the brick starts moving the pulling force no longer 
increases. Estimate the net force on the moving brick.

The maximum frictional force that can develop between the brick and the surface is:

fs = μsR

which evaluates to:

0.60 × 50 = 30 N

So motion takes place when the pulling force is just barely larger than 30 N.

Once motion starts the frictional force will be equal to μdR, i.e.

0.20 × 50 = 10 N

The net force on the brick in that case will be just larger than 30 − 10 = 20 N. 

Free-body diagrams
A free-body diagram is a diagram showing the magnitude and direction 
of all the forces acting on a chosen body. The body is shown on its own, 
free of its surroundings and of any other bodies it may be in contact 
with. We treat the body as a point particle, so that all forces act through 
the same point. In Figure 2.37 we show three situations in which forces 
are acting; below each is the corresponding free-body diagram for the 
coloured bodies.

In any mechanics problem, it is important to be able to draw correctly 
the free-body diagrams for all the bodies of interest. It is also important 
that the length of the arrow representing a given force is proportional to 
the magnitude of the force.

T

W W

R

W

R

Figure 2.37 Free-body diagrams for the coloured bodies.
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Newton’s fi rst law of motion
Suppose you have two identical train carriages. Both are equipped with all 
the apparatus you need to do physics experiments. One train carriage is 
at rest at the train station. The other moves in a straight line with constant 
speed – the ride is perfectly smooth, there are no bumps, there is no noise 
and there are no windows to look outside. Every physics experiment 
conducted in the train at rest will give identical results to similar 
experiments made in the moving train. We have no way of determining 
whether a carriage is ‘really at rest’ or ‘really moving’. We fi nd it perfectly 
natural to believe, correctly, that no net force is present in the case of 
the carriage at rest. Therefore no net force is required in the case of the 
carriage moving in a straight line with constant speed. 

Newton’s fi rst law (with a big help from Galileo) states that:

When the net force on a body is zero, the body will move with 
constant velocity (which may be zero).

In eff ect, Newton’s fi rst law defi nes what a force is. A force is what 
changes a body’s velocity. A force is not what is required to keep 
something moving, as Aristotle thought.

Using the law in reverse allows us to conclude that if a body is not 
moving with constant velocity (which may mean not moving in a straight 
line, or not moving with constant speed, or both) then a force must be 
acting on the body. So, since the Earth revolves around the Sun we know 
that a force must be acting on the Earth.

Newton’s fi rst law is also called the law of inertia. Inertia is what keeps 
the body in the same state of motion when no forces act on the body. 
When a car accelerates forward, the passengers are thrown back into their 
seats because their original state of motion was motion with low speed. 
If a car brakes abruptly, the passengers are thrown forward (Figure 2.38). 
This implies that a mass tends to stay in the state of motion it was in 
before the force acted on it. The reaction of a body to a change in its state 
of motion (acceleration) is inertia.

Newton’s third law of motion
Newton’s third law states that if body A exerts a force on body B, then 
body B will exert an equal and opposite force on body A. These forces 
are known as force pairs. Make sure you understand that these equal and 
opposite forces act on diff erent bodies. Thus, you cannot use this law to 
claim that it is impossible to ever have a net force on a body because for 
every force on it there is also an equal and opposite force. Here are a few 
examples of this law:
• You stand on roller skates facing a wall. You push on the wall and you 

move away from it. This is because you exerted a force on the wall and 
in turn the wall exerted an equal and opposite force on you, making 
you move away (Figure 2.39).

Figure 2.38 The car was originally travelling 
at high speed. When it hits the wall the car 
stops but the passenger stays in the original 
high speed state of motion. This results in the 
crash dummy hitting the steering wheel and 
the windshield (which is why it is a good idea 
to have safety belts and air bags).

Figure 2.39 The girl pushes on the wall 
so the wall pushes on her in the opposite 
direction.
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• You step on the bathroom scales. The scales exert an upward force on 
you and so you exert a downward force on the scales. This is the force 
shown on the scales (Figure 2.40).

• A helicopter hovers in air (Figure 2.41). Its rotors exert a force 
downward on the air. Thus, the air exerts the upward force on the 
helicopter that keeps it from falling.

• A book of mass 2 kg is allowed to fall feely. The Earth exerts a force on 
the book, namely the weight of the book of about 20 N. Thus, the book 
exerts an equal and opposite force on the Earth – a force upward equal 
to 20 N. 

You must be careful with situations in which two forces are equal and 
opposite; they do not always have to do with the third law. For example, 
a block of mass 3 kg resting on a horizontal table has two forces acting on 
it – its weight of about 30 N and the normal reaction force from the table 
that is also 30 N. These two forces are equal and opposite, but they are 
acting on the same body and so have nothing to do with Newton’s third 
law. (We have seen in the last bullet point above the force that pairs with 
the weight of the block. The force that pairs with the reaction force is a 
downward force on the table.)

Newton’s third law also applies to cases where there is no contact 
between the bodies. Examples are the electric force between two 
electrically charged particles or the gravitational force between any two 
massive particles. These forces must be equal and opposite (Figure 2.42).

Figure 2.40 The familiar bathroom scales 
do not measure mass. They measure the 
force that you exert on the scales. This force 
is equal to the weight only when the scales 
are at rest.

Figure 2.41 The upward force on the rotor 
is due to the force the rotor exerts on the air 
downward. F

+
–F

–

–FF

Figure 2.42 The two charges and the two masses are diff erent, but the forces are 
equal and opposite.

Equilibrium
Equilibrium of a point particle means that the net force on the particle 
is zero. The net force on a particle is the one single force whose eff ect is 
the same as the combined eff ect of individual forces acting on the particle. 
We denote it by ΣF. Finding the net force is easy when the forces are in 
the same or opposite directions (Figure 2.43). 

In Figure 2.43a, the net force is (if we take the direction to the right 
to be positive) ΣF = 12 + 6.0 − 8.0 = 10 N. This is positive, indicating a 
direction to the right. 

In Figure 2.43b, the net force is (we take the direction upward to be 
positive) ΣF = 5.0 + 6.0 − 4.0 − 8.0 = −1.0 N. The negative sign indicates a 
direction vertically down.

8.0 N
6.0 N

12 N
a

b

5.0 N 6.0 N

4.0 N
8.0 N

Figure 2.43 The net force is found by plain 
addition and/or subtraction when the forces 
are in the same or opposite direction.
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Worked example
2.18 Determine the magnitude of the force F in Figure 2.44, given that the block is in equilibrium.

For equilibrium, ΣF = 0, and so:

6.0 + F + 6.0 − 15 = 0

This gives F = 3.0 N.

Solving equilibrium problems
When there are angles between the various forces, solving equilibrium 
problems will involve fi nding components of forces using vector methods. 
We choose a set of axes whose origin is the body in question and fi nd the 
components of all the forces on the body. Figure 2.45 shows three forces 
acting at the same point. We have equilibrium, which means the net force 
acting at the point is zero. We need to fi nd the unknown magnitude and 
direction of force F1. This situation could represent three people pulling 
on three ropes that are tied at a point.

Finding components along the horizontal (x) and vertical (y) directions 
for the known forces F2 and F3, we have:

F2x = 0
F2y = −22.0 N  (add minus sign to show the 

direction)
F3x = −29.0 cos 37° = −23.16 N  (add minus sign to show the 

direction)
F3y = 29.0 sins 37° = 17.45 N

Equilibrium demands that ΣFx = 0 and ΣFy = 0.

ΣFx = 0 implies:

F1x + 0 − 23.16 = 0 ⇒ F1x = 23.16 N

ΣFy = 0 implies:

F1y − 22.0 + 17.45 = 0 ⇒ F1y = 4.55 N

Therefore, F1 =   23.162 + 4.552 = 23.6 N

The angle is found from tan θ = 
F1y

F1x
 ⇒ θ = tan−1   

4.55
23.16  = 11.1°

15 N
6.0 N

6.0 N

F

37° θ
x

y

F1

F1

F2

F3

F3 = 29.0 N

F2 = 22.0 N

37° θ
x

y

F1

F1

F2

F3

F3 = 29.0 N

F2 = 22.0 N
Figure 2.45 Force diagram of three forces in 
equilibrium pulling a common point. Notice 
that the three vectors representing the three 
forces form a triangle.

Figure 2.44

Exam tip
If we know the x- and 
y-components of a force we 
can fi nd the magnitude of the 
force from F =   Fx

2 + Fy
2.
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Worked example
2.19 A body of weight 98.0 N hangs from two strings that are attached to the ceiling as shown in Figure 2.46. 

Determine the tension in each string.

The three forces acting on the body are as shown, with T and S being the tensions in the two strings and W its 
weight. Taking components about horizontal and vertical axes through the body we fi nd:

Tx = −T cos 30° (add minus sign to show the direction) Sx = S cos 50° Wx = 0

Ty = T sin 30° Sy = S sin 50° Wy = −98.0 N

Equilibrium thus demands ΣFx = 0 and ΣFy = 0.

ΣFx = 0 implies:

−T cos 30° + S cos 50° = 0

ΣFy = 0 implies:

T sin 30° + S sin 50° −98.0 = 0

From the fi rst equation we fi nd that:

S = T 
cos 30°
cos 50° = 1.3473 × T

Substituting this in the second equation gives:

T(sin 30° + 1.3473 sin 50°) = 98

which solves to give:

T = 63.96 ≈ 64.0 N

Hence S = 1.3473 × 63.96 = 86.17 ≈ 86.2 N.

60° 40°

x

y

S
T

W

S
T

W

Figure 2.46
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2.20 A mass of 125 g is attached to a spring of spring constant k = 58 N m−1 that is hanging vertically.
 a Find the extension of the spring.
 b  If the mass and the spring are placed on the Moon, will there be any change in the extension of the 

spring?

a The forces on the hanging mass are its weight and the tension in the spring. By Hooke’s law, the tension in the 
spring is kx, where x is the extension and k the spring constant. Since we have equilibrium, the two forces are 
equal in magnitude. Therefore:

  kx = mg

  x = 
mg
k

  x = 
0.125 × 10

58  (taking g = 10 N kg−1)

  x = 0.022 m

 The extension is 2.2 cm.

b The extension will be less, since the acceleration of gravity is less.

W

Figure 2.47 A mass falling to the ground 
acted upon by gravity.

Newton’s second law of motion
Newton’s second law states that:

The net force on a body of constant mass is proportional to that 
body’s acceleration and is in the same direction as the acceleration. 

Mathematically:

F = ma

where the constant of proportionality, m, is the mass of the body.
Figure 2.47 shows the net force on a freely falling body, which happens 

to be its weight, W = mg. By Newton’s second law, the net force equals the 
mass times the acceleration, and so:

mg = ma

a = g

That is, the acceleration of the freely falling body is exactly g. Experiments 
going back to Galileo show that indeed all bodies fall with the same 
acceleration in a vacuum (the acceleration of free fall) irrespective of 
their density, their mass, their shape and the material from which they 
are made. Look for David Scott’s demonstration dropping a hammer and 
feather on the Moon in Apollo 15’s mission in 1971. You can do the same 
demonstration without going to the Moon by placing a hammer and a 
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feather on a book and dropping the book. If the heavy and 
the light object fell with diff erent accelerations the one 
with the smaller acceleration would lift off  the book – but 
it doesn’t.

The equation F = ma defi nes the unit of force, the 
newton (N). One newton is the force required to accelerate 
a mass of 1 kg by 1 m s−2 in the direction of the force.

It is important to realise that the force in the second law 
is the net force ΣF on the body. 

Worked examples
2.21 A man of mass m = 70 kg stands on the fl oor of an elevator. Find the force of reaction he experiences from 

the elevator fl oor when the elevator:
 a is standing still
 b moves up at constant speed 3.0 m s−1

 c moves up with acceleration 4.0 m s−2

 d moves down with acceleration 4.0 m s−2

 e moves down, slowing down with deceleration 4.0 m s−2.
 Take g = 10 m s−2.

Two forces act on the man: his weight mg vertically down and the reaction force R from the fl oor vertically up.

a There is no acceleration and so by Newton’s second law the net force on the man must be zero. Hence:

  R = mg
  R = 7.0 × 102 N

b There is no acceleration and so again:

  R = mg
  R = 7.0 × 102 N

c There is acceleration upwards. The net force in the direction of the acceleration is given by:

  ΣF = R − mg
 So: ma = R − mg
 ⇒ R = mg + ma
  R = 700 N + 280 N
  R = 9.8 × 102 N

d We again have acceleration, but this time in the downward direction. We need to fi nd the net force in the 
direction of the acceleration:

  ΣF = mg − R
 So: ma = mg − R
 ⇒ R = mg − ma
  R = 700 N − 280 N
  R = 4.2 × 102 N 

e The deceleration is equivalent to an upward acceleration, so this case is identical to part c.

Exam tip
To solve an ‘F = ma’ problem:
• Make a diagram.
• Identify the forces on the body of interest.
• Find the net force on each body, taking the 

direction of acceleration to be the positive 
direction.

• Apply Fnet = ma to each body.
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2.22 A man of mass 70 kg is standing in an elevator. The elevator is moving upward at a speed of 3.0 m s−1. The 
elevator comes to rest in a time of 2.0 s. Determine the reaction force on the man from the elevator fl oor 
during the period of deceleration.

Use a = v − 
u
t  to fi nd the acceleration experienced by the man:

 a = − 
3.0
2.0 = −1.5 m s−2

The minus sign shows that this acceleration is directed in the downward direction. So we must fi nd the net force 
in the down direction, which is ΣF = mg − R. (We then use the magnitude of the accelerations, as the form of the 
equation takes care of the direction.)

 ma = mg − R

⇒ R = mg − ma

 R = 700 − 105

 R = 595 ≈ 6.0 × 102 N

If, instead, the man was moving downward and then decelerated to rest, the acceleration is directed upward and 
ΣF = R − mg.

So: ma = R − mg

⇒ R = mg + ma

 R = 700 + 105

 R = 805 ≈ 8.0 × 102 N

Both cases are easily experienced in daily life. When the elevator goes up and then stops we feel ‘lighter’ during 
the deceleration period. When going down and about to stop, we feel ‘heavier’ during the deceleration period. 
The feeling of ‘lightness’ or ‘heaviness’ has to do with the reaction force we feel from the fl oor.
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2.23 a  Two blocks of mass 4.0 kg and 6.0 kg are joined by a string and rest on a frictionless horizontal table 
(Figure 2.48). A force of 100 N is applied horizontally on one of the blocks. Find the acceleration of each 
block and the tension in the string. 

 b  The 4.0 kg block is now placed on top of the other block. The coeffi  cient of static friction between the 
two blocks is 0.45. The bottom block is pulled with a horizontal force F. Calculate the magnitude of the 
maximum force F that will result in both blocks moving together without slipping.

Figure 2.48 

a This can be done in two ways. 

 Method 1
 Let the acceleration of the system be a. The net horizontal force on the 6.0 kg mass is 100 − T and the net 

horizontal force on the 4.0 kg mass is just T. Thus, applying Newton’s second law separately on each mass:

  100 − T = 6.0a

  T = 4.0a

 Solving for a (by adding the two equations) gives:

  100 = 10a

 ⇒ a = 10 m s−2

 The tension in the string is therefore:

  T = 4.0 × 10

  T = 40 N 

 Note: The free-body diagram makes it clear that the 100 N force acts only on the body to the right. It is a 
common mistake to say that the body to the left is also acted upon by the 100 N force.

100 N

4.0 kg 6.0 kg
100 NT T

free-body diagrams

T T

mg

R1

Mg

R2
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 Method 2
 We may consider the two bodies as one of mass 10 kg. The net force on the body is 100 N. Note that the 

tensions are irrelevant now since they cancel out. (They did not in Method 1, as they acted on diff erent bodies. 
Now they act on the same body. They are now internal forces and these are irrelevant.)

 Applying Newton’s second law on the single body we have:

  100 = 10a

 ⇒ a = 10 m s−2 

 But to fi nd the tension we must break up the combined body into the original two bodies. Newton’s second 
law on the 4.0 kg body gives:

  T = 4a = 40 N

 (the tension on this block is the net force on the block). If we used the other block, we would see that the net 
force on it is 100 − T and so:

  100 − T = 6 × 10 = 60 N

 This gives T = 40 N, as before.

b If the blocks move together they must have the same acceleration. Treating the two blocks as one (of mass 10 kg), 

 the acceleration will be a = 
F
10 (Figure 2.49a). 

Figure 2.49 a Treating the blocks as one. b The free-body diagram for each block.

The forces on each block are shown in Figure 2.49b. The force pushing the smaller block forward is the 
frictional force f that develops between the blocks. The maximum value f can take is:

 f = µsR = 0.45 × 40 = 18 N

So the acceleration of the small block is:

 a = 
18
4.0 = 4.5 m s−2

But a = 
F
10, so:

 
F
10 = 4.5 m s−2

⇒ F = 45 N

60 N

100 N

40 N

free-body diagrams

combined mass = 10 kg

a

b

F
F

f

40 N

40 N
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2.24 Two masses of m = 4.0 kg and M = 6.0 kg are joined together by a string that passes over a pulley (this 
arrangement is known as Atwood’s machine). The masses are held stationary and suddenly released. 
Determine the acceleration of each mass.

Intuition tells us that the larger mass will start moving downward and the small mass will go up. So if we say that 
the larger mass’s acceleration is a, then the other mass’s acceleration will also be a in magnitude but, of course, in 
the opposite direction. The two accelerations are the same because the string cannot be extended.

Method 1
The forces on each mass are weight mg and tension T 
on m and weight Mg and tension T on M (Figure 2.50).

Newton’s second law applied to each mass gives:

T − mg = ma (1)

Mg − T = Ma (2)

Note these equations carefully. Each says that the net force 
on the mass in question is equal to that mass times that mass’s 
acceleration. In the fi rst equation, we fi nd the net force in the 
upward direction, because that is the direction of acceleration. 
In the second, we fi nd the net force in downward direction, 
since that is the direction of acceleration in that case. We want 
to fi nd the acceleration, so we simply add these two equations 
to fi nd:

Mg − mg = (m + M)a

Hence:

a = 
M − m
M + m 

g

(Note that if M >> m the acceleration tends to g. Can you think why this is?) This shows clearly that if the two 
masses are equal, then there is no acceleration. This is a convenient method for measuring g. Atwood’s machine 
eff ectively ‘slows down’ g so the falling mass has a much smaller acceleration from which g can then be determined. 
Putting in the numbers for our example we fi nd a = 2.0 m s−2. 

Having found the acceleration we may, if we wish, also fi nd the tension in the string, T . Putting the value for a in 
formula (1) we fi nd:

T = m   
M − m
M + m g + mg

T = 2   
Mm

M + m g

(If M >> m the tension tends to 2mg. Can you see why?)

T

T

mg

Mg

T

Mg

T

mg

Figure 2.50
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Method 2
We treat the two masses as one body and apply Newton’s second law on this body 
(but this is trickier than in the previous example) – see Figure 2.51.

In this case the net force is Mg − mg and, since this force acts on a body of mass 
M + m, the acceleration is found as before from F = mass × acceleration. Note that 
the tension T does not appear, as it is now an internal force.

2.25 In Figure 2.52, a block of mass M is connected to a smaller mass m through a string that goes over a pulley. 
Ignoring friction, fi nd the acceleration of each mass and the tension in the string.

Figure 2.52

Method 1
The forces are shown in Figure 2.52. The acceleration must be the same magnitude for both masses, but the larger 
mass accelerates horizontally and the smaller mass accelerates vertically downwards. The free-body diagrams on the 
right show the forces on the individual masses. Taking each mass separately:

mg − T = ma (small mass accelerating downwards)

T = Ma (large mass accelerating horizontally to the right)

Adding the two equations, we get:

 mg = ma + Ma

⇒ a = 
mg

M + m

(If M >> m the acceleration tends to zero. Why?)

From the expression for T for the larger mass, we have:

T = Ma = 
Mmg
M + m

T

Mg

T

mg

mg

m

M

T

T

mg

T

R

T

Mg

R

Mg

Figure 2.51 
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Method 2
Treating the two bodies as one results in the situation shown in Figure 2.53.

Figure 2.53

The net horizontal force on the combined mass M + m is mg. Hence:

 mg = (M + m)a

⇒ a = 
mg

M + m

The tension can then be found as before.

2.26 A block of mass 2.5 kg is held on a rough inclined plane, 
as shown in Figure 2.54. When released, the block stays 
in place. The angle of the incline is slowly increased 
and when the angle becomes slightly larger than 38° 
the block begins to slip down the plane. 

a Calculate the coeffi  cient of static friction between the block and the inclined plane.

b The angle of the incline is increased to 49°. The coeffi  cient of dynamic friction between the block and the 
incline is 0.26. Calculate the force that must be applied to the block along the plane so it moves up the 
plane with an acceleration of 1.2 m s−2.

a The forces on the block just before slipping are shown in Figure 2.55. 
The frictional force is f and the normal reaction is R. The components 
of the weight are mg sin θ down the plane and mg cos θ at right angles 
to the plane.

 Because the block is about to slip, the frictional force is the maximum possible static frictional force and so 
f = µsR. Equilibrium demands that:

  mg sin θ = f

  mg cos θ = R

m
M

mg

TT

Mg

R

θ

θ

f

R

mg cos θ

mg sin θ

mg
Figure 2.55

Figure 2.54 
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 Divide the fi rst equation by the second to get:

  tan θ = 
f
R

 Now use the fact that f = µsR to fi nd:

  tan θ = 
µsR
R

  tan θ = µs

 Hence µs= tan θ = tan 38° = 0.78

b Let F be the required force up the plane. The net force up the plane is F −mg sin 49° − fd, since the force of 
friction now opposes F. 

 We have that: 

  fd = µsR = µsmg cos 49°

 Therefore:

  F − mg sin 49° − µsmg cos 49° = ma

  F = ma + mg sin 49° + µsmg cos 49°

 Substituting values:

  F = 2.5 × 1.2 + 2.5 × 9.8 × sin 49° + 0.26 × 2.5 × 9.8 cos 49°

  F = 25.67 ≈ 26 N

Nature of science
Physics and mathematics
In formulating his laws of motion, published in 1687 in Philosophiæ 
Naturalis Principia Mathematica, Newton used mathematics to show how 
the work of earlier scientists could be applied to forces and motion in the 
real world. Newton’s second law (for particle of constant mass) is written 
as F = ma. In this form, this equation does not seem particularly powerful. 
However, using calculus, Newton showed that acceleration is given by: 

a = 
dv
dt

 = 
d2x
dt2

The second law then becomes:

d2x
dt2

 − 
F
m

 = 0

This is a diff erential equation that can be solved to give the actual path 
that the particle will move on under the action of the force. Newton 

showed that if the force depends on position as F ∝ 1
x2, then the motion 

has to be along a conic section (ellipse, circle, etc.).

Exam tip
Notice that for a block on 
a frictionless inclined plane 
the net force down the 
plane is mg sin θ, leading to 
an acceleration of g sin θ, 
independent of the mass.

Newton used a fl ash 
of inspiration, triggered 
by observing an apple 

falling from a tree, to relate the 
motion of planets to that of 
the apple, leading to his law of 
gravitation (which you will meet 
in Topic 6).
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35 A bead rolls on the surface of a sphere, having 
started from the top, as shown in the diagram. 
On a copy of the diagram, draw the forces on 
the bead:

 a at the top
 b at the point where it is about to leave the 

surface of the sphere.

36 Look at the diagram. State in which case the 
tension in the string is largest.

37 A spring is compressed by a certain distance and 
a mass is attached to its right end, as shown in 
the diagram. The mass rests on a rough table. On 
a copy of the diagram, draw the forces acting on 
the mass.

38 A mass hangs attached to three strings, as shown 
in the diagram. On a copy of the diagram, draw 
the forces on:

 a the hanging mass
 b the point where the strings join.

39 Find the net force on each of the bodies shown 
in the diagrams. The only forces acting are the 
ones shown. Indicate direction by ‘right’, ‘left’, 
‘up’ and ‘down’.

40 Find the magnitude and direction of the net 
force in the diagram.

wall

50.0 N

50.0 N50.0 N

12 N

18 N

A

8 N

8 N

6 N

B

4 N12 N

C

6 N4 N

E

6 N

26 N

F

10 N5 N

D
10 N

45°

20 N20 N

45°

? Test yourself
Equilibrium
34 A block rests on a rough table and is connected 

by a string that goes over a pulley to a second 
hanging block, as shown in the diagram. Draw 
the forces on each body.
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41 Explain why is it impossible for a mass to hang 
attached to two horizontal strings as shown in 
the diagram.

42 A mass is hanging from a string that is attached 
to the ceiling. A second piece of string (identical 
to the fi rst) hangs from the lower end of the 
mass (see diagram).

 State and explain which string will break if:
 a  the bottom string is slowly pulled with ever 

increasing force
 b  the bottom string is very abruptly pulled down.
43 A mass of 2.00 kg rests on a rough horizontal 

table. The coeffi  cient of static friction between 
the block and the table is 0.60. The block is 
attached to a hanging mass by a string that goes 
over a smooth pulley, as shown in the diagram. 
Determine the largest mass that can hang in this 
way without forcing the block to slide.

44 A girl tries to lift a suitcase of weight 220 N by 
pulling upwards on it with a force of 140 N. The 
suitcase does not move. Calculate the reaction 
force from the fl oor on the suitcase.

45 A block of mass 15.0 kg rests on a horizontal 
table. A force of 50.0 N is applied vertically 
downward on the block. Calculate the force that 
the block exerts on the table.

46 A block of mass M is connected with a string 
to a smaller block of mass m. The big block is 
resting on a smooth inclined plane as shown in 
the diagram. Determine the angle of the plane in 
terms of M and m in order to have equilibrium.

Accelerated motion
47 Describe under what circumstances a constant 

force would result in a an increasing and b a 
decreasing acceleration on a body.

48 A car of mass 1400 kg is on a muddy road. If the 
force from the engine pushing the car forward 
exceeds 600 N, the wheels slip (i.e. they rotate 
without rolling). Estimate the car’s maximum 
acceleration on this road.

49 A man of mass m stands in an elevator. 
 a  Find the reaction force from the elevator fl oor 

on the man when:
  i the elevator is standing still
  ii the elevator moves up at constant speed v
  iii  the elevator accelerates down with 

acceleration a
  iv  the elevator accelerates down with 

acceleration a = g.
 b What happens when a > g?
50 Get in an elevator and stretch out your arm 

holding your heavy physics book. Press the 
button to go up. Describe and explain what is 
happening to your stretched arm. Repeat as the 
elevator comes to a stop at the top fl oor. What 
happens when you press the button to go down 
and what happens when the elevator again stops? 
Explain your observations carefully using the 
second law of motion.

θ

M

m
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51 The diagram shows a person in an elevator pulling 
on a rope that goes over a pulley and is attached 
to the top of the elevator. The mass of the elevator 
is 30.0 kg and that of the person is 70 kg.

 a  On a copy of the diagram, draw the forces on 
the person.

 b Draw the forces on the elevator.
 c  The elevator accelerates upwards at 0.50 m s−2. 

Find the reaction force on the person from 
the elevator fl oor.

 d  The force the person exerts on the elevator 
fl oor is 300 N. Find the acceleration of the 
elevator (g = 10 m s−2 ).

52 A massless string has the same tension 
throughout its length. Suggest why.

53 a  Calculate the tension in the string joining the 
two masses in the diagram.

 b  If the position of the masses is interchanged, 
will the tension change?

54 A mass of 3.0 kg is acted upon by three forces 
of 4.0 N, 6.0 N and 9.0 N and is in equilibrium. 
Convince yourself that these forces can indeed 
be in equilibrium. The 9.0 N force is suddenly 
removed. Determine the acceleration of the mass.

10.0 kg
30.0 kg

F = 60.0 N

2.3 Work, energy and power
This section deals with energy, one of the most basic concepts in physics. 
We introduce the principle of energy conservation and learn how to 
apply it to various situations. We defi ne kinetic and potential energy, work 
done and power developed.

Energy
Energy is a concept that we all have an intuitive understanding of. 
Chemical energy derived from food keeps us alive. Chemical energy from 
gasoline powers our cars. Electrical energy keeps our computers going. 
Nuclear fusion energy produces light and heat in the Sun that sustains life 
on Earth. And so on. Very many experiments, from the subatomic to the 
cosmic scale, appear to be consistent with the principle of conservation 
of energy that states that energy is not created or destroyed but is only 
transformed from one form into another. This means that any change in 
the energy of a system must be accompanied by a change in the energy of 
the surroundings of the system such that:

ΔEsystem + ΔEsurroundings = 0

Learning objectives

• Understand the concepts of 
kinetic, gravitational potential 
and elastic potential energy.

• Understand work done as 
energy transferred.

• Understand power as the rate of 
energy transfer.

• Understand and apply the 
principle of energy conservation.

• Calculate the effi  ciency in 
energy transfers.
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In other words, if the system’s energy increases, the energy of the 
surroundings must decrease by the same amount and vice-versa. 

The energy of the system may change as a result of interactions 
with its surroundings (Figure 2.56). These interactions mainly involve 
work done W by the surroundings and/or the transfer of thermal 
energy (heat) Q, to or from the surroundings. But there are many other 
interactions between a system and its surroundings. For example, waves 
of many kinds may transfer energy to the system (the Sun heats the 
Earth); gasoline, a chemical fuel, may be added to the system, increasing its 
energy; wind incident on the blades of a windmill will generate electrical 
energy as a generator is made to turn, etc. So:

ΔEsystem = W + Q + other transfers

But in this section we will deal with Q = 0 and no other transfers so we 
must understand and use the relation:

ΔE = W 

(we dropped the subscript in Esystem). To do so, we need to defi ne what we 
mean by work done and what exactly we mean by E, the total energy of 
the system.

Work done by a force
We fi rst consider the defi nition of work done by a constant force 
for motion in a straight line. By constant force we mean a force that is 
constant in magnitude as well as in direction. Figure 2.57 shows a block 
that is displaced along a straight line. The distance travelled by the body 
is s. The force makes an angle θ with the displacement. 

system

surroundings

heat supplied

work done

Figure 2.56 The total energy of a system 
may change as a result of interactions with its 
surroundings.

F F F F

s
θ

Figure 2.57 A force moving its point of application performs work.

The force acts on the body all the time as it moves. The work done by 
the force is defi ned as:

W = Fs cos θ

But F cos θ is the component of the force in the direction of the 
displacement and so:

The work done by a force is the product of the force in the 
direction of the displacement times the distance travelled.

(Equivalently, since s cos θ is the distance travelled in the direction of the 
force, work may also be defi ned as the product of the force time, the 
distance travelled in the direction of the force.)
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The cosine here can be positive, negative or zero; thus work can be 
positive, negative or zero. We will see what that means shortly.

The unit of work is the joule. One joule is the work done by a force of 
1 N when it moves a body a distance of 1 m in the direction of the force. 
1 J = 1 N m.

Worked examples
2.27 A mass is being pulled along a level road by a rope attached to it in such a way that the rope makes an angle 

of 34° with the horizontal. The force in the rope is 24 N. Calculate the work done by this force in moving 
the mass a distance of 8.0 m along the level road.

We just have to apply the formula for work done:

W = Fs cos θ

Substituting the values from the question:

W = 24 × 8.0 × cos 34° 

W = 160 J

2.28  A car with its engine off  moves on a horizontal level road. A constant force of 620 N opposes the motion of 
the car. The car comes to rest after 84 m. Calculate the work done on the car by the opposing force. 

We again apply the formula for work done, but now we have to realise that θ = 180°. So:

W = 620 × 84 × cos 180° 

W = −52 kJ

2.29 You stand on roller skates facing a wall. You push against the wall and you move away. Discuss whether the 
force exerted by the wall on you performed any work.

No work was done because there is no displacement. You moved but the point where the force is applied never moved.

Varying force and curved path
You will meet situations where the force is not constant in magnitude 
or direction and the path is not a straight line. To fi nd the work done we 
must break up the curved path into very many small straight segments 
in a way that approximates the curved path (Figure 2.58). Think of these 
segments as the dashes that make up the curve when it is drawn as a 
dashed line. The large arrowed segments at the bottom of Figure 2.58 
show this more clearly. The total work done is the sum of the work done 
on each segment of the path.



2  MECHANICS 81

We assume that along each segment the force is constant. The work 
done on the kth segment is just Fksk cos θk. So the work done on all the 
segments is found by adding up the work done on individual segments, i.e.

W = Σ Fksk cos θk
 k = 1

Do not be too worried about this formula. You will not be asked to use 
it, but it can help you to understand one very special and important case: 
the work done in circular motion. We will learn in Topic 6 that in circular 
motion there must be a force directed towards the centre of the circle. 
This is called the centripetal force.

Figure 2.59 shows the forces pointing towards the centre of the circular 
path. When we break the circular path into straight segments the angle 
between the force and the segment is always a right angle. This means that 
work done along each segment is zero because cos 90° = 0. So for circular 
motion the total work done by the centripetal force is zero.

Fk

sk

θk

Figure 2.58 The curved path followed by a 
particle is shown as a dashed line, and then 
as larger segments, sk. The green arrows show 
the varying size and direction of the force 
acting on the particle as it moves.

forces point towards the centre forces are perpendicular to each segment

Figure 2.59 The work done by the centripetal force is zero.

In practice, when the force varies in magnitude but is constant in 
direction, we will be given a graph of how the force varies with distance 
travelled. The work done can be found from the area under the graph. For 
the motion shown in Figure 2.60, the work done in moving a distance of 
4.0 m is given by the area of the shaded trapezoid:

W = 
2.0 + 10

2  × 4.0 = 24 J

5

a

b

h4
0

2

0 1 2 3

4

6

8

10

12

area = × ha + b
2

d /m

F /N

Figure 2.60 The work done is the area under the graph. The area of a trapezoid is half the sum 
of the parallel sides multiplied by the perpendicular distance between them.
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width Δs S

F

area = FΔs

The work done by a force is the area under the graph that shows 
the variation of the magnitude of the force with distance travelled. 

How do we know that the area is the work done? For a varying force, 
consider a very small distance Δs (Figure 2.61). Because Δs is so small we 
may assume that the force does not vary during this distance. The work 
done is then FΔs and is the area of the rectangle shown. For the total 
work we have to add the area of many rectangles under the curve. The 
sum is the area under the curve.

Work done by a force on a particle
Imagine a net force F that acts on a particle of mass m. The force produces 
an acceleration a given by:

 a = 
F
m

Let the initial speed of the particle be u. Because we have acceleration, the 
speed will change. Let the speed be v after travelling a distance s. We know 
from kinematics that:

v2 = u2 + 2as

Substituting for the acceleration, this becomes:

v2 = u2 + 2
F
m

 s

We can rewrite this as:

Fs = 12mv2 − 12mu2

We interpret this as follows: Fs is the work done on the particle by the 
net force. The quantity 12 × mass × speed2 is the energy the particle has due 
to its motion, called kinetic energy. For speed v, kinetic energy EK is 
defi ned as:

EK = 12mv2

In our example, the initial kinetic energy of the particle is 12mu2 and the 
kinetic energy after travelling distance s is 12mv2. The result says that the 
work done has gone into the change in the kinetic energy of the particle. 

We can write this as:

Wnet = ΔEK 

where Wnet is the net work done and ΔEK is the change in kinetic energy. 
This is known as the work–kinetic energy relation.

We can think of the work done as energy transferred. In this example, 
the work done has transferred energy to the particle by increasing its 
kinetic energy. 

Figure 2.61 The area under the graph is the 
sum of all the rectangles FΔs .



2  MECHANICS 83

Worked example
2.30 A block of mass 2.5 kg slides on a rough horizontal surface. The initial speed of the block is 8.6 m s−1. It is 

brought to rest after travelling a distance of 16 m. Determine the magnitude of the frictional force. 

We will use the work–kinetic energy relation, Wnet = ΔEK.

The only force doing work is the frictional force, f, which acts in the opposite direction to the motion. 

Wnet = f × 16 × (−1)

The change in kinetic energy is:

 ΔEK = 12mv2 − 12mu2 = −92.45 J

So: −16f = −92.45

 f = 5.8 N

The magnitude of the frictional force is 5.8 N.

Work done in stretching a spring
Consider a horizontal spring whose left end is attached to a vertical wall. 
If we apply a force F to the other end we will stretch the spring by some 
amount, x. Experiments show that the force F and the extension x are 
directly proportional to each other, i.e. F = kx (this is known as Hooke’s 
law). How much work does the stretching force F do in stretching the 
spring from its natural length (i.e. from zero extension) to a length where 
the extension is x1, as shown in Figure 2.62.

Since the force F and the extension x are directly proportional, the 
graph of force versus extension is a straight line through the origin and 
work done is the area under the curve (Figure 2.63).

The angle between the force and the direction of motion is 180°, 
so we need to multiply by cos 180°, which is –1.

F1 = kx1

F2 = kx2

x1

x2

Figure 2.62 Stretching a spring requires 
work to be done. 

Extension F

work done

0 x1

F

kx1

Figure 2.63 The force F stretches the spring. Notice that as the extension increases the 
force increases as well.
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Exam tip
In discussing work done it 
is always important to keep 
a clear picture of the force 
whose work we are calculating. 

To fi nd the work done in extending the spring from its natural length 
(x = 0) to extension x1, we need to calculate the area of the triangle of 
base x1 and height kx1. Thus:

area = 12kx1 × x1

area = 12kx1
2

The work to extend a spring from its natural length by an amount x1 is 
thus:

W = 12kx1
2

It follows that the work done when extending a spring from an extension 
x1 to an extension x2 (so x2 > x1) is:

W = 12k(x2
2 − x1

2 )

The work done by the force extending the spring goes into elastic 
potential energy stored in the spring. The elastic potential energy of a 
spring whose extension is x is Eel = 12kx2.

Worked example
2.31 A mass of 8.4 kg rests on top of a vertical spring whose base is attached to the fl oor. The spring compresses 

by 5.2 cm. 
 a Calculate the spring constant of the spring.
 b Determine the energy stored in the spring.

a The mass is at equilibrium so mg = kx. So:

k = 
mg
x

k = 
8.4 × 9.8
5.2 × 10−2

k = 1583 ≈ 1600 N m−1

b The stored energy Eel is:

Eel = 12kx2

Eel = 12 × 1583 × (5.2 × 10−2 )2

Eel = 2.1 J
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Work done by gravity
We will now concentrate on the work done by a very special force, 
namely the weight of a body. Remember that weight is mass times 
acceleration of free fall and is directed vertically down. Thus, if a body is 
displaced horizontally, the work done by mg is zero. In this case the angle 
between the force and the direction of motion is 90° (Figure 2.64), so:

W = mgs cos 90° = 0

Exam tip
When a body is displaced 
such that its fi nal position is 
at the same vertical height as 
the original position, the work 
done by the weight is zero. 

mg mg mg

displacement S

mg

Figure 2.64 The force of gravity is normal to this horizontal displacement, so no work 
is being done.

We are not implying that it is the weight that is forcing the body to 
move along the table. We are calculating the work done by a particular 
force (the weight) if the body (somehow) moves in a particular way.

If the body falls a vertical distance h, then the work done by the weight 
is +mgh. The force of gravity is parallel to the displacement, as in Figure 
2.65a.

If the body moves vertically upwards to a height h from the launch 
point, then the work done by the weight is −mgh since now the angle 
between direction of force (vertically down) and displacement (vertically 
up) is 180°. The force of gravity is parallel to the displacement but 
opposite in direction, as in Figure 2.65b.

Suppose now that instead of just letting the body fall or throwing it 
upwards, we use a rope to either lower it or raise it, at constant speed, 
by a height h (Figure 2.66). The work done by the weight is the same as 
before, so nothing changes. But we now ask about the work done by the 
force F that lowers or raises the body. Since F is equal and opposite to the 
weight, the work done by F is −mgh as the body is lowered and +mgh as it 
is being raised. 

displacement

object falling object thrown upwards

a b

h

Figure 2.65 The force of gravity (green 
arrows) is parallel to the displacement in a 
and opposite in b.

moving
down

a b

h

F

mg

h

moving
up

F

mg

You should be able to see how 
this is similar to the work done 
by the stretching and tension 
forces in a spring.

Figure 2.66 Lowering and raising an object at constant speed using a rope.
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Consider now the case where a body moves along some arbitrary path, 
as shown by the red line in Figure 2.67. The work done by the weight 
of the body as the body descends along the curve is still mgh. You can 
prove this amazing result easily by approximating the curved path with a 
‘staircase’ of vertical and horizontal steps. Along the horizontal steps the 
work done is zero, cos 90° = 0. Along the vertical steps the work is mg∆h, 
where ∆h is the step height. Adding up all the vertical steps gives mgh. This 
means that:

The work done by gravity is independent of the path followed 
and depends only on the vertical distance separating the initial and 
fi nal positions. 

The independence of the work done on the path followed is a property 
of a class of forces (of which weight is a prominent member) called 
conservative forces.

Mechanical energy
In the previous two sections we discussed the work done when a body is 
moved when attached to a spring and in a gravitational fi eld. We derived 
two main results. 

In the case of the spring, we showed that the work done by the 
stretching force in extending the spring a distance x away from the natural 
length of the spring is W = 12 x

2. 
In the case of motion within a gravitational fi eld the work done by the 

force moving the body, is W = mgh to raise the body a height h from its 
initial position.

We use these results to defi ne two diff erent kinds of potential energy, 
EP.

For the mass–spring system we defi ne the elastic potential energy 
to be the work done by the pulling force in stretching the spring by an 
amount x, that is:

EP =  12 kx2

For the Earth–mass system we defi ne the gravitational potential 
energy to be the work done by the moving force in placing a body a 
height h above its initial position, that is:

EP = mgh

Notice that potential energy is the property of a system, not of an 
individual particle.

So we are now in a position to go back to the fi rst part of Subtopic 2.3 
and answer some of the questions posed there. We said that:

∆E = W + Q

Figure 2.67 The work done by gravity is 
independent of the path followed.

h

∆h

Exam tip
Potential energy is the energy 
of a system due to its position 
or shape and represents the 
work done by an external 
agent in bringing the system to 
that position or shape.

Exam tip
Notice that in the data booklet 
the formula uses ∆x in place of 
our x.
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If the system is in contact with surroundings at a diff erent 
temperature there will be a transfer of heat, Q. If there is no 
contact and no temperature diff erence, then Q = 0. 

If no work is done on the system from outside, then W = 0. When 
Q + W = 0, the system is called isolated and in that case ∆E = 0. The total 
energy of the system does not change. We have conservation of the 
total energy of the system.

What does the total energy E consist of? It includes chemical energy, 
internal energy (due to the translational, rotational energy and 
vibrational energy of the molecules of the substance), nuclear energy, 
kinetic energy, elastic potential energy, gravitational potential energy and 
any other form of potential energy such as electrical potential energy. 

But in this section, dealing with mechanics, the total energy E will 
be just the sum of the kinetic, the elastic and the gravitational potential 
energies. 

So for a single particle of mass m, the energy is:

E = 12mv2 + mgh + 12kx2

This is also called the total mechanical energy of the system consisting 
of the particle, the spring and the Earth. W stands for work done by forces 
outside the system. So this does not include work due to spring tension 
forces or the weight since the work of these forces is already included as 
potential energy in E.

Worked examples
2.32 You hold a ball of mass 0.25 kg in your hand and throw it so that it leaves your hand with a speed of 12 m s−1. 

Calculate the work done by your hand on the ball. 

The question asks for work done but here we do not know the forces that acted on the ball nor the distance by 
which we moved it before releasing it. But using ∆E = W, we fi nd:

W = 12mv2 

W = 12 × 0.25 × 122 = 36 J

Notice that here we have no springs and we may take h = 0.

2.33 Suppose that in the previous example your hand moved a distance of 0.90 m in throwing the ball. Estimate 
the average net force that acted on the ball.

The work done was 36 J and so Fs = 36 J with s = 0.90 m. This gives F = 40 N.

Exam tip
You must make sure that 
you do not confuse the 
work–kinetic energy relation 
Wnet = ∆EK with ∆E = W. 
The work–kinetic energy 
relation relates the net work 
on a system to the change in 
the system’s kinetic energy. The 
other relates the work done by 
outside forces to the change of 
the total energy.
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2.34 A body of mass 4.2 kg with initial speed 5.6 m s−1 begins to move up an incline, as shown in Figure 2.68.

Figure 2.68

 The body will be momentarily brought to rest after colliding with a spring of spring constant 220 N m−1. The 
body stops a vertical distance 0.85 m above its initial position. Determine the amount by which the spring has 
been compressed. There are no frictional forces.

There are no external forces doing work and so W = 0. The system is isolated and we have conservation of total energy. 

Initially we have just kinetic energy, so:

Einitial = 12mv2 + mgh + 12kx2 = 12 × 4.2 × 5.62 + 0 + 0 = 65.856 J

When the body stops we have:

Einitial = 12mv2 + mgh + 12kx2 = 0 + 4.2 × 9.8 × 0.85 + 12 × 220 × x2 = 34.99 + 110x2

Thus, equating Einitial to Efi nal we fi nd:

 34.99 + 110x2 = 65.856
 110x2 = 30.866
 x2 = 0.2806
 x = 0.53 m

2.35 We repeat the previous example question but now there is constant frictional force opposing the motion 
along the uphill part of the path. The length of this path is 1.2 m and the frictional force is 15 N.

We have ΔE = W. The work done is:

Fs cos θ = 15 × 1.2 × (−1) = −18 J

As in the previous example, we have:

Einitial = 65.856 J
Efi nal = 34.99 + 110x2

leading to:

110x2 = 12.866

x2 = 
12.866

110
x = 0.34 m

The ‘work done by friction’ of −18 J is energy that is dissipated as thermal energy inside the body and its 
surroundings. It is in general very diffi  cult to estimate how much of this thermal energy stays within the body and 
how much goes into the surroundings.

5.6 ms–1 ∆h
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2.36 A mass of 5.00 kg moving with an initial velocity of 2.0 m s−1 is acted upon by a force 55 N in the direction 
of the velocity. The motion is opposed by a frictional force. After travelling a distance of 12 m the velocity of 
the body becomes 15 m s−1. Determine the magnitude of the frictional force.

Here Q = 0 so that ΔE = W. 

The change in total energy ΔE is the change in kinetic energy (we have no springs and no change of height):

ΔE = 12 × 5.00 × 152 − 12 × 5.00 × 2.02 = 552.5 J

Let the frictional force be f. The work done on the mass is (55 − f ) × 12, and so:

(55 − f ) × 12 = 552.5

55 − f = 
552.5

12

55 − f = 46.0

f = 9.0 N

The ‘work done by friction’ of −9.0 × 12 = −108 J is energy that is dissipated as thermal energy inside the body and 
its surroundings. 

2.37 A mass m hangs from two strings attached to the ceiling such that they make the same angle with the vertical 
(as shown in Figure 2.69). The strings are shortened very slowly so that the mass is raised a distance Δh above 
its original position. Determine the work done by the tension in each string as the mass is raised.

Figure 2.69 

The net work done is zero since the net force on the mass is zero. The work done by gravity is −mgΔh and thus the 

work done by the two equal tension forces is +mgΔh. The work done by each is thus 
mgΔh

2 .

vertical

m
h
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2.38 A pendulum of length 1.0 m is released from rest with the string at an angle of 10° to the vertical. Find the 
speed of the mass on the end of the pendulum when it passes through its lowest position.

Let us take as the reference level the lowest point of the pendulum (Figure 2.70). The total energy at that point is 
just kinetic, EK = 12mv2, where v is the unknown speed. 

Figure 2.70

At the initial point, the total energy is just potential, EP = mgΔh, where Δh is the vertical diff erence in height 
between the two positions. From the diagram:

Δh = 1.00 − 1.00 cos 10°

Δh = 0.015 m

Equating the expressions for the total energy at the lowest point and at the start:
1
2mv2 = mgΔh

v =    2gΔh

v = 0.55 m s−1

Note how the mass has dropped out of the problem. (At positions other than the two shown, the mass has both 
kinetic and potential energy.)

2.39 Determine the minimum speed of the mass in Figure 2.71 at the initial point such that the mass makes it 
over the barrier of height h.

Figure 2.71

To make it over the barrier the mass must be able to reach the highest point. Any speed it has at the top will mean 
it can carry on to the other side. Therefore, at the very least, we must be able to get the ball to the highest point 
with zero speed.

potential energy
only

kinetic energy only

1.0 cos 10°

10°

1.0 m

∆h

v = ?
h
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With zero speed at the top, the total energy at the top of the barrier is E = mgh.

The total energy at the starting position is 12mv2.

Equating the initial and fi nal energy:

 1
2mv2 = mgh

⇒ v =    2gh

Thus, the initial speed must be bigger than v =    2gh.

Note that if the initial speed u of the mass is larger than v =    2gh, then when the mass makes it to the original level 
on the other side of the barrier, its speed will be the same as the starting speed u.

2.40 A ball rolls off  a 1.0 m high table with a speed of 
4.0 m s−1, as shown in Figure 2.72. Calculate the 
speed as the ball strikes the fl oor.

The total energy of the mass is conserved. As it leaves the table with speed u it has total energy given by 
Einitial = 12mu2 + mgh and as it lands with speed v the total energy is Efi nal = 12mv2 (v is the speed we are looking for). 

Equating the two energies gives:

 1
2mv2 = 12mu2 + mgh

⇒ v2 = u2 + 2gh

 v2 = 16 + 20 = 36

⇒ v = 6.0 m s−1

2.41 Two identical balls are launched from a table with the same speed u 
(Figure 2.73). One ball is thrown vertically up and the other vertically 
down. The height of the table from the fl oor is h. Predict which of 
the two balls will hit the fl oor with the greater speed. 

At launch both balls have the same kinetic energy and the same potential energy. When they hit the fl oor their 
energy will be only kinetic. Hence the speeds will be identical and equal to v, where:

 1
2mv2 = 12mu2 + mgh

⇒ v2 = u2 + 2gh

⇒ v =  u2 + 2gh

4.0 ms–1

1.0 m

h

u

u

Figure 2.72 

Figure 2.73
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2.42 A body of mass 2.0 kg (initially at rest) slides down a curved path of total length 22 m, as shown in 
Figure 2.74. The body starts from a vertical height of 5.0 m from the bottom. When it reaches the bottom, 
its speed is measured and found to equal 6.0 m s−1. 
a Show that there is a force resisting the motion.
b Assuming the force to have constant magnitude, determine the magnitude of the force.

Figure 2.74

a The only external force that could do work is a frictional force. 

 At the top: Einitial = 12mv2 + mgh = 0 + 2.0 × 9.8 × 5.0 = 98 J

 At the bottom: Efi nal = 12mv2 + mgh = 12 × 2.0 × 6.02 + 0 = 36 J

 The total energy has reduced, which shows the presence of a frictional force resisting the motion.

b From ∆E = W we deduce that W = −62 J. This is the work done by the frictional force, magnitude f.

 The force acts in the opposite direction to the motion, so:

  f s × (−1) = −62 J

 ⇒ f = 
62
22

  f = 2.8 N

5.0 m

Power
When a machine performs work, it is important to know not only how 
much work is being done but also how much work is performed within 
a given time interval. A cyclist will perform a lot of work in a lifetime of 
cycling, but the same work can be performed by a powerful car engine in 
a much shorter time. Power is the rate at which work is being performed 
or the rate at which energy is being transferred.

When a quantity of work ΔW is performed within a time interval 
Δt the power developed is given by the ratio:

P = 
ΔW
Δt

is called the power developed. Its unit is joule per second and this 
is given the name watt (W): 1 W = 1 J s−1.
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Consider a constant force F, which acts on a body of mass m. The force 
does an amount of work F Δx in moving the body a small distance Δx 
along its direction. If this work is performed in time Δt, then:

P = 
ΔW
Δt

P = F 
Δx
Δt

P = Fv

where v is the instantaneous speed of the body. This is the power 
produced in making the body move at speed v. As the speed increases, the 
power necessarily increases as well. 

Consider an aeroplane moving at constant speed on a straight-line path. 
If the power produced by its engines is P, and the force pushing it forward 
is F, then P, F and v are related by the equation above. But since the plane 
moves with no acceleration, the total force of air resistance must equal F. 
Hence the force of air resistance can be found simply from the power of 
the plane’s engines and the constant speed with which it coasts.

Worked example
2.43 Estimate the minimum power required to lift a mass of 50.0 kg up a vertical distance of 12 m in 5.0 s.

The work done in lifting the mass is mgh:

W = mgh = 50.0 × 10 × 12

W = 6.0 × 103 J

The power is therefore:

P = 
W
Δt

P = 
6.0 × 103

5.0
 = 1200 W

This is the minimum power required. In practice, the mass has to be accelerated from rest, which will require 
additional work and hence more power. There will also be frictional forces to overcome.

Effi  ciency
If a machine, such as an electric motor, is used to raise a load, electrical 
energy must be provided to the motor. This is the input energy to the 
motor. The motor uses some of this energy to do the useful work of raising 
the load. But some of the input energy is used to overcome frictional 
forces and therefore gets converted to thermal energy. So the ratio:

useful energy out
actual energy in  or 

useful power out
actual power in

is less than one. We call this ratio the effi  ciency of the machine.
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Suppose that a body is being pulled up along a rough inclined plane 
with constant speed. The mass is 15 kg and the angle of the incline is 45°. 
There is a constant frictional force of 42 N opposing the motion.

The forces on the body are shown in Figure 2.75. Since the body has 
no acceleration, we know that:

R = mg cos θ = 106.1 N

F = mg sin θ + f = 106.1 + 42 = 148.1 N ≈ 150 N

Let the force raise the mass a distance of 20 m along the plane. The work 
done by the force F is:

W = 148.1 × 20

W = 2960 J ≈ 3.0 × 103 J

The force eff ectively raised the 15 kg a vertical height of 14.1 m and so 
increased the potential energy of the mass by mgh = 2121 J. The effi  ciency 
with which the force raised the mass is thus:

effi  ciency = 
2121
2960

effi  ciency = 0.72

θ

F

f

R

mg

Figure 2.75 Forces on a body on an inclined 
plane: pulling force F, frictional force f, 
reaction R and weight mg.

Worked example
2.44 A 0.50 kg battery-operated toy train moves with constant velocity 0.30 m s−1 along a level track. The power 

of the motor in the train is 2.0 W and the total force opposing the motion of the train is 5.0 N.
 a Determine the effi  ciency of the train’s motor.
 b  Assuming the effi  ciency and the opposing force stay the same, calculate the speed of the train as it climbs 

an incline of 10.0° to the horizontal.

a The power delivered by the motor is 2.0 W. Since the speed is constant, the force developed by the motor is 
also 5.0 N. 

 The power used in moving the train is Fv = 5.0 × 0.30 = 1.5 W. 

 Hence the effi  ciency is:

  
total power out
total power in  = 

1.5 W
2.0 W

  
total power out
total power in  = 0.75

 The effi  ciency of the train’s motor is 0.75 (or 75%).
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b The component of the train’s weight acting down the plane is mg sin θ and the force opposing motion is 5.0 N. 
Since there is no acceleration (constant velocity), the net force F pushing the train up the incline is:

  F = mg sin θ + 5.0

  F = 0.50 × 10 × sin 10° + 5.0

  F = 5.89 N ≈ 5.9 N

 Thus:

  effi  ciency = 
5.89 × v

2.0

 But from part a the effi  ciency is 0.75, so:

  0.75 = 
5.89 × v

2.0 

 ⇒ v = 
2.0 × 0.75

5.89

  v = 0.26 m s−1

Nature of science
The origin of conservation principles 
Understanding of what energy is has evolved over time, with Einstein 
showing that there is a direct relationship between mass and energy in his 
famous equation E = mc2. In this section we have seen how the principle 
of conservation of energy can be applied to diff erent situations to predict 
and explain what will happen. Scientists have been able to use the theory 
to predict the outcome of previously unknown interactions in particle 
physics.

The principle of conservation of energy is perhaps the best known 
example of a conservation principle. But where does it come from? It 
turns out that all conservation principles are consequences of symmetry. 
In the case of energy, the symmetry is that of ‘time translation invariance’. 
This means that when describing motion (or anything else) it does not 
matter when you started the stopwatch. So a block of mass 1 kg on a table 
1 m above the fl oor will have a potential energy of 10 J according to both 
an observer who starts his stopwatch ‘now’ and another who started it 
10 seconds ago. The principle of conservation of momentum, which is 
discussed in Subtopic 2.4, is also the result of a symmetry. The symmetry 
this time is ‘space translation invariance’, which means that in measuring 
the position of events it does not matter where you place the origin of 
your ruler.
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 58 A block of mass 2.0 kg and an initial speed of 
5.4 m s−1 slides on a rough horizontal surface 
and is eventually brought to rest after travelling 
a distance of 4.0 m. Calculate the frictional force 
between the block and the surface.

 59 A spring of spring constant k = 200 N m−1 is 
slowly extended from an extension of 3.0 cm to 
an extension of 5.0 cm. Calculate the work done 
by the extending force.

 60 Look at the diagram.
 a i  Calculate the minimum speed v the ball 

must have in order to make it to position B.
  ii What speed will the mass have at B?
 b  Given that v = 12.0 m s−1, calculate the speed at 

A and B.

 61 The speed of the 8.0 kg mass in position A in 
the diagram is 6.0 m s−1. By the time it gets to B 
the speed is measured to be 12.0 m s−1.

  Estimate the frictional force opposing the motion. 
(The frictional force is acting along the plane.)

 62 A force F acts on a body of mass m = 2.0 kg 
initially at rest. The graph shows how the force 
varies with distance travelled (along a straight line). 

 a Find the work done by this force.
 b Calculate the fi nal speed of the body.
 63 A body of mass 12 kg is dropped vertically from 

rest from a height of 80 m. 
 a  Ignoring any resistance forces during the 

motion of this body, draw graphs to represent 
the variation with distance fallen of:

  i the potential energy
  ii the kinetic energy.
 b  For the same motion draw graphs to represent 

the variation with time of:
  i the potential energy
  ii the kinetic energy.
 c  Describe qualitatively the eff ect of a constant 

resistance force on each of the four graphs you 
drew.

 64 The engine of a car is developing a power of 
90 kW when it is moving on a horizontal road at 
a constant speed of 100 km h−1. Estimate the total 
horizontal force opposing the motion of the car.

F = 25 N

15 m

v

4.0 m

A

B

2.0 m

A

B

h = 12.0 m

30°

20
0

2

0 5 10 15

4

6

8

10

s /m

F /N

? Test yourself
 55 A horizontal force of 24 N pulls a body a 

distance of 5.0 m along its direction. Calculate 
the work done by the force.

 56 A block slides along a rough table and is brought 
to rest after travelling a distance of 2.4 m. A force 
of 3.2 N opposes the motion. Calculate the work 
done by the opposing force.

 57 A block is pulled as shown in the diagram by a 
force making an angle of 20° to the horizontal. 
Find the work done by the pulling force when 
its point of application has moved 15 m.
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 65 The motor of an elevator develops power at a 
rate of 2500 W.

 a  Calculate the speed that a 1200 kg load is 
being raised at.

 b  In practice it is found that the load is lifted 
more slowly than indicated by your answer to 
a. Suggest reasons why this is so.

 66 A load of 50 kg is raised a vertical distance of 
15 m in 125 s by a motor.

 a Estimate the power necessary for this.
 b  The power supplied by the motor is in fact 

80 W. Calculate the effi  ciency of the motor.
 c  The same motor is now used to raise a load 

of 100 kg the same distance. The effi  ciency 
remains the same. Estimate how long this 
would take.

 67 The top speed of a car whose engine is 
delivering 250 kW of power is 240 km h−1. 
Calculate the value of the resistance force on the 
car when it is travelling at its top speed on a level 
road.

 68 An elevator starts on the ground fl oor and stops 
on the 10th fl oor of a high-rise building. The 
elevator reaches a constant speed by the time 
it reaches the 1st fl oor and decelerates to rest 
between the 9th and 10th fl oors. Describe the 
energy transformations taking place between the 
1st and 9th fl oors.

 69 A mass m of 4.0 kg slides down a frictionless 
incline of θ = 30° to the horizontal. The mass 
starts from rest from a height of 20 m.

 a  Sketch a graph of the kinetic and potential 
energies of the mass as a function of time.

 b  Sketch a graph of the kinetic and potential 
energies of the mass as a function of distance 
travelled along the incline.

 c  On each graph, sketch the sum of the 
potential and kinetic energies.

 70 A mass m is being pulled up an inclined plane of 
angle θ by a rope along the plane.

 a  Find is the tension in the rope if the mass 
moves up at constant speed v.

 b  Calculate is the work done by the tension 
when the mass moves up a distance of d m 
along the plane.

 c  Find is the work done by the weight of the 
mass.

 d  Find is the work done by the normal reaction 
force on the mass.

 e What is the net work done on the mass?
 71 A battery toy car of mass 0.250 kg is made 

to move up an inclined plane that makes an 
angle of 30° with the horizontal. The car starts 
from rest and its motor provides a constant 
acceleration of 4.0 m s−2 for 5.0 s. The motor is 
then turned off .

 a Find the distance travelled in the fi rst 5 s.
 b  Find the furthest the car gets on the inclined 

plane.
 c  Calculate when the car returns to its starting 

position.
 d  Sketch a graph of the velocity as a function of 

time.
 e  On the same axes, sketch a graph of the 

kinetic energy and potential energy of the car 
as a function of the distance travelled.

 f  State the periods in the car’s motion in which 
its mechanical energy is conserved.

 g  Estimate the average power developed by the 
car’s motor.

 h  Determine the maximum power developed by 
the motor.
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2.4 Momentum and impulse
This section introduces the concept of linear momentum, which is a very 
useful and powerful concept in physics. Newton’s second law is expressed 
in terms of momentum. The law of conservation of linear momentum 
makes it possible to predict the outcomes in very many physical situations.

Newton’s second law in terms of momentum
We saw earlier that Newton’s second law was expressed as Fnet = ma. In 
fact, this equation is only valid when the mass of the system remains 
constant. But there are plenty of situations where the mass does not remain 
constant. In cases where the mass changes, a diff erent version of the 
second law must be used. Examples include:
• the motion of a rocket, where the mass decreases due to burnt fuel 

ejected away from the rocket
• sand falling on a conveyor belt so the mass increases
• a droplet of water falling through mist and increasing in mass as more 

water condenses. 
We defi ne a new concept, linear momentum, p, to be the product of 

the mass of a body times its velocity:

p = mv

Momentum is a vector and has the direction of the velocity. Its unit is 
kg m s−1 or the equivalent N s. 

In terms of momentum, Newton’s second law is:

Fnet = 
∆p
∆t

The average net force on a system is equal to the rate of change 
of the momentum of the system. 

It is easy to see that if the mass stays constant, then this version reduces to 
the usual ma:

 Fnet = 
∆p
∆t  = 

pfi nal − pinitial
∆t

 = 
mvfi nal − mvinitial

∆t

 = m  
vfi nal − vinitial

∆t

 = 
m∆v
∆t

 Fnet = ma

Learning objectives

• Be able to re-formulate 
Newton’s second law when the 
mass is variable.

• Understand the concept of 
impulse and be able to analyse 
force–time graphs.

• Be able to derive and apply 
the law of conservation of 
momentum.

• Analyse elastic and inelastic 
collisions and explosions.
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Worked examples
2.45 A cart moves in a horizontal line with constant 

speed v. Rain starts to fall and the cart fi lls with 
water at a rate of σ kg s−1. (This means that in one 
second, σ kg have fallen on the cart.) The cart 
must keep moving at constant speed. Determine 
the force that must be applied on the cart.

Notice right away that if Fnet = ma (we drop the bold italic of the vector notation) were valid, the force would have 
to be zero since the car is not accelerating. But we do need a force to act on the cart because the momentum of 
the cart is increasing (because the mass is increasing). This force is:

Fnet = 
∆p
∆t  = 

∆(mv)
∆t  = 

v∆m
∆t  = vσ

Putting some real values in, if σ = 0.20 kg s−1 and v = 3.5 m s−1, the force would have to be 0.70 N.

2.46 Gravel falls vertically on a conveyor belt at a rate 
of σ kg s−1, as shown in Figure 2.76.

a Determine:
  i the force that must be applied on the belt to keep it moving at constant speed v
  ii the power that must be supplied by the motor turning the belt
  iii the rate at which the kinetic energy of the gravel is changing.
b Explain why the answers to a ii and a iii are diff erent.

a  i The force is:

   Fnet = 
∆p
∆t  = 

∆(mv)
∆t  = 

v∆m
∆t  = vσ

  ii The power is found from P = Fv. Substituting for F:

   P = (vσ)v = σv2

  iii In 1 second the mass on the belt increases by σ kg. The kinetic energy of this mass is:

   EK = 12σv2 

  This is the increase in kinetic energy in a time of 1 s, so the rate of kinetic energy increase is 12σv2.

b The rate of increase in kinetic energy is less than the power supplied. This is because the power supplied by the 
motor goes to increase the kinetic energy of the gravel and also to provide the energy needed to accelerate the 
gravel from 0 to speed v in the short interval of time when the gravel slides on the belt before achieving the 
constant fi nal speed v.

Exam tip
Worked example 2.45 should alert you 
right away that you must be careful when 
mass changes. Zero acceleration does not 
imply zero net force in this case.

belt gravel
This very popular exam question is 
similar to Worked example 2.45, but 
is worth doing again. 

Figure 2.76
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2.47 A 0.50 kg ball is dropped from rest above a hard fl oor. When it reaches the fl oor it has a velocity of 4.0 m s–1. 
The ball then bounces vertically upwards. Figure 2.77 is the graph of velocity against time for the ball. The 
positive direction for velocity is upwards. 
a Find the magnitude of the momentum change of the ball during the bounce. 
b The ball stayed in contact with the fl oor for 0.15 s. What average force did the fl oor exert on the ball?

Figure 2.77

a The momentum when the ball hits the fl oor is: 0.50 × 4.0 = 2.0 N s

 The momentum when the ball rebounds from the fl oor is: 0.50 × (−2.0) = −1.0 N s

 The magnitude of the momentum change is therefore 3.0 N s.

b The forces on the ball are its weight and the reaction from the fl oor, R.

 Fnet = R − mg

 This is also the force that produces the change in momentum:

 Fnet = 
∆p
∆t

 Substituting in this equation:

 Fnet = 
3.0
0.15 = 20 N

 We need to fi nd R, so:

 R = 20 + 5.0 = 25 N.

 The average force exerted on the ball by the fl oor is 25 N.

t

4.0
reaction force R

weight mg

v /m s–1

0

–2.0

Exam tip
This is a very tricky problem with lots of 
possibilities for error. A lot of people forget 
to include the minus sign in the rebound 
velocity and also forget the weight, so they 
answer incorrectly that R = 20 N.



2  MECHANICS 101

Impulse and force–time graphs
We may rearrange the equation:

Fnet = 
∆p
∆t

to get:

Δp = FnetΔt

The quantity FnetΔt is called the impulse of the force, and is usually 
denoted by J. It is the product of the average force times the time 
for which the force acts. The impulse is also equal to the change in 
momentum. Notice that impulse is a vector whose direction is the same as 
that of the force (or the change in momentum).

When you jump from a height of, say, 1 m, you will land on the 
ground with a speed of about 4.5 m s−1. Assuming your mass is 60 kg, your 
momentum just before landing will be 270 N s and will become zero after 
you land. From Fnet = 

∆p
∆t , this can be achieved with a small force acting for 

a long time or large force acting for a short time. You will experience the 
large force if you do not bend your knees upon landing − keeping your 
knees stiff  means that you will come to rest in a short time. This means Δt 
will be very small and the force large (which may damage your knees).

The three graphs of Figure 2.78 show three diff erent force–time 
graphs. Figure 2.78a shows a (non-constant) force that increases from 
zero, reaches a maximum value and then drops to zero again. The force 
acted for a time interval of about 2 ms. The impulse is the area under 
the curve. Without calculus we can only estimate this area by tediously 
counting squares: each small square has area 0.1 ms × 0.2 N = 2 × 10−5 N s. 
There are about 160 full squares under the curve and so the impulse is 
3 × 10−3 N s. (In this case it is not a bad approximation to consider the 
shape under the curve to be a triangle but with a base of 1.3 ms so that 
the area is then 12 × 1.3 × 10−3 × 4 ≈ 3 × 10−3 N s.)

In the second graph, the force is constant (Figure 2.78b). The impulse 
of the force is 6.0 × (8.0 − 2.0) = 36 N s. Suppose this force acts on a body 
of mass 12 kg, initially at rest. Then the speed v of the body after the force 
stops acting can be found from:

∆p = 36 N s

mv − 0 = 36 N s

v = 
36
12 = 3.0 m s–1

4
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15
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–10

Figure 2.78 Three diff erent force–time 
graphs: a non-constant force, b constant 
force; c force that varies linearly with time.
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Worked examples
2.48 Consider the graph of Figure 2.78c. The force acts on a body of mass 3.0 kg initially at rest. Calculate:
 a the initial acceleration of the body
 b the speed at 4.0 s
 c the speed at 6.0 s.

a The initial acceleration a is at t = 0, when F = 12 N. 

 a = 
F
m = 

12
3.0 = 4.0 m s−2

b The impulse from 0 s to 4.0 s is the area under this part of the graph:

 1
2 × 4.0 × 12 = 24 N s

 This is equal to the change in momentum.

 Let v be the speed at 4.0 s. As the body is initially at rest, the momentum change is:

 mv − 0 = 24

 So v = 
24
m  = 

24
3.0 = 8.0 m s−1

c The impulse from 0 s to 6.0 s is the area under the graph, which includes part above the axis and part below the 
axis. The part under the axis is negative, as the force is negative here, so the impulse is:

 1
2 × 4.0 × 12 − 12 × 2.0 × 6.0 = 18 N s

 Hence the speed at 6.0 s is v = 
18
3.0 = 6.0 m s−1.

2.49 A ball of mass 0.20 kg moving at 3.6 m s−1 on a horizontal fl oor collides with a vertical wall. The ball 
rebounds with a speed of 3.2 m s−1. The ball was in contact with the wall for 12 ms. Determine the maximum 
force exerted on the ball, assuming that the force depends on time according to Figure 2.79.

Figure 2.79

t0

F



2  MECHANICS 103

Let the initial velocity be positive. The rebound velocity is then negative.

Initial momentum: 0.20 × 3.6 = 0.72 N s

Final momentum: 0.20 × (−3.2) = −0.64 N s

The change in momentum of the ball is:

−0.64 − 0.72 = −1.36 N s

The magnitude of the change in momentum is equal to the area under the force–time graph.

The area is 12 × 12 × 10−3 × Fmax and so:

 1
2 × 12 × 10−3 × Fmax = 1.36 N s

⇒ Fmax = 0.227 × 103 ≈ 2.3 × 102 N

Conservation of momentum
Consider a system with momentum p. The net force on the system is:

Fnet = 
∆p
∆t

and so if Fnet = 0 it follows that ∆p = 0. There is no change in momentum. 
This is expressed as the law of conservation of momentum:

When the net force on a system is zero the momentum does not 
change, i.e. it stays the same. We say it is conserved.

Notice that ‘system’ may refer to a single body or a collection of many 
diff erent bodies. 

Let us consider the blue block of mass 4.0 kg moving at speed 6.0 m s−1 
to the right shown in Figure 2.80. The blue block collides with the red 
block of mass 8.0 kg that is initially at rest. After the collision the two 
blocks move off  together.

As the blocks collide, each will exert a force on the other. By Newton’s 
third law, the magnitude of the force on each block is the same. There 
are no forces that come from outside the system, i.e. no external forces. 
You might say that the weights of the blocks are forces that come from 
the outside. That is correct, but the weights are cancelled by the normal 
reaction forces from the table. So the net external force on the system is 
zero. Hence we expect that the total momentum will stay the same.

The total momentum before the collision is:

4.0 × 6.0 + 8.0 × 0 = 24 N s

The total momentum after the collision is:

(4.0 + 8.0) × v = 12v

where v is the common speed of the two blocks. 

4.0 kg

6.0 m s–1 8.0 kg

system

Figure 2.80 In a collision with no external 
forces acting, the total momentum of the 
system stays the same.
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Equating the momentum after the collision and the momentum before 
the collision:

 12v = 24

⇒ v = 2.0 m s−1

The kinetic energy before the collision is:

1
2 × 4.0 × 6.02 = 72 J

 After the collision the kinetic energy is:

1
2 × 12 × 2.02 = 24 J

It appears that 48 J has been ‘lost’ (into other forms of energy, e.g. thermal 
energy in the blocks themselves and the surrounding air or energy to 
deform the bodies during the collision and some to sound generated in 
the collision).

But consider now the outcome of the collision of these two blocks in 
which the blue block rebounds with speed 2.0 m s−1, as shown in Figure 
2.81. The red block moves off  in the original direction with speed v.

What is the speed of the red block? As before, the total momentum 
before the collision is 24 N s. The total momentum after the collision is 
(watch the minus sign):

(4.0 × −2.0) + (8.0 × v)
 blue block red block

Equating the total momentum before and after the collision we fi nd:

−8.0 + 8.0 × v = 24

This gives v = 4.0 m s−1.
The total kinetic energy after the collision is then:

1
2 × 4.0 × (−2.0)2 + 12 × 8.0 × 4.02 = 72 J
 blue block red block

This is the same as the initial kinetic energy.
So, in a collision the momentum is always conserved but kinetic energy 

may or may not be conserved. You will fi nd out more about this in the 
next section.

4.0 kg

2.0 m s–1 v

8.0 kg

Figure 2.81 An outcome of the collision in 
which total kinetic energy stays the same. 

Predicting outcomes
Physics is supposed to be able to predict outcomes. So why 

is there more than one outcome in the collision of Figure 2.80? 
Physics does predict what happens, but more information about the 
nature of the colliding bodies is needed. We need to know if they 
are soft or hard, deformable or not, sticky or breakable, etc. If this 
information is given physics will uniquely predict what will happen.
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Kinetic energy and momentum
We have seen that, in a collision or explosion where no external forces are 
present, the total momentum of the system is conserved. You can easily 
convince yourself that in the three collisions illustrated in Figure 2.82 
momentum is conserved. The incoming body has mass 8.0 kg and the 
other a mass of 12 kg.

10 m s–1

12 kg8 kg

before

after

4 m s–1

1

10 m s–1

6 m s–1

1 m s–1

2

10 m s–1

8 m s–1

–2 m s–1

3

Let us examine these collisions from the point of view of energy.
In all cases the total kinetic energy before the collision is:

EK = 12 × 8.0 × 102 = 400 J

The total kinetic energy after the collision in each case is:

case 1: EK = 12 × 20 × 42 = 160 J

case 2: EK = 12 × 8.0 × 12 + 12 × 12 × 62 = 220 J

case 3: EK = 12 × 8.0 × 22 + 12 × 12 × 82 = 400 J

We thus observe that whereas momentum is conserved in all cases, 
kinetic energy is not. When kinetic energy is conserved (case 3), the 
collision is said to be elastic. When it is not (cases 1 and 2), the collision 
is inelastic. In an inelastic collision, kinetic energy is lost. When the bodies 
stick together after a collision (case 1), the collision is said to be totally 
inelastic (or plastic), and in this case the maximum possible kinetic 
energy is lost.

The lost kinetic energy is transformed into other forms of energy, such 
as thermal energy, deformation energy (if the bodies are permanently 
deformed as a result of the collision) and sound energy. 

Notice that using momentum, we can obtain a useful additional 
formula for kinetic energy:

EK = 
1
2mv2 = 

m2v2

2m

EK = 
p2

2m

Figure 2.82 Momentum is conserved in these three collisions.
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Worked examples
2.50 A moving body of mass m collides with a stationary body of double the mass and sticks to it. Calculate the 

fraction of the original kinetic energy that is lost.

The original kinetic energy is 12mv2 where v is the speed of the incoming mass. After the collision the two bodies 
move as one with speed u that can be found from momentum conservation:

 mv = (m + 2m)u

⇒ u = 
v
3

The total kinetic energy after the collision is therefore:

1
2(3m) ×  

v
3

2

 = 
mv2

6

and so the lost kinetic energy is

mv2

2  − 
mv2

6  = 
mv2

3

The fraction of the original energy that is lost is thus

mv2/3
mv2/2

 = 
2
3

2.51 A body at rest of mass M explodes into two pieces of masses M/4 and 3M/4. Calculate the ratio of the 
kinetic energies of the two fragments.

Here it pays to use the formula for kinetic energy in terms of momentum: EK = 
p2

2m. The total momentum before 
the explosion is zero, so it is zero after as well. Thus, the two fragments must have equal and opposite momenta. 
Hence:

Elight

Eheavy
 = 

p2 / (2Mlight)
(−p)2 / (2Mheavy)

Elight

Eheavy
 = 

Mheavy

Mlight

Elight

Eheavy
 = 

3M / 4
M / 4

Elight

Eheavy
 = 3
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It all depends on the system!
Consider a ball that you drop from rest from a certain height. As the ball 
falls, its speed and hence its momentum increases so momentum does not 
stay the same (Figure 2.83).

external
force

internal
forces

This is to be expected – there is an external force on the ball, namely 
its weight. So the momentum of the system that consists of just the falling 
ball is not conserved. If we include the Earth as part of the system then 
there are no external forces and the total momentum will be conserved. 
This means that the Earth moves up a bit as the ball falls!

The rocket equation
The best example of motion with varying mass is, of course, the rocket 
(Figure 2.84). 

This is quite a complex topic and is included here only as 
supplementary material. The rocket moves with speed v. The engine is 
turned on and gases leave the rocket with speed u relative to the rocket. 
The initial mass of the rocket including the fuel is M. After a short time δt 
the rocket has ejected fuel of mass δm. The mass of the rocket is therefore 
reduced to M − δm and its speed increased to v + δv (Figure 2.85). 

Figure 2.83 As the ball falls, an external force acts on it (its weight), increasing its 
momentum.

Figure 2.84 Exhaust gases from the booster 
rockets propel this space shuttle during its 
launch.

v
M

v + δvu – (v + δv)

M – δm
δm

Figure 2.85 Diagram for deriving the rocket equation. The velocities are relative to an 
observer ‘at rest on the ground’.
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Applying the law of conservation of momentum gives (in the equation 
below terms shaded the same colour cancel out):

 Mv = (M − δm)(v + δv) − δm (u − v − δv)

 speed relative to ground

 Mv = Mv + Mδv − vδm − δmδv − uδm + vδm + δmδv

 Mδv = uδm

 δv = 
δm
Mu

This gives the change in speed of the rocket as a result of gases leaving 
with speed u relative to the rocket. At time t the mass of the rocket is M. 
Dividing by δt and taking the limit as δt goes to zero gives the rocket 
diff erential equation:

M 
dv
dt = µu

where µ is the rate at which mass is being ejected. 

Nature of science
General principles such as the conservation of momentum allow for 
simple and quick solutions to problems that may otherwise look complex. 
Consider, for example, a man of mass m who stands on a plank also of 
mass m. There is no friction between the fl oor and the plank. A man starts 
walking on the plank until he get gets to the other end, at which point he 
stops. What happens to the plank?

The centre of mass must remain in the same place since there is no 
external force. So the fi nal position of the plank will be as shown in 
Figure 2.86: the plank moves half its length to the left and stops.

Figure 2.86 Conservation of momentum.

The same principles can be extended to analyse and predict the 
outcomes of a wide range of physical interactions, from large-scale motion 
to microscopic collisions.
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 75 A ball of mass 250 g rolling on a horizontal fl oor 
with a speed 4.00 m s−1 hits a wall and bounces 
with the same speed, as shown in the diagram.

 a  What is the magnitude and direction of the 
momentum change of the ball?

 b  Is momentum conserved here? Why or why 
not?

 76 Two masses moving in a straight line towards 
each other collide as shown in the diagram. Find 
the velocity (magnitude and direction) of the 
heavier mass after the collision.

 77 A time-varying force varies with time as shown in 
the graph. The force acts on a body of mass 4.0 kg.

 a  Find the impulse of the force from t = 0 to 
t = 15 s.

 b  Find the speed of the mass at 15 s, assuming the 
initial velocity was zero.

 c  State the initial velocity of the body such it is 
brought to rest at 15 s.

 78 A boy rides on a scooter pushing on the road 
with one foot with a horizontal force that 
depends on time, as shown in the graph. While 
the scooter rolls, a constant force of 25 N opposes 
the motion. The combined mass of the boy and 
scooter is 25 kg.

 a  Find the speed of the boy after 4.0 s, assuming 
he started from rest.

 b  Draw a graph to represent the variation of the 
boy’s speed with time.

 79 A ball of mass m is dropped from a height of h1 
and rebounds to a height of h2. The ball is in 
contact with the fl oor for a time interval of t.

 a  Show that the average net force on the ball is 
given by:

F = m
   2gh1 +    2gh2

2
 b  If h1 = 8.0 m, h2 = 6.0 m, t = 0.125 s and 

m = 0.250 kg, calculate the average force 
exerted by the ball on the fl oor.

v
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m

45° 45°

20
0

2

0 5 10 15

4

6

8

10

t /s

F /N

4.0 kg
12.0 kg

before

24.0 ms–1 2.0 ms–1

after

3.0 ms–1 v = ?

4.0
0

50

0 0.5 1.0 1.5

100

150

2.0 2.5 3.0 3.5
t /s

F /N

? Test yourself
 72 The momentum of a ball increased by 12.0 N s as 

a result of a force that acted on the ball for 2.00 s. 
Find the average force on the ball.

 73 A 0.150 kg ball moving horizontally at 3.00 m s−1 
collides normally with a vertical wall and 
bounces back with the same speed.

 a Calculate the impulse delivered to the ball.
 b  The ball was in contact with the wall for 

0.125 s. Find the average force exerted by the 
ball on the wall.

 74 The bodies in the diagram suff er a head-on 
collision and stick to each other afterwards. Find 
their common velocity.
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 80 A ball of mass m moving vertically, hits a 
horizontal fl oor normally with speed v1 and 
rebounds with speed v2. The ball was in contact 
with the fl oor for a time t. 

 a  Show that the average force F on the ball 
from the fl oor during the collision is given by:

   F = 
m(v1 + v2 )

t  + mg

 b  Find an expression for the average net force 
on the ball.

 81 The diagram shows the variation with time of 
the force exerted on a ball as the ball came into 
contact with a spring.

 a  For how long was the spring in contact with 
the ball?

 b  Estimate the magnitude of the change in 
momentum of the ball.

 c  What was the average force that was exerted 
on the ball?

 82 Two masses of 2.0 kg and 4.0 kg are held in place, 
compressing a spring between them. When they 
are released, the 2.0 kg moves away with a speed 
of 3.0 m s−1. What was the energy stored in the 
spring?

 83 A rocket in space where gravity is negligible has 
a mass (including fuel) of 5000 kg. It is desired 
to give the rocket an average acceleration of 
15.0 m s−2 during the fi rst second of fi ring the 
engine. The gases leave the rocket at a speed of 
1500 m s−1 (relative to the rocket). Estimate how 
much fuel must be burnt in that second.

2
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100

Exam-style questions

1 Four cars race along a given race track starting at the same time. The car that will reach the fi nishing line fi rst is the 
one with the largest

A maximum speed
B acceleration
C power
D average speed
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2 A body that started from rest moves with constant acceleration in a straight line. After travelling a distance d the 
speed of the car is v. What is the distance travelled when the speed of the car was 

v
2?

A 
d
2
 B 

d
√2

 C 
d
4
 D 

d
2√2

3 A sphere falls trough a liquid and eventually reaches terminal speed. Which graph shows the variation with time of 
the distance travelled by the sphere? 
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A B C D

4 A steel ball of mass m is thrown vertically downwards with initial speed u near the Earth’s surface. The rate of 
change of the momentum of the ball as it falls is:

A 0 B mu C m(u + gt) D mg

5 A lunar module is descending vertically above the lunar surface. The speed of the module is decreasing. Which is a 
free-body diagram of the forces on the landing module?

6 A person of mass m stands on weighing scales in an elevator. The elevator is accelerating upwards with acceleration 
a. The reaction force from the scales on the person is R. What is the reading on the scales?

A mg B R + ma C R − ma D R

 7 A body of mass 3M at rest explodes into two pieces of mass M and 2M. What is the ratio of the kinetic energy of 
M to that of 2M?

A 1
4 B 1

2 C 4 D 2
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 8 The power delivered by a car engine is constant. A car starts from rest. Resistance forces are negligible. Which 
graph shows the variation with time of the speed of the car?
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 9 The diagram shows two identical containers, X and Y, that are connected by a thin tube of negligible volume. 
Initially container X is fi lled with water of mass m up to a height h and Y is empty. 

 The valve is then opened and both containers contain equal quantities of water. The loss of gravitational potential 
energy of the water is:

A 0 B 
mgh
8  C 

mgh
4  D 

mgh
2

10 A person of mass m stands on roller skates facing a wall. After pushing against the wall with a constant force F he 
moves away, reaching speed v after a distance d. What is the work done by F?

A zero B mv2 C 12mv2 D Fd

11 In a factory blocks of ice slide down a smooth curved path AB and then on to a rough horizontal path starting at B. 

YX

h

A

B C

h

 The length of the curved path AB is s; the block of ice takes time t to move from A to B.

a Explain why, for the motion of the block from A to B: 
  i the formula s = 12 gt

2 does not apply. [1]
  ii the formula v =     2gh does apply. [1]
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b A block of ice of mass 25 kg slides from A to B. The speed of the block at B is vB = 4.8 m s−1. 
Calculate the height h.  [3]

c  i  The coeffi  cient of dynamic friction between the block of ice and the rough surface BC is 0.45. 
Show that the distance BC at which the block of ice is brought to rest is 2.7 m. [2]

  ii Calculate the time it takes the block of ice to cover the distance BC. [2]
d The factory also produces blocks of ice of mass 50 kg that slide down the same path starting at A. 

Predict, for this heavier block of ice, the speed at B and the stopping distance BC. (The coeffi  cient 
of friction stays the same.) [3]

12 A stone of mass 0.20 kg is thrown with speed 22 m s−1 from the edge of a cliff  that is 32 m above the sea. 
The initial velocity of the stone makes an angle of 35° with the horizontal. Air resistance is neglected.

22 m s–1

32 m

35°

a  i Determine the horizontal and vertical components of the initial velocity. [2]
  ii Sketch graphs showing the variation with time of the horizontal and vertical components of velocity. [2]
b  i Calculate the maximum height above the cliff  reached by the stone. [3]
  ii State the net force on the stone at the highest point in its path. [1]
c  i Using conservation of energy, determine the speed of the stone as it hits the sea. [2]
  ii Hence or otherwise, determine the time it took the stone to reach the surface of the sea. [2]

 The graph shows the path followed by this stone, until just before hitting the sea, in the absence of 
air resistance.

d  i  On a copy of the axes above, draw the path of the stone in the presence of an air resistance force 
opposite to the velocity and proportional to the speed. [3]

  ii State and explain one diff erence between your graph and the graph above. [2]

x

y
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13 A toy helicopter has mass m = 0.30 kg and blade rotors of radius R = 0.25 m. It may be assumed that as the blades 
turn, the air exactly under the blades is pushed downwards with speed v. The density of air is ρ = 1.2 kg m−3.

a  i Show that the force that the rotor blades exert on the air is ρπR2v2. [3]
  ii Hence estimate the speed v when the helicopter just hovers. [2]
b Determine the power generated by the helicopter’s motor when it just hovers as in a. [2]
c The rotor blades now move faster pushing air downwards at a speed double that found in a. The helicopter is 

raised vertically a distance of 12 m.
 Estimate:
  i the time needed to raise the helicopter. [2]
  ii the speed of the helicopter after it is raised 12 m. [2]
  iii the work done by the rotor in raising the helicopter. [1]

14 It is proposed to launch projectiles of mass 8.0 kg from satellites in space in order to destroy incoming ballistic 
missiles. The launcher exerts a force on the projectile that varies with time according to the graph.

 The impulse delivered to the projectile is 2.0 × 103 N s. The projectile leaves the launcher in 0.20 s.

a Estimate:
  i the area under the curve [1]
  ii the average acceleration of the projectile [3]
  iii the average speed of the projectile [2]
  iv the length of the launcher. [2]
b Calculate, for the projectile as it leaves the launcher:
  i the speed [2]
  ii the kinetic energy. [2]
c Estimate the power delivered to the projectile by the launcher. [2]

15 A car of weight 1.4 × 104 N is moving up an incline at a constant speed of 6.2 m s−1. The incline makes an angle 
of 5.0° to the horizontal. A frictional force of 600 N acts on the car in a direction opposite to the velocity.

a  i State the net force on the car. [1]
  ii Calculate the force F pushing the car up the incline. [3]
b The power supplied by the car is 15 kW. Determine the effi  ciency of the car engine in pushing the 

car uphill. [3]
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c The car is now allowed to roll down the incline from rest with the engine off . The only resistance force 
on the car is assumed to be proportional to speed. On a copy of the axes below, draw sketch graphs to 
show the variation with time of:

  i the speed of the car [2]
  ii the acceleration of the car. [2]
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16 A bullet of mass 0.090 kg is shot at a wooden block of mass 1.20 kg that is hanging vertically at the end of a 
string.

 The bullet enters the block with speed 130 m s−1 and leaves it with speed 90 m s−1. The mass of the block does not 
change appreciably as a result of the hole made by the bullet.

a  i Calculate the change in the momentum of the bullet. [2]
  ii Show that the initial velocity of the block is 3.0 m s−1. [1]
  iii Estimate the loss of kinetic energy in the bullet–block system. [2]

 As a result of the impact, the block is displaced. The maximum angle that the string makes with the 
vertical is θ. The length of the string is 0.80 m. 

b Show that θ ≈ 65°. [3]
c  i State and explain whether the block in b is in equilibrium. [2]
  ii Calculate the tension in the string in b. [3]

θ
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3.1 Thermal concepts
This section is devoted to the connections and the diff erences between 
the basic concepts of temperature, internal energy and heat. This section 
also deals with thermal equilibrium, phase changes and basic calorimetry 
problems.

The particle model of matter
As we look closer and closer into matter we discover smaller and 
smaller structures. We fi nd that compounds are made out of molecules, 
molecules are made out of atoms and atoms contain nuclei and electrons. 
Nuclei, in turn, contain protons and neutrons. Today it is believed that 
electrons do not have any substructure but the nucleons (i.e. protons and 
neutrons) are known to be made out of quarks. It is not known if the 
quarks themselves are made out of smaller particles. In thermal physics we 
are mostly interested in molecules, atoms and electrons – we do not need 
to consider any smaller structures. 

In a solid there are forces between the particles that can be modelled 
by springs joining neighbouring particles (Figure 3.1). The springs then 
represent the bonds between the particles. In liquids the forces between 
the particles are weaker. The particles are able to move around the volume 
of the liquid and the liquid will take the shape of the container in which 
it is placed. However, the inter-particle forces between the particles in a 
liquid are suffi  ciently strong that the particles cannot move far from each 
other. In gases the inter-particle forces are very weak so as to be almost 
negligible. The only time signifi cant forces exist between the particles is 
during collisions. 

Temperature
We have an intuitive concept of temperature as the ‘coldness’ or ‘hotness’ 
of a body, but it wasn’t until the 19th century that one of the greatest 
discoveries in physics related the concept of temperature to the random 
motion of molecules. This connection, which will be explored in greater 
detail in Subtopic 3.2, is that temperature is proportional to the average 
random kinetic energy of the molecules.

This direct proportionality between temperature and the average 
random kinetic energy is only true for the absolute or kelvin temperature 
scale. In this scale zero is the lowest possible temperature, the absolute 
zero of temperature. There has to be an absolute zero in temperature 
since there is a lowest possible value of the average kinetic energy of 
molecules, namely zero kinetic energy. Since temperature is proportional 
to the average kinetic energy, the temperature must be zero when the 
kinetic energy is zero.

Learning objectives

• Describe solids, liquids and gases 
in terms of atoms and molecules.

• Use the concept of temperature 
and the relation of absolute 
temperature to the average 
kinetic energy of molecules.

• Understand and use the concept 
of internal energy.

• Solve problems in calorimetry 
using the specifi c heat capacities.

• Describe phase change and 
performing calculations using 
the concept of specifi c latent 
heat.

Figure 3.1 Particles in the solid phase 
oscillate about fi xed positions but are not 
free to move inside the solid.
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Many other temperature scales exist. In 1742, Anders Celsius (1701–
1744) created the temperature scale that is still commonly used today 
and is known by his name. On the Celsius scale a value of zero degrees 
is assigned to the freezing point of water (Figure 3.2) and a value of 100 
degrees is assigned to the boiling point of water. The connection between 
the Celsius and Kelvin scales is:

T (in kelvin, K) = T (in degrees Celsius, °C) + 273

The magnitude of a kelvin is the same as that of a degree Celsius.
The lowest possible temperature on the absolute scale is zero kelvin, 

0 K. On the Celsius scale the lowest possible temperature is, therefore, 
−273 °C. (Notice that we never say degrees kelvin, just kelvin.)

Temperature has varied a lot in the life of the Universe: at the time of 
the Big Bang, some 13.8 billion years ago, the temperature of the universe 
was about 1032 K. The Universe has been expanding ever since and so the 
temperature has been dropping. In the emptiness of space, far from stars 
and galaxies, its value today is only 2.7 K.

Worked example
3.1 The temperature of a body increases from 320 K to 340 K. State the temperature increase in degrees Celsius.

The temperature increase in kelvin is 340 − 320 = 20 K. 

Since the magnitude of a kelvin is the same as that of a degree Celsius, the temperature increase is 20 °C.

(Another way to look at this is to convert both temperatures to kelvin. 320 K corresponds to 320 − 273 = 47 °C 
and 340 K corresponds to 340 − 273 = 67 °C, giving a change of 20 °C.)

Measuring temperature
Temperature can be measured with a thermometer, which is simply a device 
that has one property that changes in a predictable way as temperature 
changes. That property is volume in liquid-in-glass thermometers: the liquid 
column changes its volume and hence its length since the cross-sectional 
area stays the same when the temperature changes and so can be used to 
measure temperature if we fi rst calibrate the thermometer. But properties 
other than volume can be used, for example, electrical resistance. 

When a thermometer is used to measure the temperature of a body it 
has to come into contact with the body. A thermal interaction takes 
place and energy is transferred until the thermometer and the body are at 
the same temperature. When this happens we say that we have thermal 
equilibrium. The reading on the thermometer is then the temperature 
of the body. (For thermometers such as infrared thermometers thermal 
contact is not necessary – the thermometer absorbs radiation emitted by 
the body whose temperature is to be measured.) The average temperature 
on Earth is diff erent at diff erent locations. Figure 3.3 shows the 
temperature distribution in January. 

Exam tip
The magnitude of a kelvin is the 
same as that of a degree Celsius.

Figure 3.2 A Celsius thermometer shows 
zero when immersed in melting ice.

The need to agree on 
internationally accepted 
units, among them those 

for temperature, is a good example 
of international collaboration to 
establish international systems of 
measurement.



118

Figure 3.3 Temperature varies at diff erent locations. This image shows the average 
surface temperature of the Earth in January for the period 1961–1990.

Heat
We have already mentioned that two bodies that are in thermal contact 
and have diff erent temperatures will have a thermal interaction. So when 
a glass of cold water is placed in a warm room, heat fl ows from the room 
into the colder water until the temperature of the water becomes equal to 
that of its surroundings. We say that the colder body has been ‘heated’.

Heat is energy that is transferred from one body to another as a 
result of a diff erence in temperature.

Now, all substances consist of particles and, whether in the solid, liquid 
or gas phase, the particles are in constant motion. They therefore have 
kinetic energy. In a gas, the particles move randomly throughout the 
entire volume of the gas. In a solid the motion of the particles is on a very 
much smaller scale – the particles simply vibrate about their equilibrium 
positions. But this also requires kinetic energy. 

In addition, there are forces between particles. For gases, these forces are 
very small – under reasonable conditions they are almost negligible (see 
ideal gases in Subtopic 3.2). But forces between particles are substantial 
for solids. Increasing the average separation of two particles of a solid 
requires work to be done. This work goes into increasing the potential 
energy associated with inter-particle forces. Figure 3.4 shows the potential 
energy EP of one pair of particles as a function of the distance r separating 
the two particles. 

So, to describe the total energy in a substance we need to consider both 
the kinetic energy and the potential energy. We defi ne the internal energy 
of a substance as follows:

Internal energy is the total random kinetic energy of the 
particles of a substance, plus the total inter-particle potential 
energy of the particles.

Heat was once thought 
to be a fl uid (called 
‘caloric’) that moved 

from body to body. The more 
caloric a body contained the 
hotter it was, and as caloric left 
a body the body became colder. 
This idea was rejected when it 
was realised that you could warm 
your hands by rubbing them 
together. If caloric entered your 
hands it must have come from 
another body, making it colder. 
But this does not happen. In the 
19th century heat was shown to 
just another form of energy.

1.0 1.5
r/nm

0.50 2.0 2.5 3.0

EP

Figure 3.4 The average separation of 
the two particles is the separation at the 
minimum of the curve, i.e. at approximately 
1.1 nm.

JANUARY

0 10 °C
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Worked examples
3.2 A quantity of heat equal to 9800 J is absorbed by a piece of iron of 

mass 1.8 kg and specifi c heat capacity 450 J kg−1 K−1. 
a Calculate the temperature increase of the iron. 
b The heat of 9800 J was removed from 3.2 kg of water initially at 48 °C. 

The specifi c heat capacity of water is 4200 J kg−1 K−1. Calculate the fi nal 
temperature of the water. 

a We need to use Q = mcΔT. This gives:

  9800 = 1.8 × 450 × ΔT 

 Solving for the change in temperature gives:

  ΔT = 
9800

1.8 × 450 = 12.1 ≈ 12 K 

 (Notice that we do not need to know the initial temperature of the iron to answer this question.)

Energy transferred from a hot to a cold body by heating increases the 
internal energy of the cold body (and decreases the internal energy of the 
hot body by the same amount). Work done on the particles of a 
substance increases the potential energy of the particles, and so increases 
the internal energy.

The internal energy of a system can change as a result of heat 
added or taken out and as a result of work performed. 

Internal energy, heat and work are thus three diff erent concepts. What 
they have in common is that they are all measured in joules. Temperature 
is a measure of the random kinetic energy of a substance – not its internal 
energy.

We defi ne the specifi c heat capacity c of a body to be the energy 
required to increase the temperature of a unit mass of the body by one 
kelvin. So, to increase the temperature of a body of mass m by ΔT degrees 
the heat Q required is:

Q = mcΔT

Exam tip
The term ‘capacity’ implies 
somehow that the body 
contains a certain amount 
of heat just as a water bottle 
contains water. This is incorrect. 
Heat is energy ‘in transit’ 
that moves from one body 
into another; it is not energy 
contained in any one body.

Substance c / J kg−1 K−1

aluminium 900

lead 128

iron 450

copper 385

silver 240

water 4200

ice 2200

ethanol 2430

marble 880

Table 3.1 Specifi c heat capacities 
for several substances.



120

b We use Q = mcΔT to get:

  9800 = 3.2 × 4200 × ΔT 

 Solving for the change in temperature gives:

  ΔT = 
9800

3.2 × 4200 = 0.729 ≈ 0.73 K 

 So the fi nal temperature of the water is:

  48 − 0.73 ≈ 47 °C 

 (Notice that the temperature changes of the iron and the water are very diff erent. Notice also that it is 
unnecessary to convert between kelvin and °C since the temperature changes are the same in both scales.)

3.3 A piece of iron of mass 200 g and temperature 300 °C is dropped into 1.00 kg of water of temperature 20 °C. 
Predict the final equilibrium temperature of the water. 

 (Take c for iron as 450 J kg−1 K−1 and for water as 4200 J kg−1 K−1.)

Let T be the fi nal unknown temperature. The iron will also be at this temperature, so:

amount of thermal energy lost by the iron = mironciron(300 − T )

and

amount of thermal energy gained by the water = mwatercwater(T − 20)

Conservation of energy demands that thermal energy lost = thermal energy gained, so:

mironciron(300 − T ) = mwatercwater(T − 20)

0.200 × 450 × (300 − T ) = 1.0 × 4200 × (T − 20)

⇒ T = 25.9 °C ≈ 26 °C

(Note how the large specifi c heat capacity of water results in a small increase in the temperature of the water 
compared with the huge drop in the temperature of the iron.)

Change of phase
When heat is provided to a body or removed from it, the body may not 
necessarily change its temperature. The body may change phase instead. 
Changes of phase happen at constant temperature (Figure 3.5) and include:
• melting – when a solid changes to a liquid (heat must be provided to 

the solid) 
• freezing – when a liquid changes into a solid (heat must be taken out 

of the liquid)
• vaporisation (or boiling) – when a liquid changes into vapour (by 

giving heat to the liquid)
• condensation – when a vapour changes into a liquid (by taking heat 

out of the vapour).

Figure 3.5 Hot lava turns into a solid upon 
contact with water. The cold water takes heat 
away from the hot lava.
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Why does the heat absorbed or removed not result in a temperature 
change? Consider the process of melting. At the melting temperature, 
changing from solid to liquid means that the average distance between 
the molecules increases. But increasing the separation of the molecules 
requires work (because there are attractive forces between the molecules 
that need to be overcome). This is where heat supplied goes – it is used to 
‘break the bonds’. What the supplied heat does not do is to increase the 
kinetic energy of the molecules – hence the temperature stays the same. 

We defi ne the specifi c latent heat L to be the amount of energy 
required to change the phase of a unit mass at constant temperature. So 
the energy required to change the phase of a mass m is Q = mL. If the 
change is melting or freezing, we call it the specifi c latent heat of 
fusion, LF. If the change is vaporisation or condensing then we call it 
specifi c latent heat of vaporisation, LV.

Substance Specifi c latent heat 
of fusion / kJ kg−1

Melting 
temperature / °C

Specifi c latent heat of 
vaporisation / kJ kg−1

Boiling 
temperature / °C

water 334 0 2260 100

ethanol 109 −114 840 78

aluminium 395 660 10550 2467

lead 23 327 850 1740

copper 205 1078 2600 5190

iron 275 1540 6300 2800

Table 3.2 Specifi c latent heats of fusion and vaporisation together with the melting and boiling temperatures.

Notice from Table 3.2 that the specifi c latent heat for vaporisation is 
greater than that for melting. This is because the increase in separation of 
the molecules is much larger when going from the liquid to the vapour 
phase than when going from the solid to the liquid phase. More work is 
needed to achieve the greater separation, and so more energy is required.

Worked examples
3.4 An ice cube of mass 25.0 g and temperature −10.0 °C is dropped into a glass of water of mass 300.0 g and 

temperature 20.0 °C. Calculate the final temperature. 

 (Specifi c heat capacity of ice = 2200 J kg−1 K−1; specifi c latent heat of fusion of ice = 334 J kg−1 K−1, specifi c heat 
capacity of water = 4200 J kg−1 K−1.)

Let the fi nal temperature be T. Ignoring any thermal energy lost by the glass itself, the water will cool down by 
losing thermal energy. 

Using Q = mcΔT, the thermal energy lost by the water is:

0.3 × 4200 × (20 − T ) 
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This thermal energy will be taken up by the ice to:
• increase its temperature from −10 °C to 0 °C: the thermal energy required is 25 × 10−3 × 2200 × 10 J
• melt the ice cube into water at 0 °C: the thermal energy required is 25 × 10−3 × 334 × 103 J
• increase the temperature of the former ice cube from 0 °C to the final temperature T: the thermal energy 

required is 25 × 10−3 × 4200 × T.

Thus:

0.3 × 4200 × (20 − T ) = (25 × 10−3 × 2200 × 10) + (25 × 10−3 × 334 × 103) + (25 × 10−3 × 4200 × T )

Solving for T gives T = 11.9 °C.

3.5 A sample of 120 g of a solid initially at 20 °C is heated by a heater of constant power. The specifi c heat capacity 
of the solid is 2500 J kg−1 K−1. The temperature of the sample varies with time as shown in Figure 3.6.

 Use the graph to determine:
a the power of the heater
b the melting temperature of the sample
c the specifi c latent heat of fusion of the sample
d the specifi c heat capacity of the sample in the liquid phase.

Figure 3.6

a It takes 120 s to raise the temperature of the solid sample from 20 °C to 48 °C. 

 Using Q = mcΔT, the heat required is:

  0.120 × 2500 × (48 − 20) = 8400 J

 So the power is:

  P = 
Q
t  = 

8400
120  = 70 W

Exam tip
You can save yourself time and possible errors if you write this equation, as is, in the equation 
solver of your graphic display calculator (GDC) and ask the GDC to solve it for you.
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b The temperature is constant at melting, shown by the fl at part of the graph, so the melting temperature is 48 °C. 

c The sample is melting from 120 s to 560 s, i.e. for 440 s. The heat supplied during this time is therefore:

  Q = Pt = 70 × 440 = 30 800 J

 So the specifi c latent heat of fusion is: 

  LF = 
Q
m  = 

30 800
0.120  = 2.6 × 105 J kg−1

d The liquid increases its temperature from 48 °C to 56 °C in 40 s. In these 40 s the heat provided is: 

  Q = Pt = 70 × 40 = 2800 J

 Using Q = mcΔT:

  0.120 × c × (56 − 48) = 2800 J 

 ⇒ c  = 2.9 × 103 J kg−1 K−1

The method of mixtures
The electrical method described in Worked example 3.5 is one method 
for measuring specifi c heat capacity and latent heat. Another method, the 
method of mixtures, measures the specifi c heat capacity of a solid as 
follows. A solid is put in a container of hot water and allowed time to reach 
a constant temperature. The temperature of the solid is thus that of the water 
and is recorded. The solid is then transferred into a calorimeter of known 
specifi c heat capacity and initial temperature, which contains a liquid such as 
water (Figure 3.7). The calorimeter is insulated. The fi nal temperature of the 
water is recorded after thermal equilibrium has been reached. 

For example, consider a mass of 0.400 kg of a solid at 80 °C that is put 
in a 100 g copper calorimeter containing 800 g of water at 20 °C. The 
final temperature of the water is measured to be 22 °C. From these values, 
we may deduce the specific heat capacity of the solid as follows.

Using Q = mcΔT, the amount of thermal energy (in joules) lost by the 
solid is:

0.400 × c   × (80 − 22) = 23.2c 

heating

boiling
water

thermometer thermometer
lid

metal

copper
calorimeter

string
transfer

lagging

Figure 3.7 The hot metal is placed in the cold water in the calorimeter. The hot 
metal is removed from the container of boiling water and is quickly placed inside an 
insulated calorimeter containing cold water.

Exam tip
It is likely that the solid lost 
heat to the surrounding air 
while it was being transferred. 
This means that the actual 
temperature of the solid is 
less than we supposed. The 
actual specifi c heat capacity 
is therefore larger than the 
calculated value.
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The amount of thermal energy gained by the calorimeter (see Table 3.1 
for the value of c for copper) and the water is:

0.100 × 385 × (22 − 20) + 0.800 × 4200 × (22 − 20) = 6797 J
 calorimeter water

Equating the two we fi nd that c   = 293 J kg−1 K−1.
The same method can be applied to measure the specifi c latent heat 

of fusion of ice. To do this, place a quantity of ice at 0 °C (the ice must 
therefore come from a mixture with water at 0 °C) into a calorimeter 
containing water at a few degrees above room temperature. Blot the ice 
dry before putting it into the calorimeter. The mass of the ice can be 
determined by weighing the calorimeter at the end of the experiment.

For example, suppose that 25.0 g of ice at 0.00 °C is placed in an 
aluminium calorimeter of mass 250 g containing 300 g of water at 24.0 °C. 
The temperature of the water is measured at regular intervals of time until 
the temperature reaches a minimum value of 17.0 °C. The calorimeter 
and water lost heat, which the ice received. 

Heat lost by calorimeter and water:

0.250 × 900 × (24 − 17) + 0.300 × 4200 × (24 − 17) = 10 395 J

Heat received by ice:

0.025 × LF + 0.025 × 4200 × 17 = 0.025 × LF + 1785

Equating the two gives:

1785 + 0.025 × LF = 10 395 ⇒ L ≈ 344 kJ kg−1

Nature of science
Models change
As already mentioned, heat was once thought to be a fl uid (caloric). 
Conservation of energy was a natural consequence of this model of heat: 
a body lost a certain amount of fl uid and another gained it. Energy was 
conserved. So the concept of heat as a fl uid seemed natural. But there are 
phenomena that cannot be explained with this simple picture. For one 
thing, if heat is a fl uid it must have mass. So when heat leaves a body, the 
body must lose mass. This is not observed, so the caloric theory must be 
wrong. The theory has many other failings and was abandoned in the 
19th century. A major problem is that it does not take account the atomic 
theory of matter. The theory we use now is based on statistical mechanics, 
which uses probability theory to predict the average behaviour of very 
large numbers of particles.
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7 How much ice at −10 °C must be dropped into 
a cup containing 300 g of water at 20 °C in order 
for the temperature of the water to be reduced to 
10 °C? The cup itself has a mass of 150 g and is 
made out of aluminium. Assume that no energy is 
lost to the surroundings.

8 The surface of a pond of area 20 m2 is covered by 
ice of uniform thickness 6 cm. The temperature of 
the ice is −5 °C. Calculate how much energy is 
required to melt this amount of ice into water at 
0 °C. (Take the density of ice to be 900 kg m−3.)

9 Radiation from the Sun falls on the frozen 
surface of a pond at a rate of 600 W m−2. The ice 
temperature is 0 °C.
a Calculate how long it will take to melt a 1.0 cm 

thick layer of ice. (Take the density of ice to be 
900 kg m−3.)

b Suggest why the actual mass of ices that melts is 
less than your answer to a. 

 10 a  Calculate how much energy is required to 
warm 1.0 kg ice initially at −10 °C to ice 
at 0 °C.

 b Calculate how much energy is required to 
melt the ice at 0 °C.

 c Calculate how much energy is required to 
further increase the temperature of the water 
from 0 °C to 10 °C.

 d State in which stage (warming the ice, melting 
the ice, warming the water) the energy 
requirement is largest.

 11 Ice at 0 °C is added to 1.0 kg of water at 20 °C, 
cooling it down to 10 °C. Determine how much 
ice was added.

 12 A quantity of 100 g of ice at 0 °C and 50 g steam 
at 100 °C are added to a container that has 150 g 
water at 30 °C. Determine the final temperature 
in the container. Ignore the container itself in 
your calculations.

? Test yourself
1 A hot body is brought into contact with a colder 

body until their temperatures are the same. Assume 
that no other bodies are nearby. 
a Discuss whether the energy lost by one body is 

equal to the energy gained by the other.
b Discuss whether the temperature drop of one 

body is equal to the temperature rise of the other.
2 a A body of mass 0.150 kg has its temperature 

increased by 5.00 °C when 385 J of energy is 
provided to it. Calculate the body’s specifi c heat 
capacity. 

 b Another body of mass 0.150 kg has its 
temperature increased by 5.00 K when 385 J of 
energy is provided to it. Calculate this body’s 
specifi c heat capacity.

3 A calorimeter of mass 90 g and specifi c heat 
capacity 420 J kg−1 K−1 contains 310 g of a liquid at 
15.0 °C. An electric heater rated at 20.0 W warms 
the liquid to 19.0 °C in 3.0 min. Assuming there 
are no energy losses to the surroundings, estimate 
the specifi c heat capacity of the liquid.

4 A calorimeter for which mc = 25 J K−1 contains 
140 g of a liquid. An immersion heater is used to 
provide energy at a rate of 40 W for a total time of 
4.0 min. The temperature of the liquid increases by 
15.8 °C. Calculate the specific heat capacity of the 
liquid. State an assumption made in reaching this 
result.

5 A car of mass 1360 kg descends from a hill of 
height 86 m at a constant speed. Assuming that all 
of the gravitational potential energy lost by the 
car goes into heating the brakes, estimate the rise 
in the temperature of the brakes. (It takes 16 kJ of 
energy to increase the temperature of the brake 
drums by 1 K; ignore any energy losses to the 
surroundings.)

6 A radiator made out of iron of specifi c heat 
capacity 450 J kg−1 K−1 has a mass of 45.0 kg and 
is fi lled with 23.0 kg of water of specifi c heat 
capacity 4200 J kg−1 K−1.

 a Determine the energy required to raise the 
temperature of the radiator–water system by 1 K.

 b If energy is provided to the radiator at the rate 
of 450 W, calculate how long it will take for the 
temperature to increase by 20.0 °C.
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3.2 Modelling a gas 
This section introduces the equation of state of an ideal gas, which is the 
equation that relates the pressure, volume, absolute temperature and number 
of moles of an ideal gas. The connection between the average random 
kinetic energy of the molecules and the kelvin temperature is derived.

The Avogadro constant
By defi nition, one mole of any substance contains as many particles as 
there are atoms in 12 g of carbon-12. What we mean by ‘particle’ depends 
on the substance; it can be a single atom or a molecule. For example, in 
carbon the particles are single atoms, the particles in hydrogen gas (H2 ) 
are diatomic molecules, in carbon dioxide gas (CO2 ) they are triatomic 
molecules, and in methane gas (CH4) they are molecules with fi ve atoms. 

Experiments show that the number of particles in a mole is 
NA = 6.02 × 1023 mol−1, a number known as the Avogadro constant and 
one of the basic constants of physics. So one mole of carbon, one mole 
of H2, one mole of CO2 and one mole of CH4 all contain 6.02 × 1023 
particles. This means 6.02 × 1023 atoms for carbon, 2 × 6.02 × 1023 atoms 
for H2, 3 × 6.02 × 1023 atoms for CO2 and 5 × 6.02 × 1023 atoms for CH4. 
Figure 3.8 shows one mole of diff erent substances.

If a substance contains N particles (atoms or molecules, as discussed 
above) then the number of moles n is:

n = 
N
NA

The atomic mass scale defi nes one atomic mass unit (1 u) as 1
12 of the 

mass of one atom of carbon-12, 12
6C. The mass of one atom of 12

6C is 
therefore exactly 12 u. The notation 12

6C means that the carbon atom 
has six protons and the number of protons and neutrons combined is 
12 (i.e. six neutrons). The neutral atom also has six electrons. Neglecting 
the mass of the six electrons, the mass of the six protons and six neutrons 
is about 12 u. The proton and the neutron are approximately equal in mass 
and so approximately the mass of one proton and that of one neutron is 
1 u. So an atom of helium (42He) has a mass that is (approximately) 4 u and 
the mass of one atom of  56

26Fe is (approximately) 56 u. 
Now, remember that the mole is defi ned as the number of atoms in 

12 g of  12
6C. We also defi ned the mass of one atom of  12

6C to be 12 u. This 
means that:

 NA × 12u = 12 g
 number of particles in 1 mol mass of 1 atom  mass in g of 1 mol

and so the u (in grams) is given by:

u = 
1 g
NA

 (≈ 1.66 × 10−24 g ≈ 1.66 × 10−27 kg)

Learning objectives

• Use the concept of pressure.
• Solve problems using the 

equation of state of an ideal gas.
• Understand the assumptions 

behind the kinetic model of an 
ideal gas.

• Solve problems using moles, 
molar masses and the Avogadro 
constant.

• Describe diff erences between 
ideal and real gases.

Figure 3.8 One mole of diff erent substances.
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We know that A grams of the element AZ X correspond to one mole of 
element X. So, for substances that are monatomic, one mole of a substance 
is also the quantity of the substance whose mass in grams is equal to the 
atomic mass (in u). Moving on to molecules, the molar mass is the 
sum of the atomic masses of the atoms making up the molecule. So CO2 
has molar mass 12 + 2 × 16 = 44 g mol–1 . There are NA molecules in 44 g of 
CO2 because 44 g of CO2 make one mole. 

So, it is important to know that:

One mole of a substance is a quantity of the substance that 
contains a number of particles equal to the Avogadro constant and 
whose mass in grams is equal to the molar mass of the substance. 

The number of moles in a quantity of m grams of a substance with molar 
mass µ is then n = mµ.

Worked examples
3.6 Estimate the number of atoms of gold in 1.0 kg of gold (197

79 Au).

The molar mass of gold is 197 g mol–1. So 1000 g of gold (= 1 kg) contains 
1000
197  ≈ 5.1 mol of atoms. 

Each mole contains 6.02 × 1023 atoms, so the number of atoms in 1 kg of gold is 6.02 × 1023 × 5.1 = 3 × 1024.

3.7 Calculate how many grams of scandium, 45
21Sc, contain the same number of molecules as 8.0 g of argon, 40

18 Ar.

The molar mass of argon is 40 g mol−1, so a quantity of 8.0 g of argon corresponds to 
8.0
40  = 0.20 mol.

Thus, we need 0.20 mol of scandium. This corresponds to 0.20 × 45 = 9.0 g. 

3.8 Estimate the number of water molecules in an ordinary glass of water.

A glass contains about 200 cm3 of water, which has a mass of 200 g. 

Since the molar mass of water is 18 g mol−1, the glass contains 
200
18  ≈ 10 mol or 6 × 1023 × 10 ≈ 1025 molecules of 

water.

Pressure
Pressure is defi ned as the normal force applied per unit area. In 
Figure 3.9a the force is normal to the area A, so the pressure is:

p = 
F
A
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The force in Figure 3.9b acts at an angle θ, so the pressure on the area A 
is given by the expression:

p = 
F cos θ

A

The unit of pressure is newton per square metre, N m−2, also known as the 
pascal, Pa. Another commonly used non-SI unit is the atmosphere, atm, 
which is equal to 1.013 × 105 Pa.

Worked example
3.9 Two hollow cubes of side 25 cm with one face missing are placed 

together at the missing face (Figure 3.10). The air inside the solid 
formed is pumped out. Determine the force that is necessary to 
separate the cubes.

The pressure inside the solid is zero and outside it equals atmospheric pressure, 1.01 × 105 Pa.

Thus, the force is given by:

F = pA = 1.01 × 105 × (0.25)2 = 6.3 × 103 N

Ideal gases
An ideal gas is a theoretical model of a gas. It helps us to understand 
the behaviour of real, actual gases. We assume that an ideal gas obeys the 
following:
• The molecules are point particles, each with negligible volume.
• The molecules obey the laws of mechanics.
• There are no forces between the molecules except when the molecules 

collide.
• The duration of a collision is negligible compared to the time between 

collisions.
• The collisions of the molecules with each other and with the container 

walls are elastic.
• Molecules have a range of speeds and move randomly.

F

F
A

a

A

F
normal

F cosθ
Ap =p =

b

A

θ

Figure 3.9 Pressure is the normal force per unit area.

Figure 3.10

Exam tip
You must be able to recall 
and describe a few of these 
assumptions in an exam
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An ideal gas (unlike real gases) cannot be liquefi ed or solidifi ed. You 
should be able to see how some of these assumptions may not be obeyed 
by a real gas. For example, there will always be forces between molecules 
of a real gas, not just when the molecules are in contact. In general, we 
expect that a real gas will behave like an ideal gas when the density is 
low (so that molecules are not close to each other and hence the forces 
between them are negligible). We do not expect ideal gas behaviour at 
high densities (molecules will be too close to each other and will exert 
forces on each other). Similarly, we do not expect ideal gas behaviour 
from a real gas at very low temperature, because the gas will then become 
a liquid or even a solid!

A real gas may be approximated by an ideal gas when the density 
is low.

Figure 3.11 shows a molecule that collides with a container wall. The 
momentum normal to the wall before the collision is mv cos θ. After the 
collision momentum normal to the wall is −mv cos θ. So the change in 
momentum has magnitude 2mv cos θ. The fact that the momentum of the 
molecule has changed means that a force acted on the molecule (from the 
wall). By Newton’s third law, therefore, the molecule exerted on the wall 
an equal and opposite force. Taking into account the forces due to all the 
molecules colliding with the walls results in a force, and hence pressure, 
on the walls.

The state of a gas is determined when we know the values of the 
pressure, the volume, the temperature and the number of moles present. 
The parameters p, V, T and n are related to each other. The equation 
relating them is called the equation of state. Our objective is to discover 
the equation of state for a gas. To do this a number of simple experiments 
can be performed, as described in the following sections. 

The pressure–volume law
The equipment shown in Figure 3.12 can be used to investigate the 
relationship between pressure and volume of a fi xed quantity of gas that is 
kept at constant temperature.

The pump forces oil to move higher, decreasing the volume of the air 
trapped in the tube above the oil. A pressure gauge reads the pressure of 
the trapped air and so the relationship between pressure and volume may 
investigated. The changes in pressure and volume must take place slowly 
so that the temperature stays the same.

Exam tip
You must be able to describe 
the conditions under which a 
real gas may be approximated 
by that of an ideal gas. The 
main idea is that the density 
must be low. For a fi xed 
quantity of gas, density will be 
low at low pressure and high 
temperature.

Exam tip
You must be able to give an 
explanation of pressure in 
terms of molecules colliding 
with their container walls.

v

v

θ

Figure 3.11 A molecule has its momentum 
changed when it collides with a wall. A 
force is exerted on the molecule and so the 
molecule exerts an equal and opposite force 
on the wall.

Figure 3.12 Apparatus for investigating the 
pressure–volume law. The pump forces oil 
to move up the tube, decreasing the volume 
of air.

scale

pressure
gauge

valve

to air
pump

air

oil
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The results of a typical experiment are shown in Figure 3.13. We 
have plotted pressure against the inverse of the volume and obtained a 
straight line. 

p/ × 105 Pa

0 200 400 600 800 1000
0
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15

20

25

1
V

/ m–3

Figure 3.13 Graph of pressure against inverse volume at constant temperature.

Exam tip
In practice we use the relation 
pV = constant in the equivalent 
form p1V1 = p2V2 when the 
initial pressure and volume 
(p1, V1) change to a new 
pressure and volume (p2, V2) at 
constant temperature.

Exam tip
If you are asked to confi rm the 
relationship pV = constant, 
take three points from a 
pressure–volume graph and 
show that their product is 
the same.
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Figure 3.14 shows the same data now plotted as pressure against volume.
The curve in the pressure–volume diagram is a hyperbola and in 

physics it is known as an isothermal curve or isotherm: the temperature 
at all points on the curve is the same.

Figure 3.14 The relationship between pressure and volume at constant temperature 
for a fi xed quantity of a gas. The product pV is the same for all points on the curve. 

This implies that:

At constant temperature and with a fi xed quantity of gas, pressure 
is inversely proportional to volume, that is:

p ∝ 
1
V or pV = constant 

This relationship is known as the Boyle’s law.
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Worked example
3.10 The pressure of a fi xed quantity of gas is 2.0 atm and its volume 0.90 dm3. The pressure is increased to 6.0 atm 

at constant temperature. Determine the new volume.

Use p1V1 = p2V2. Substituting the known values we have:

 2.0 × 0.90 = 6.0 × V

⇒ V = 0.30

The new volume is 0.30 dm3.

(Notice that since this problem compares the pressure at two diff erent volumes we do not have to change units to 
SI units.)

The volume–temperature law
The dependence of volume on temperature of a fi xed quantity of gas 
kept at constant pressure can be investigated with the apparatus shown 
in Figure 3.15. Air is trapped in a thin capillary tube that is immersed 
in heated water. The air is trapped by a thin thread of very concentrated 
sulfuric acid. The thread is exposed to the atmosphere and so the pressure 
of the trapped air is constant.

It is found that the volume increases uniformly with temperature. The 
striking fact is that when the straight line is extended backwards it always 
crosses the temperature axis at −273 °C, as in Figure 3.16. This suggests 
that there exists a minimum possible temperature, namely −273 °C. (With 
a real gas the experiment cannot be conducted at very low temperatures 
since the gas would liquefy – hence the dotted line. With an ideal gas 
there would be no such restriction.)

Remember that 1 dm3 = 1000 cm3 = 1 litre.

thread of
sulfuric
acid

thermometer

water

thin tube
ruler

trapped
dry air

heating

V/m3

T /°C
50 100

0.5

1.0

1.5

2.5

3.0

0−50−100−150−200−250−300

2.0

Figure 3.15 Apparatus for verifying the 
volume–temperature law.

Figure 3.16 When the graph of volume versus temperature is extended backwards 
the line intersects the temperature axis at −273 °C.
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When the temperature is expressed in kelvin, this experiment 
implies that at constant pressure:

V
T = constant

This relationship is know as Charles’ law.

Figure 3.17 When the graph of volume versus temperature is extended backwards, 
all the lines intersect the temperature axis at the same point.

Figure 3.18 When temperature is expressed in kelvin, the lines start at zero 
temperature.

Exam tip
In practice we use the relation 
V
T  = constant in the equivalent 

form as V1
T1

 = V2
T2 

where the 

initial volume and temperature 
of the gas (V1, T1) change to a 
new volume and temperature 
(V2, T2) at constant pressure.

If this same experiment is repeated with a diff erent quantity of gas, or a 
gas at a diff erent constant pressure, the result is the same. In each case, the 
straight-line graph of volume versus temperature crosses the temperature 
axis at −273 °C (Figure 3.17). In Figure 3.18, the same graphs are drawn 
using the Kelvin temperature scale.
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Worked example
3.11 A gas expands at constant pressure from an original volume of 2.0 dm3 at 22 °C to a volume of 4.0 dm3. 

Calculate the new temperature.

Substituting in 
V2

T1
 = 

V2

T2
 it follows that:

2.0
295

 = 
4.0
T

⇒ T = 590 K or 317 °C

Note that we converted the original temperature into kelvin. (It is very easy to forget this conversion and get the 
incorrect answer of 44 °C.)

heating

thermometer

water

pressure
gauge

air
p/atm
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T /°C
50 1000−50−100−150−200−250−300

Figure 3.19 Investigating the pressure–
temperature law.

The pressure–temperature law
What remains now is to investigate the dependence of pressure on 
temperature of a fi xed quantity of gas in a fi xed volume. This can be done 
with the apparatus shown in Figure 3.19. The gas container is surrounded 
by water whose temperature can be changed. A pressure gauge measures 
the pressure of the gas. We fi nd that pressure increases uniformly with 
increasing temperature, as shown by the graph in Figure 3.20. 

Figure 3.20 The graph of pressure versus temperature is a straight line that, when 
extended backwards, again intersects the temperature axis at −273 °C.
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When the temperature is expressed in kelvin, this experiment 
implies that at constant volume:

p
T

 = constant

This relationship is known as Gay-Lussac’s law or Amontons’ law. 

Figure 3.22 If temperature is expressed in kelvin, the lines start at zero temperature.
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Figure 3.21 When extended backwards, the graphs of pressure versus temperature for 
three diff erent quantities of gas all intersect the temperature axis at the same point.

Exam tip
In practice we use the relation 
p
T = constant in the equivalent 

form as p1
T1

 = p2
T2

 where the 

initial pressure and temperature 
of the gas ( p1, T1) change to a 
new pressure and temperature 
( p2, T2) at constant volume. 
(Remember, T is in kelvin.)

For quantities of gases containing diff erent numbers of moles at 
diff erent volumes the results are the same, as shown in Figure 3.21. When 
the temperature is expressed in kelvin, the straight lines all pass through 
the origin (Figure 3.22).
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Worked example
3.12 A gas in a container of fi xed volume is heated from a temperature of 37 °C and pressure 3.0 × 105 Pa to a 

temperature of 87 °C. Calculate the new pressure.

Substituting in 
p1
T1

 = 
p2
T2

 we have:

 
3.0 × 105

310
 =  

p
360 

⇒ p = 3.5 × 105 Pa

(Notice that we had to change the temperature into kelvin.)

The equation of state of an ideal gas
If we combine the results of the three preceding experiments, we fi nd that:

pV
T

 = constant

What is the value of the constant? To determine that, we repeat all of 
the preceding experiments, this time using diff erent quantities of the gas. 
We discover that the constant in the last equation is proportional to the 
number of moles n of the gas in question:

pV
T

 = n × constant

We can now measure the pressure, temperature, volume and number of 

moles for a large number of diff erent gases and calculate the value of 
pV
nT . 

We fi nd that this constant has the same value for all gases – it is a universal 
constant. We call this the gas constant R. It has the numerical value:

R = 8.31 J K−1 mol−1

Thus, fi nally, the equation of state is:

pV = RnT

(Remember that temperature must always be in kelvin.)

Exam tip
In practice we use this in the 

form p1V1
T1

 =  p2V2
T2

 when a gas 

changes from values (p1, V1, T1) 
to (p2, V2, T2). Cancel out any 
quantities that stay the same.
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Worked examples
3.13 Estimate how many molecules there are in a gas of temperature 320 K, volume 0.025 m3 and pressure 

4.8 × 105 Pa.

First we fi nd the number of moles:

n = 
pV
RT

n = 
4.8 × 105 × 0.025

8.31 × 320
 = 4.51 mol

Each mole contains the Avogadro number of molecules, so the number of molecules is:

4.51 × 6.02 × 1023 ≈ 2.7 × 1024

3.14 A container of hydrogen of volume 0.10 m3 and temperature 25 °C contains 3.2 × 1023 molecules. Calculate 
the pressure in the container.

The number of moles present is:

 n = 
3.2 × 1023

6.02 × 1023 = 0.53 

So: p = 
RnT
V

 = 
8.31 × 0.53 × 298

0.10
 = 1.3 × 104 Pa

3.15 A fi xed quantity of gas of volume 3.0 × 10−3 m3, pressure 3.0 × 105 Pa and temperature 300 K expands to a 
volume of 4.0 × 10−3 m3 and a pressure of 6.0 × 105 Pa. Calculate the new temperature of the gas.

Use 
p1V1

n1T1
 = 

p2V2

n2T2
 to get:

3.0 × 105 × 3.0 × 10−3

300
 = 

6.0 × 105 × 4.0 × 10−3

T

Solving for T gives: T = 800 K



3  THERMAL PHYSICS 137

0 200 400 600 800 12001000

Fr
ac

tio
n 

of
 m

ol
ec

ul
es

w
ith

 sp
ee

d 
v

v/m s–1

Figure 3.24 The distribution of speeds at 
two diff erent temperatures.

3.16 Figure 3.23 shows two isothermal 
curves for equal quantities of two ideal 
gases. State and explain which gas is at 
the higher temperature.

Figure 3.23 Two isothermal curves for equal quantities of two gases.

Draw a vertical line that intersects the two isotherms at two points. At these points both gases have the same 
volume, and as the quantities of gas are equal n is the same. So for these points p

T  is constant. The point on the blue 
curve has higher pressure, so it must have the higher temperature.
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The Boltzmann equation
The molecules of a gas move about randomly with a range of speeds. The 
graph in Figure 3.24 shows the distribution of speeds for oxygen molecules 
kept at two diff erent temperatures: the blue curve is at 100 K and the red 
curve at 300 K. The vertical axis shows the fraction of molecules having a 
given speed v. You will not be examined on this graph but knowing a few 
of its features helps a lot in understanding how gases behave.

We see that there is a speed that corresponds to the peak of the 
curve. For the blue curve this is about 225 m s−1 and for the red curve at 
400 m s−1. The speed at the peak represents the most probable speed that 
would be found if you picked a molecule at random. Two other speeds are 
important:
• the average speed of the molecules, v– = 

v1 + v2 + v3 + … + v N
N  

• the r.m.s. speed or root mean square speed c, which is the square root of 
the average of the squares of the speeds of the molecules, i.e.

 c =    
v 12 + v 22 + v 32 + … + v N2 

N  

Why do we bother to work with an r.m.s. speed? Consider the average 
kinetic energy for the N molecules, which is given by:

–EK = 
1
2 mv 12 + 12 mv 22 + 12 v 3

2 + … + mv N2 
N

 = 12 m 
⎛
⎝
v 12 + v 22 + v 32 + … + v N2 

N
⎞
⎠

 = 12 mc2
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So we see that the average kinetic energy involves the r.m.s. speed. These 
three speeds (most probable, average and r.m.s. speed) are all diff erent 
but numerically close to each other. So, even though it is not technically 
correct, we may assume that all three speeds mean the same thing and we 
will use the symbol c for all of them.

Now, it can be proven that the pressure of a gas is p = 13 ρc2, where 
the quantity c stands for the r.m.s. speed and ρ is the density of the gas. 
(You will not need to know this equation for the exam.) We get a very 
interesting result if we combine this equation with the equation of state 
for an ideal gas, i.e. the equation pV = nRT. There are many steps in the 
derivation in the box below. N stands for the number of molecules and m 
for the mass of one molecule.

Since 12mc 2 is equal to E, the average random kinetic energy of the 
molecules, we can write:

 pV = nRT

 (13  ρc 2 )V = nRT replacing the pressure with p = 13  ρc2

 
1
3 

M
Vc 2V = nRT replacing the density by mass ÷ volume

 
1
3Mc 2 = nRT cancelling the volume

 
1
3Nmc 2 = 

N
NA

RT writing M = Nm and n = 
N
NA

 
1
2Nmc 2 = 3 

2 
R
NA

T multiplying both sides by 32

kB  = 
R
NA

 =  
8.31

6.02 × 1023 

 = 1.38 × 10−23 J K−1

The product of all this algebra is the very important result that relates 
the average random kinetic energy to the absolute temperature.

–EK = 
3
2 

R
NA

T

The ratio 
R
NA

 is called the Boltzmann constant, kB. So the fi nal result 
is that the average random kinetic energy of the particles is directly 
proportional to the kelvin temperature:

–EK = 
3
2kBT

Using this equation we can fi nd an expression for the internal energy of 
an ideal gas. Remember that the internal energy of an ideal gas consists 
only of the random kinetic energy of its molecules and no potential 
energy. Suppose that the gas has N molecules. Then, since the average 
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Exam tip
You must be able to obtain 
an expression for the internal 
energy of an ideal gas even 
though this formula is not in 
the IB data booklet.

kinetic energy is 32kBT, the total random kinetic energy, i.e. the internal 
energy U, is:

U = 32NkBT

But recall that kB = 
R
NA

, so that another expression is:

U = 32nRT

Yet another expression comes from using the equation of state, pV = nRT, 
which gives:

U = 32 pV

Worked examples
3.17 The kelvin temperature of a gas is doubled. By what factor does the average speed increase?

From 12mc2 = 32kBT we fi nd that when T is doubled then c2 will double, so c itself will increase by a factor of √2.

3.18 Calculate the ratio of the average speed of oxygen (O2) to carbon dioxide (CO2) molecules when both gases 
are at the same temperature.

Since the temperature is the same for both gases, using 12mc 2 = 32k BT we fi nd that:

1
2 
mOc O2

 
= 

1
2 
mCO2c CO2

2 and so 
c O2

c CO2
2 
= 

mCO2

mO

So we need to fi nd the ratio of the masses of the molecules. One mole of oxygen has a mass of 32 g so one 

molecule has a mass (in grams) of 
32
NA

. Similarly, the mass in grams of a carbon dioxide molecule is 
44
NA

. So: 

c O2

c CO2
2 
= 

44/NA
32/NA

 = 
44
32 = 1.375 ⇒ 

cO
c CO2 

=   1.375 = 1.17 ≈ 1.2

3.19 Calculate the average speed of helium (42He) molecules at a temperature of −15 °C. 

We use 12mc2 = 32k BT. First we need to fi nd the mass m of a helium atom. One mole of helium has a mass of 4.0 g so 
the mass of one molecule is given by:

m = 
4.0
NA

 = 
4.0

6.02 × 1023 = 6.64 × 10−24 g = 6.64 × 10−27 kg

Now remember to convert the temperature into kelvin: 273 − 15 = 258 K. So we have:
1
2 × 6.64 × 10−27 × c2 = 32 × 1.38 × 10−23 × 258

This gives c2 = 1.61 × 106 and so c = 1.3 × 103 m s−1.
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Nature of science
Models must be correct but also simple
Boyle thought that a gas consists of particles joined by springs. Newton 
thought that a gas consists of particles that exert repulsive forces on each 
other. Bernoulli thought that a gas is a collection of a very large number 
of particles that exert forces on each other only when they collide. All 
three could explain why a gas exerts a pressure on its container but it 
is Bernoulli’s picture that is the simplest. We assume that the ordinary 
laws of mechanics apply to the individual particles making up the gas. 
Even though the laws apply to each individual particle we cannot 
observe or analyse each particle individually since there are so many 
of them. By concentrating on average behaviours of the whole gas 
and using probability and statistics, physicists developed a new fi eld of 
physics known as statistical mechanics. This has had enormous success in 
advancing our understanding of gases and other systems, including where 
the approximation to an ideal gas breaks down. 

 21 A fl ask of volume 300.0 × 10−6 m3 contains air 
at a pressure of 5.00 × 105 Pa and a temperature 
of 27.0 °C. The flask loses molecules at a rate 
of 3.00 × 1019 per second. Estimate how long it 
takes for the pressure in the fl ask to fall to half its 
original value. (Assume that the temperature of 
the air remains constant during this time.)

 22 The point marked in the diagram represents 
the state of a fi xed quantity of ideal gas 
in a container with a movable piston. The 
temperature of the gas in the state shown is 
600 K. Copy the diagram. Indicate on the 
diagram the point representing the new state of 
the gas after the following separate changes.

 a The volume doubles at constant temperature.
 b The volume doubles at constant pressure.
 c The pressure halves at constant volume.

? Test yourself

p

V

 13 Calculate the number of molecules in 28 g of 
hydrogen gas (molar mass 2 g mol−1).

 14 Calculate the number of moles in 6.0 g of 
helium gas (molar mass 4 g mol−1).

 15 Determine the number of moles in a sample of a 
gas that contains 2.0 × 1024 molecules.

 16 Determine the mass in grams of carbon (molar 
mass 12 g mol−1) that contains as many molecules 
as 21 g of krypton (molar mass 84 g mol−1).

 17 A sealed bottle contains air at 22.0 °C and a 
pressure of 12.0 × 105 Pa. The temperature is 
raised to 120.0 °C. Calculate the new pressure.

 18 A gas has pressure 8.2 × 106 Pa and volume 
2.3 × 10−3 m3. The pressure is reduced to 
4.5 × 106 Pa at constant temperature. Calculate 
the new volume of the gas.

 19 A mass of 12.0 kg of helium is required to fi ll a 
bottle of volume 5.00 × 10−3 m3 at a temperature 
of 20.0 °C. Determine the pressure in helium.

 20 Determine the mass of carbon dioxide required 
to fi ll a tank of volume 12.0 × 10−3 m3 at 
a temperature of 20.0 °C and a pressure of 
4.00 atm.
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 23 Two ideal gases are kept at the same temperature 
in two containers separated by a valve, as shown in 
the diagram. Estimate the pressure when the valve 
is opened. (The temperature stays the same.)

 24 The diagram shows a cylinder in a vacuum, 
which has a movable, frictionless piston at the 
top. An ideal gas is kept in the cylinder. The 
piston is at a distance of 0.500 m from the 
bottom of the cylinder and the volume of the 
cylinder is 0.050 m3. The weight on top of the 
cylinder has a mass of 10.0 kg. The temperature 
of the gas is 19.0 °C.

 a Calculate the pressure of the gas.
 b Determine how many molecules there are in 

the gas.
 c The temperature is increased to 152 °C. 

Calculate the new volume of the gas.
 25 The molar mass of a gas is 28 g mol−1. A 

container holds 2.00 mol of this gas at 0.00 °C 
and a pressure of 1.00 × 105 Pa. Determine the 
mass and volume of the gas.

 26 A balloon has a volume of 404 m3 and is fi lled 
with helium of mass 70.0 kg. The temperature 
inside the balloon is 17.0 °C. Determine the 
pressure inside the balloon.

 27 A fl ask has a volume of 5.0 × 10−4 m3 and 
contains air at a temperature of 300 K and a 
pressure of 150 kPa.

 a Calculate the number of moles of air in the 
fl ask.

 b Determine the number of molecules in the 
fl ask.

 c Estimate the mass of air in the fl ask. You may 
take the molar mass of air to be 29 g mol−1.

 28 The molar mass of helium is 4.00 g mol−1.
 a Calculate the volume of 1.0 mol of helium at 

standard temperature and pressure (stp) i.e. at 
T = 273 K, p = 1.0 × 105 Pa.

 b Determine the density of helium at stp.
 c Estimate the density of oxygen gas at stp (the 

molar mass of, oxygen gas is 32 g mol−1).
 29 The density of an ideal gas is 1.35 kg m−3. The 

temperature in kelvin and the pressure are both 
doubled. Calculate the new density of the gas.

 30 Calculate the average speed (r.m.s.) of helium 
atoms at a temperature of 850 K. The molar mass 
of helium is 4.0 g mol−1.

 31 Show that the average (r.m.s.) speed of molecules 
of a gas of molar mass M (in kg mol−1) kept at a 

  temperature T is given by c =    
3RT
M .

 32 a  Calculate the average random kinetic energy 
of a gas kept at a temperature of 300 K.

 b Determine the ratio of the average speeds 
(r.m.s. speeds) of two ideal gases of molar mass 
4.0 g mol−1 and 32 g mol−1, which are kept at 
the same temperature.

6 dm3

12 atm

3 dm3

6 atm

valve

m

0.5 m gas
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Exam-style questions

1 Body X whose temperature is 0 °C is brought into thermal contact with body Y of equal mass and temperature 
100 C. The only exchanges of heat that take place are between X and Y. The specifi c heat capacity of X is greater 
than that of  Y. Which statement about the fi nal equilibrium temperature T of the two bodies is correct?

A T = 50 °C 
B 0 < T < 50 °C  
C 100 °C  > T > 50 °C 
D Answer depends on value of mass

2 Energy is provided to a liquid at its boiling point at a rate of P joules per second. The rate at which mass is boiling 
away is µ kg per second. The specifi c latent heat of vaporisation of the liquid is

A µP B 
P
µ  C 

µ
P D 

1
µP

3 The following are all assumptions of the kinetic theory of gases, except which one?

A The duration of a collision is very small compared to the time in between collisions.
B The collisions are elastic.
C The average kinetic energy of molecules is proportional to temperature.
D The volume of molecules is negligible compared to the volume of the gas.

4 In the context of a fi xed mass of an ideal gas, the graph could represent the variation of: 

(0, 0)

A pressure with volume at constant temperature
B volume with Celsius temperature at constant pressure
C pressure with Celsius temperature at constant volume
D pressure with inverse volume at constant temperature

5 The temperature of an ideal gas of pressure 200 kPa is increased from 27 °C to 54 °C at constant volume. Which is 
the best estimate for the new pressure of the gas?

A 400 kPa B 220 kPa C 180 kPa D 100 kPa
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 6 A container of an ideal gas that is isolated from its surroundings is divided into two parts. One part has double 
the volume of the other. The pressure in each part is p and the temperature is the same. The partition is removed. 
What is the pressure in the container now?

A p B 2p C 
3p
2  D 4p

 7 Diff erent quantities of two ideal gases X and Y are kept at the same temperature. Which of the following is a 
correct comparison of the average kinetic energy and internal energy of the two gases?

Average kinetic energy Internal energy

A same same
B same diff erent
C diff erent same
D diff erent diff erent

 8 The temperature of an ideal gas is doubled. The average speed of the molecules increases by a factor of

A √2 B 2 C 2 √2 D 4

 9 Two ideal gases X and Y are kept at the same temperature. Gas X has molar mass mX and gas Y has molar mass μY. 
The ratio of average speeds of the molecules of gas X to that of gas Y is 

A 
μX
µY

 B 
μY
µX

 C    
μX
µY

 D    
μY
µX

10 The pressure of a fi xed quantity of ideal gas is doubled. The average speed of the molecules is also doubled. 
The original density of the gas is ρ. Which is the new density of the gas?

A 
ρ
2 B ρ C 2ρ D 4ρ

11 a Calculate the volume of 1 mol of helium gas (molar mass 4 g mol−1) at temperature 273 K and 
pressure 1.0 × 105 Pa. [2]

 b  i  Find out how much volume corresponds to each molecule of helium. [2]
   ii  The diameter of an atom of helium is about 31 pm. Discuss whether or not the ideal gas is a good 

approximation to the helium gas in a. [2]

 c Consider now 1 mol of lead (molar mass 207 g mol−1, density 11.3 × 103 kg m−3). How much volume 
corresponds to each atom of lead? [3]

 d Find the ratio of these volumes (helium to lead) and hence determine the order of magnitude of the ratio: 
separation of helium atoms to separation of lead atoms. [2]
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12 a Defi ne what is meant by specifi c heat capacity of a substance. [1]

 b  Consider two metals that have diff erent specifi c heat capacities. The energies required to increase the 
temperature of 1 mol of aluminium and 1 mol of copper by the same amount are about the same. Yet the 
specifi c heat capacities of the two metals are very diff erent. Suggest a reason for this. [2]

   A hair dryer consists of a coil that warms air and a fan that blows the warm air out. The coil generates 
thermal energy at a rate of 600 W. Take the density of air to be 1.25 kg m−3 and its specifi c heat capacity 
to be 990 J kg−1 K−1. The dryer takes air from a room at 20 °C and delivers it at a temperature of 40 °C.

 c What mass of air fl ows through the dryer per second? [2]

 d What volume of air fl ows per second? [1]

 e  The warm air makes water in the hair evaporate. If the mass of water in the air is 180 g, calculate how 
long it will take to dry the hair. (The heat required to evaporate 1 g of water at 40 °C is 2200 J.) [2]

13 The graph shows the variation with time of the speed of an object of mass 8.0 kg that has been dropped 
(from rest) from a certain height. 

 The body hits the ground 12 seconds later. The specifi c heat capacity of the object is 320 J kg−1 K−1.

 a i Explain how we may deduce that there must be air resistance forces acting on the object. [2]
  ii Estimate the height from which the object was dropped. [2]
  iii Calculate the speed the object would have had if there were no air resistance forces. [2]

 b  Estimate the change in temperature of the body from the instant it was dropped to just before impact. 
List any assumptions you make. [4]

v/m s–1

t/s
0 2 4 6 8 10 12

0

5

10

15

20
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14 A piece of tungsten of mass 50 g is placed over a fl ame for some time. The metal is then quickly transferred 
to a well-insulated aluminium calorimeter of mass 120 g containing 300 g of water at 22 °C. After some time 
the temperature of the water reaches a maximum value of 31 °C.

 a State what is meant by the internal energy of a piece of tungsten. [1]

 b  Calculate the temperature of the fl ame. You may use these specifi c heat capacities: 
water 4.2 × 103 J kg−1 K−1, tungsten 1.3 × 102 J kg−1 K−1 and aluminum 9.0 × 102 J kg−1 K−1. [3]

 c State and explain whether the actual fl ame temperature is higher or lower than your answer to b. [2]

15 a Describe what is meant by the internal energy of a substance. [1]

 b  A student claims that the kelvin temperature of a body is a measure of its internal energy. 
Explain why this statement is not correct by reference to a solid melting. [2]

 c  In an experiment, a heater of power 35 W is used to warm 0.240 kg of a liquid in an uninsulated 
container. The graph shows the variation with time of the temperature of the liquid. 

 The liquid never reaches its boiling point. 

 Suggest why the temperature of the liquid approaches a constant value. [2]

 d  After the liquid reaches a constant temperature the heater is switched off . The temperature of the liquid 
decreases at a rate of 3.1 K min−1. 

  Use this information to estimate the specifi c heat capacity of the liquid. [3]

16 The volume of air in a car tyre is about 1.50 × 10−2 m3 at a temperature of 0.0 °C and pressure 250 kPa. 

 a Calculate the number of molecules in the tyre. [2]

 b Explain why, after the car is driven for a while, the pressure of the air in the tyre will increase. [3]

 c  Calculate the new pressure of the tyre when the temperature increases to 35 °C and the volume 
expands to 1.60 × 10−2 m3.

 d  The car is parked for the night and the volume, pressure and temperature of the air in the tyre return to 
their initial values. A small leak in the tyre reduces the pressure from 250 kPa to 230 kPa in the course 
of 8 h. Estimate (stating any assumptions you make):

  i the average rate of loss of molecules (in molecules per second) [2]
  ii the total mass of air lost (take the molar mass of air to be 29 g mol−1). [3]
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4.1 Oscillations
This section deals with one of the most common phenomena in physics, 
that of oscillations. Airplane wings, suspension bridges, skyscrapers, tree 
branches and car suspension systems all oscillate. These diverse phenomena 
can be analysed by similar methods. Understanding oscillations is the fi rst 
step in understanding the behaviour of waves.

Simple harmonic oscillations
Oscillations refer to back and forth motion. A typical example of an 
oscillation is provided by the simple pendulum, i.e. a mass attached to 
a vertical string. When the mass is displaced slightly sideways and then 
released, the mass begins to oscillate. In an oscillation the motion is 
repetitive, i.e. periodic, and the body moves back and forth around an 
equilibrium position. 

A characteristic of oscillatory motion is the time taken to complete one 
full oscillation. This is called the period, T (Figure 4.1). The amplitude 
of the oscillation is the maximum displacement from the equilibrium 
position.

Learning objectives

• Understand the conditions 
under which simple harmonic 
oscillations take place.

• Identify and use the concepts 
of period, frequency, amplitude, 
displacement and phase 
diff erence.

• Describe simple harmonic 
oscillations graphically.

• Describe the energy 
transformations taking place in 
oscillations.

equilibrium position

outward swing

t = 0 t = T/2
t = T/4

amplitude

return swing

t = T t = T/2
t = 3T/4

Examples of oscillations include:
• the motion of a mass at the end of a horizontal or vertical spring after 

the mass is displaced away from its equilibrium position
• the motion of a ball inside a round-bottomed bowl after it has been 

displaced away from its equilibrium position at the bottom of the bowl
• the vertical motion of a body fl oating in a liquid under the action of 

wind and waves (e.g. an iceberg)
• a tight guitar string that is set in motion by plucking the string
• the motion of a diving board as a diver prepares to dive
• the oscillation of an airplane wing
• the motion of a tree branch or a skyscraper under the action of the wind.

Figure 4.1 A full oscillation lasts for one period. At the end of a time interval equal to 
one period T, the system is in the same state as at the beginning of that time interval.
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For a system to oscillate it is necessary to have a restoring force, i.e. a 
force that brings the system back towards its equilibrium position when 
the system is displaced away from equilibrium.

A very special periodic oscillation is called simple harmonic motion 
(SHM) and is the main topic of this section. The defi ning property of all 
simple harmonic oscillations is that the magnitude of the acceleration of 
the body that has been displaced away from equilibrium is proportional 
to the displacement and the direction of the acceleration is towards the 
equilibrium position. Mathematically these two conditions can be stated as:

a ∝ − x

(Since F = ma, this is equivalent to saying that the restoring force is 
proportional to and opposite to the displacement.) 

The main characteristics of SHM are:
• the period and amplitude are constant
• the period is independent of the amplitude
• the displacement, velocity and acceleration are sine or cosine 

functions of time.

Consider a block of mass m placed at the end of a horizontal spring. If 
we displace the block to the right and then release it, it will perform 
oscillations about its equilibrium position (the vertical dotted line) between 
the extreme positions of the second and last diagrams in Figure 4.2. The 
oscillations have amplitude A. 

Oscillations in 
which the period 
is independent 

of the amplitude are called 
isochronous. Such oscillations 
are essential for accurate time-
keeping. The oscillations 
of a simple pendulum are 
approximately isochronous, 
which means that the period is 
independent of the amplitude 
as long as the amplitude is small. 
While he was attempting to 
solve the non-isochronous aspect 
of the simple pendulum, the 
great Dutch scientist Christiaan 
Huygens (1629–1695) discovered 
important mathematical and 
physical aspects of the cycloid 
curve. The cycloid is the curve 
that is traced by a point on the 
rim of a wheel as the wheel turns.

equilibrium
position

x = A, t = 0

x = 0, t = T/4

x = –A, t = T/2

extension x

F = –kx

displacement

Figure 4.2 The mass–spring system. The 
net force on the body is proportional to the 
displacement and opposite in direction.
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Consider the block when it is in an arbitrary position, as in the third 
diagram in Figure 4.2 on the previous page. At that position the extension 
of the spring is x. The magnitude of the tension F in the spring is 
therefore (by Hooke’s law) equal to F = kx, where k is the spring constant. 
The tension force is directed to the left.

Taking displacement to the right of the equilibrium position as 
positive, then ma = −kx since the tension force is directed to the left, and 
so is taken as negative. We can rewrite this equation as:

a = − 
k
m x

This tells us that the acceleration has a direction which is opposite to and 
a magnitude that is proportional to the displacement from equilibrium, so 
the oscillations will be simple harmonic (assuming there are no frictional 
forces). A graph of acceleration versus displacement gives a straight line 
through the origin with a negative slope, as shown in Figure 4.3.

Therefore, in general, to check whether SHM will take place, we must 
check that:
1 there is a fi xed equilibrium position
2 when the particle is moved away from equilibrium, the acceleration of 

the particle is both proportional to the amount of displacement and in 
the opposite direction to it.

Let us have a look at Figure 4.4. A body has been displaced from 
equilibrium and is then released. The fi gure shows how the displacement 
x varies with time t. We can extract lots of information from this graph. To 
begin with we see that the maximum displacement is 5.0 cm and so this is 
the amplitude of the motion: x0 = 5.0 cm. 

Next we see that the period is 2.0 s: we obtain this by looking at 
the time from one peak to the next. What about the velocity in this 
oscillation? We know that velocity is the gradient of a displacement–time 
graph. So we can say something about velocity by looking at the gradient 
of this graph at each point. At t  = 0 the gradient is zero, so the velocity 
is also zero. As t increases the gradient becomes negative and at t  = 1.0 s 
it becomes zero again. The gradient has its largest magnitude at t  = 0.5 s. 
From t  = 1.0 s to t  = 2.0 s the gradient is positive. Its magnitude is largest at 
t  = 1.5 s. Figure 4.5 shows the actual velocity plotted against time, which 
agrees with our qualitative analysis.

–1.0

A

–0.5 0 0.5 1.0
–A

x/cm

–4

–2

2

4
a /cm s–2

4
t/s

321

6x/cm period T

amplitude A

4

2

0

–2

–4

–6

4
t/s

20v/cm s–1

10

0

–10

–20

321

Figure 4.3 The graph of acceleration a 
versus displacement x is a straight line 
through the origin with a negative slope.

Figure 4.4 The variation of displacement x with time t in SHM. Figure 4.5 The variation of velocity v with time t in SHM.
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In the same way, we can get information about acceleration by looking 
at the gradient of the velocity–time graph. But it is much simpler to recall 
that a ∝ −x. This means that the acceleration–time graph has the opposite 
shape to the displacement–time graph – the peaks on the displacement–
time graph become troughs on the acceleration–time graph (of course the 
scale on the vertical axis will be diff erent). The actual acceleration–time 
graph is shown in Figure 4.6. Figure 4.7 shows all three graphs together. 

4
t/s

a/cm–2

40

20

0

–20

–40

321

acceleration

displacement

4
t/s

x/cm
40

20

0

–20

–40

321

velocity

We defi ne the frequency f of the oscillations as the number of full 
oscillations per second. Since we have one oscillation in a time equal to 

the period T, the number of oscillations per second is 
1
T  and so:

f = 
1
T

The three curves in Figure 4.7 all have the same period, so all three curves 
also have the same frequency.

In Figure 4.4 the maximum displacement is at t  = 0, so the 
displacement is a cosine function of time. However, the graph of 
displacement versus time does not have to be a cosine function. The three 
graphs of Figure 4.8 all show simple harmonic oscillations with the same 
amplitude and period (and hence frequency). There is however a phase 
diff erence between them. The blue curve is the red curve shifted forward 
by some amount. And the purple curve is the red curve shifted forward 
by an even greater amount. The amount by which one curve is shifted 
forward relative to another curve is called the phase diff erence between 
the two curves. Technically, the phase diff erence is described in terms of 
an angle φ, where:

φ = 
shift
T  × 360°

Relative to the red curve, the blue curve is shifted by 0.125 s and the 
period is 1.00 s, so the phase diff erence is:

φ = 
0.125
1.00  × 360° = 45° (or 

π
4 radians)

Relative to the purple curve, the purple curve is shifted by 0.250 s and the 
period is again 1.00 s, so the phase diff erence is:

φ = 
0.250
1.00  × 360° = 90° (or 

π
2 radians)

Figure 4.6 The variation of acceleration a with time t in SHM. Figure 4.7 The variation of displacement, velocity and 
acceleration in SHM on the same axes.

The unit of frequency is the 
inverse second, s−1, which is called 
the hertz (Hz). 

t/s

6x/cm

4
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–2

–4

–6

0.5 1.0 1.5 2.0

Figure 4.8 Three graphs of simple harmonic 
oscillations with a phase diff erence between 
them. 
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Worked examples
4.1 State and explain whether graphs I, II and III in Figure 4.9 represent simple harmonic oscillations.

Figure 4.9

Graph I does not show SHM, since the period does not stay constant as time goes on. Graph II does, since the 
acceleration is proportional and opposite to displacement (straight-line graph through origin with negative slope). 
Graph III does not, since the amplitude does not stay constant. 

4.2 The graph in Figure 4.10 shows the displacement of a particle from a fi xed equilibrium position.

a Use the graph to determine the period of the motion.
b On a copy of the graph, mark: 

  i a point where the velocity is zero (label this with the letter Z)
  ii  a point where the velocity is positive and has the largest magnitude (label this with the letter V)
  iii  a point where the acceleration is positive and has the largest magnitude (label this with the letter A).

a The period is read off  the graph as T = 0.20 s.

b  i The velocity is zero at any point where the displacement is at a maximum or a minimum.
  ii For example at t = 0.15 s.
  iii For example at t = 0.10 s or t = 0.30 s.

Displacement Acceleration

Graph I Graph II Graph III
Displacement

Time Displacement Time

t/s

x/cm

0.1 0.2 0.3 0.4 0.5

2

1

0

−1

−2

Figure 4.10 Graph showing the variation with time of the 
displacement of a particle performing SHM.
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Energy in simple harmonic motion
Consider again a particle at the end of a horizontal spring. Let the 
extension of the spring be x at a particular instant of time, and let the 
velocity of the particle be v at that time. The system has elastic potential 
energy and kinetic energy, Figure 4.11.

The total energy of the system is then:

E = EP + EK

In the absence of frictional and other resistance forces, this total energy is 
conserved, and so E = constant.

The maximum velocity is achieved when x = 0, i.e. as the mass moves 
past its equilibrium position. Here there is no extension, so the elastic 
potential energy is zero. At the extremes of the motion, x = ±A and v = 0, 
so the kinetic energy is zero. Thus at x = ±A the system has elastic potential 
energy only, and at x = 0 it has kinetic energy only. At intermediate points 
the system has both forms of energy: elastic potential energy and kinetic 
energy. During an oscillation, we therefore have transformations from 
one form of energy into another. This allows us to write:

E = EP + EK = (EK)max = (EP)max

Worked example
4.3 The graph in Figure 4.12 shows the variation with displacement 

of the kinetic energy of a particle of mass 0.40 kg performing 
SHM at the end of a spring. 
a Use the graph to determine:
  i the total energy of the particle
  ii the maximum speed of the particle
  iii the amplitude of the motion
  iv the potential energy when the displacement is 2.0 cm.
b On a copy of the axes, draw the variation with displacement 

of the potential energy of the particle.

a  i The total energy is equal to the maximum kinetic energy, i.e. 80 mJ.
  ii The maximum speed is found from:

   
mv E1

2 max
2

max=

   
=v E

m
2

max
2 max

   
v

2 80 10
0.40max

3
= × × −

   vmax = 0.63 m s−1

  iii The amplitude is 4.0 cm.
  iv When x = 2.0 cm, the kinetic energy is 60 mJ and so the potential energy is 20 mJ.

b The graph is an inverted parabola as the blue curve in Figure 4.11.

–A A0
Displacement

kinetic
energy EK

potential
energy EP

total energy E

Energy

Figure 4.11 Graphs showing the variation 
with displacement of the potential energy 
and kinetic energy of a particle on a spring. 
The total energy is a horizontal straight line.

40
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Kinetic energy/mJ

0–2–4 2 4
x/cm

60

80

Figure 4.12 Graph showing the variation with 
displacement of the kinetic energy of a particle.
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Nature of science
In real life we observe many oscillations for which the period is not 
independent of amplitude, for example the waving of a branch in the 
wind or the bouncing of a ball released above the ground. These do not 
obey the simple SHM equations in this section. But the general principles 
of physics we have met in this section govern many oscillations in the 
world about us, from water waves in the deep ocean to the vibration of 
a car’s suspension system. The idea of the simple harmonic oscillator and 
the mathematics of SHM give physicists powerful tools to describe all 
periodic oscillations.

 Explain:
 a  how it is known that the particle is performing 

oscillations
 b why the oscillations are not simple harmonic.

? Test yourself

0

Acceleration

Displacement

5 The graph shows the variation with time of 
kinetic energy of a particle that is undergoing 
simple harmonic oscillations.

 a Use the graph to calculate:
  i the mass of the particle
  ii the period of oscillations.
 b  Draw a graph to show the variation with time 

of the potential energy.

EK/J

t/s
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0.0

0.5

1.0

1.5

2.0

1 State what is meant by: a oscillation and b simple 
harmonic oscillation.

2 A ball goes back and forth along a horizontal fl oor, 
bouncing off  two vertical walls. Suggest whether 
this motion is an example of an oscillation. If yes, 
state if the oscillation is simple harmonic.

3 A ball bounces vertically off  the fl oor. Suggest 
whether this motion is an example of an 
oscillation. If yes, state if the oscillation is simple 
harmonic.

4 The graph shows the variation with displacement 
of the acceleration of a particle that is performing 
oscillations.

Oscillations and 
time

The measurement of time 
depends on regular oscillations. 
In early time-keeping devices the 
oscillations were mechanical, for 
example the swinging of a simple 
pendulum in a clock. Now 
they are electrical oscillations 
in electronic circuits. The need 
for internationally accepted 
measures of time is essential 
for communications, travel, 
electricity supply and practically 
all other aspects of modern life.
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4.2 Travelling waves
This section introduces waves and wave motion. All music (and all noise), 
the heating of the Earth by the Sun and the motion of electrons inside 
atoms can be analysed in the same way using the language and physics of 
waves. There are three large classes of wave: mechanical waves (e.g. sound), 
electromagnetic waves (e.g. light) and matter waves (e.g. electron motion 
in atoms).

What is a wave?
If we take the free end of a taut, horizontal rope and we give it a sudden 
up and down jerk, a pulse will be produced that will travel down the 
length of the rope at a certain speed (Figure 4.13).

Learning objectives

• Describe waves and wave 
motion.

• Identify wavelength, frequency 
and period from graphs of 
displacement against distance 
or time.

• Solve problems with wavelength, 
frequency, period and wave 
speed.

• Describe the motion of a 
particles in a medium through 
which a wave travels.

• Classify waves as transverse and 
longitudinal.

• Describe the nature of 
electromagnetic waves.

• Describe the nature of sound 
waves.

Figure 4.13 A pulse on a taut rope. The rope itself moves up and down. What moves 
to the right is the pulse.

up and down
motion of rope

motion of pulse

The upward force, due to the hand, forces a section of the rope to move 
up. Because of the tension in the rope, this section pulls the section in 
front of it upwards. In this way the pulse moves forward. In the meantime 
the hand has moved down, forcing sections of the rope to return to their 
horizontal equilibrium position. Neighbouring sections again do the same 
because of the tension in the rope. If the motion of the hand holding the 
free end is continuous then a wave is established on the rope. Figure 4.14 
shows two complete oscillations travelling down the length of the rope.

Now if the right end of the rope is attached to a body that is free to 
move, the body will move when the wave gets to it. This means that the 
wave transfers energy and momentum. So we can defi ne a wave as follows:

A wave is a disturbance that travels in a medium (which can be a 
vacuum in the case of electromagnetic waves) transferring energy 
and momentum from one place to another. The direction of 
propagation of the wave is the direction of energy transfer. There 
is no large-scale motion of the medium itself as the wave passes 
through it.

The length of a complete oscillation is known as the wavelength of the 
wave. The symbol for wavelength is λ. It is also the distance from crest to 
crest or trough to trough (Figure 4.15). (A crest is the highest point on 
the wave and a trough the lowest.)

motion of wave

λ

λ

λ

Figure 4.14 A continuous wave travelling 
along the rope.

Figure 4.15 Three distances that all give the 
wavelength.

Learning objectivesLearning objectives
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The time to create one complete oscillation is known as the period of 
the wave. The symbol for period is T. If the period of wave is T = 0.25 s, for 
example, then the number of oscillations produced in one second is 4. The 
number of oscillations per second is called the frequency f of the wave. In 
general if the period is T then the frequency is the inverse: 

f = 
1
T

The unit of frequency is the inverse second, which is given the name 
hertz (Hz).

So suppose we have a wave on a rope, of wavelength λ, period T and 
frequency f. Figure 4.16 shows the rope at time zero when we have not 
yet produced any oscillations, and at time T where we have produced one 
oscillation. The wave has moved a distance equal to one wavelength in a 
time equal to one period and the speed of the wave is:

v = 
distance for one oscillation

time for one oscillation  = 
λ
T

Since f = 
1
T  we also have that:

v = f  λ

The speed of the wave depends only on the properties of the 
medium and not on how it is produced.

Transverse waves
How do the particles of the medium in which a wave travels move? We 
have already seen that in the case of the wave on the rope the motion of 
the rope itself is at right angles to the direction of energy transfer. This is 
a typical example of a transverse wave. (Electromagnetic waves are also 
transverse – there is more on this in the section Electromagnetic waves.) 

We call a wave transverse if the displacement is at right angles 
to the direction of energy transfer.

Figure 4.17a shows a snapshot of a rope with a wave travelling along its 
length. A very short time later the rope looks like the faint outline on the 
right: the wave has moved forward. Points on the rope move vertically up 
and down (along the dotted lines for the two points shown). Comparing 
the two snapshots allows us to fi nd out how the points on the rope move. 
Figure 4.17b shows the velocity vectors of various points on the rope at 
the instant of time the snapshot was taken. Notice that the arrows have 
diff erent lengths. This is because every point on the rope performs simple 
harmonic oscillations and, as we learned in Subtopic 4.1, the velocities in 
SHM are not constant.

Notice that the concepts of 
frequency and period are the same 
as those we met in Subtopic 4.1 on 
oscillations.

λ t = T

t = 0

Figure 4.16 In a time of one period the 
wave has moved forward a distance of one 
wavelength.

A B

x

wave velocity

a

b

wave velocity

velocity of section of rope

Figure 4.17 a The shape of the rope at two 
slightly diff erent times. b Velocity vectors for 
various points on the rope at a given instant 
of time. You should be able to verify this 
diagram by drawing an identical wave on top 
of this one, but displaced slightly to the right. 
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A snapshot of the wave shows the displacement of the rope along its 
length at the moment the picture was taken. In the same way a graph of 
the displacement of the wave as a function of position, i.e. distance from 
the left end of the rope, gives the displacement at each point on the rope 
at a specifi c point in time (Figure 4.18).

We get two important pieces of information from a displacement–
distance graph: the fi rst is the amplitude of the wave, i.e. the 
largest displacement, and the second is the wavelength.

Distance /m
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λ amplitude A

Figure 4.18 A graph of displacement versus position tells us the disturbance of any 
point on the rope at a specifi c moment in time.

For the wave of Figure 4.18 the amplitude is 4.0 cm. The wavelength is 
0.40 m. This graph also tells us that at the point on the string that is 0.10 m 
from the rope’s left end the displacement is zero at that specifi c instant of 
time. At that same instant of time at a point 1.0 m from the left end the 
displacement is −4.0 cm, etc. Thus, a graph of displacement versus position 
is like a photograph or a snapshot of the string taken at a particular time. 
If we take a second photograph of the string some time later, the string 
will look diff erent because the wave has moved in the meantime.

There is a second type of graph that we may use to describe waves. This 
is a graph of displacement versus time: we imagine looking at one specifi c 
point on the rope and observe how the displacement of that point varies 
with time. So, for example, Figure 4.19 shows the variation with time of 
some point on a rope as the same wave as that in Figure 4.18 travels down 
the length of the rope.

Exam tip
It is a common mistake to 
think that the amplitude is the 
crest to trough distance.
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Figure 4.19 The same wave as in Figure 4.18 now showing the variation of the 
displacement of a specifi c point with time.
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We get two important pieces of information from a displacement–
time graph: the fi rst is the amplitude of the wave, i.e. the largest 
displacement, and the second is the period.

We already know the amplitude: it is 4.0 cm from Figure 4.18. The 
period is 3.33 ms. So the frequency is:

1
3.33 × 10−3

 = 300 Hz

The speed of this wave is therefore v = f λ = 0.40 × 300 = 120 m s–1.

Now suppose that we are told that Figure 4.19 shows the displacement 
of the point at x = 0.10 m (call it P). And suppose that the graph of 
Figure 4.18 is a snapshot of the wave at 0.0 ms. Which way is the wave 
travelling? Go to Figure 4.18 and fi nd x = 0.10 m: this is point P. If you 
shift the wave slightly to the left (i.e. if the wave moves left) P gets a 
negative displacement. If you shift it to the right (i.e. if the wave moves 
right) P gets a positive displacement. Which is correct? Go to Figure 4.19: 
a short time after t  = 0.0 ms the displacement becomes negative. So the 
wave is travelling to the left.

Figure 4.20 (opposite) shows a sequence of pictures taken every 0.5 ms 
of a wave on a rope. As time passes the point Q moves at right angles to 
the direction of the wave. By joining the crests of the waves it is easy to 
see that they move forward with time. This is what is meant by the term 
travelling wave.

Longitudinal waves
Imagine that you push the left end of a slinky in and out as in Figure 
4.21. The coils of the slinky move in a direction that is parallel to that of 
the wave. As the hand moves to the right it forces coils to move forward, 
causing a compression (coils crowd together). As the hand moves to 
the left, coils right in front of it also move left, causing an expansion 
or rarefaction (coils move apart). All longitudinal waves require a 
medium in which the wave travels.

Exam tip
It is easier here to count three 
loops so that 3 periods are 
10 ms. Also, make sure to check 
carefully the units on the axes 
– in this example time is in 
‘ms’, not seconds.

wavelength

compression expansion (or rarefaction) 

Figure 4.21 A longitudinal wave in which the medium moves parallel to the direction 
of energy transfer.



4  WAVES 157

1
0.5

−0.5 5 10 15 20 25 30

−1

t = 0.0 ms 

x/cm

0

1
0.5

−0.5
−1

0

1
0.5

−0.5
−1

0

1
0.5

−0.5
−1

0

1
0.5

−0.5
−1

0

1
0.5

−0.5
−1

0

1
0.5

−0.5
−1

0

5 10 15 20 25 30

t = 0.5 ms 

x/cm

5 10 15 20 25 30

t = 1.0 ms 

x/cm

5 10 15 20 25 30

t = 1.5 ms 

x/cm

5 10 15 20 25 30

t = 2.0 ms 

x/cm

5 10 15 20 25 30

t = 2.5 ms 

x/cm

5 10 15 20 25 30

t = 3.0 ms 

x/cm

Q
y

Figure 4.20 A travelling wave. At 3.0 ms the rope looks as it did at the beginning 
(t = 0), so the period of the wave is 3.0 ms. The speed of the wave is 33.3 m s−1 (found by 
dividing the wavelength by the period) and the frequency is 333 Hz.

cone
loudspeaker

cone
loudspeaker

Figure 4.22 A vibrating loudspeaker 
produces compressions when the cone 
moves to the right and expansions when it 
moves to the left. These compressions and 
expansions move through air as a wave 
called sound. 

Sound waves are longitudinal waves that can travel in gases and liquids 
as well as solids. A sound wave consists of a series of compressions and 
rarefactions in the medium in which it is travelling. Figure 4.22 shows the 
compressions and rarefactions produced in the air by a loudspeaker.

In a longitudinal wave the displacement is parallel to the 
direction of energy transfer.



158

Distance x /cm

D
isp

la
ce

m
en

t 
y/

m
m

–1
0
1
2
3
4
5

1 2 3 54

–2
–3
–4
–5

0 0.5 1 1.5 2 2.5 3 3.5 4

C R

4.5 5 cm
equilibrium position

As with transverse waves, we can plot a graph of displacement versus 
distance along the wave. Figure 4.23 shows a row of air molecules equally 
spaced in the equilibrium position. The row below shows their displacement 
at a particular instant in time. The graph in Figure 4.23 shows the 
displacement y of the molecules against distance x at the same instant in 
time. The red arrows represent the displacement of the molecules. Molecules 
at x = 0, 2.0 and 4.0 cm have not moved (y = 0); those between x = 0 and 
2.0 cm and between x = 4.0 and 5.0 cm have moved to the right (y > 0); 
and those between x = 2.0 and 4.0 cm have moved to the left (y < 0). The 
molecule at x = 2.0 cm is therefore at the centre of a compression (a region 
of higher than normal density), while that at x = 4.0 cm is at the centre of a 
rarefaction (a region of lower than normal density).

Figure 4.23 Molecules to the left of that at x = 2.0 cm move to the right, while the 
neighbours to the right move left. This means that the region at x = 2.0 is the centre of 
a compression.

Exam tip
You cannot tell whether 
a wave is transverse or 
longitudinal by looking at 
displacement–distance graphs. 
The graphs look the same for 
both.

Figure 4.24 A young Maxwell at Trinity 
College, Cambridge.

Since a compression is a region where molecules crowd together, 
the pressure and density of the medium in a compression is higher than 
normal. To give an idea of the diff erences in pressure involved, a sound of 
frequency 1000 Hz can be heard by the human ear when the pressure of 
air at the eardrum exceeds atmospheric pressure by just 20 μPa. (Normal 
atmospheric pressure is 105 Pa.) The amplitude of oscillations for air 
molecules under these conditions is about 10−11 m, or a tenth of the 
diameter of the hydrogen atom! In a rarefaction the reverse is true, with 
the molecules moving farther apart so that the density and pressure are a 
bit less than normal.

Electromagnetic waves
Each and every one of us is irradiated by electromagnetic waves (EM 
waves) from a myriad of sources: radio and TV stations, mobile phone and 
base station antennas, from doctors’ and dentists’ X-ray machines, the Sun, 
computer screens, light bulbs, etc. It was the towering achievement of J.C. 
Maxwell (Figure 4.24) in the mid-1800s to predict the existence of a new, 
special kind of wave – EM waves – of which visible light is a very small, 
but important, part. What Maxwell showed is that an oscillating electric 



4  WAVES 159

fi eld (see Topic 6) produces an oscillating magnetic fi eld (see Topic 5) such 
that the two are at right angles to each other and both propagate in space 
at the speed of light (Figure 4.25).

y

z

x

wavelength λ

electric
field

magnetic
field

c

Figure 4.25 An EM wave propagating along the direction of the x-axis. The electric 
and magnetic fi elds are in phase, i.e. they have matching crests, troughs and zeroes. 
The two fi elds are at right angles to each other at all times. 
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Figure 4.26 The electromagnetic spectrum

Maxwell’s equations
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The huge family of EM waves consists of many waves of diff erent 
wavelength (and hence also frequency), as shown in Figure 4.26.

What all EM waves have in common is that they move at the speed 
of light in a vacuum. That speed is (exactly) c  = 299 792 458 m s−1 or 
approximately 3.00 × 108 m s−1. According to Einstein’s relativity theory 
this is the limiting speed for anything moving through space. Maxwell’s 
theory predicts that the speed of light is not aff ected by the speed of its 
source – a most curious fact. Einstein used this fact as one of the building 
blocks of his theory of relativity.

Since both the electric and the magnetic fi eld making up the EM wave 
are at right angles to the direction of energy transfer of the wave, EM 
waves are transverse.
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Worked examples
4.4 A radio station emits at a frequency of 90.8 MHz. What is the wavelength of the waves emitted?

The waves emitted are electromagnetic waves and move at the speed of light (3 × 108 m s−1). Therefore, from c = f λ 
we fi nd λ = 3.3 m.

4.5 A sound wave of frequency 450 Hz is emitted from A and travels towards B, a distance of 150 m away. 
How many wavelengths fi t in the distance from A to B?

 (Take the speed of sound to be 341 m s−1.) 

The wavelength is:

λ = 
341
450

λ = 0.758 m

Thus the number of wavelengths that fi t in the distance 150 m is:

N = 
150

0.758

N = 198 wavelengths (approximately)

4.6 The noise of thunder is heard 3 s after the fl ash of lightning. How far away is the place where lightning struck? 

 (Take the speed of sound to be 340 m s−1.)

Light travels so fast that we can assume that lightning struck exactly when we see the fl ash of light. If thunder is 
heard 3 s later, it means that it took 3 s for sound to cover the unknown distance, d. Thus:

 d = vt

 d = 340 × 3

 d = 1020 m

4.7 Water wave crests in a lake are 5.0 m apart and pass by an anchored boat every 2.0 s. What is the speed of the 
water waves?

Use v = f λ. The wavelength is 5.0 m and the period is 2 s. So:

 v = 
5.0
2.0

 v = 2.5 m s−1
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Nature of science
Careful observations of the vibrations of a plucked violin string led the 
Swiss mathematician Bernoulli to fi nd a way to describe the oscillation 
using mathematics. This was a simple setting – a single string fi xed at 
both ends – and led to a simple solution. Scientists found similar patterns 
in more complex oscillations and waves in the natural world, but also 
diff erences in the way that waves propagated. By looking for trends and 
discrepancies in their models for diff erent waves produced under diff erent 
conditions, scientists developed wave equations that apply across many 
areas of physics.

 10 The diagram shows three points on a string on 
which a transverse wave propagates to the right. 

a Indicate how these three points will move in 
the next instant of time.

b How would your answers change if the wave 
were moving to the left?

 11 The diagram shows a piece of cork fl oating on 
the surface of water when a wave travels through 
the water to the right. Copy the diagram, and 
add to it the position of the cork half a wave 
period later.

 12 Calculate the wavelength that corresponds to a 
sound frequency of:
a 256 Hz
b 25 kHz.

 (Take the speed of sound to be 330 m s−1.)

? Test yourself
6 In football stadiums fans often create a ‘wave’ by 

standing up and sitting down again. Suggest factors 
that determine the speed of the ‘wave’.

7 A number of dominoes are stood next to each 
other along a straight line. A small push is given to 
the fi rst domino, and one by one the dominoes 
fall over.
a Outline how this is an example of wave motion.
b Suggest how the speed of the wave pulse could 

be increased. 
c Design an experiment in which this problem 

can be investigated.
8 By making suitably labelled diagrams explain the 

terms:
a wavelength
b period
c amplitude
d crest
e trough.

9 a  Explain, in the context of wave motion, what 
you understand by the term displacement.

b Using your answer in a, explain the diff erence 
between longitudinal and transverse waves.

c A rock thrown onto the still surface of a pond 
creates circular ripples moving away from the 
point of impact. Suggest why more than one 
ripple is created.

d Why does the amplitude decrease as the ripple 
moves away from the centre?
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b  i  Copy the diagram. Immediately below the 
copied line draw another line to show the 
position of these molecules when the pulse 
travels through the medium at t = 0.

  ii  Indicate on the diagram the position of a 
compression.

c  i  Repeat b i to show the position of these 
molecules at t = 1.0 s.

  ii  Comment on the position of the 
compression at 1.0 s.

 14 The graph shows the variation with distance x 
of the displacement y of air molecules as a sound 
wave travels to the right through air.

  Positive displacement means motion to the right. 
The speed of sound in air is 340 m s–1.
a Determine the frequency of the sound wave.
b State a distance x at which i a compression 

and ii a rarefaction occurs.

 13 The graph shows the displacement y of the 
particles in a medium against position x when 
a longitudinal wave pulse travels through 
the medium from left to right with speed 
1.0 cm s−1. This is the displacement at t = 0.
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4.3 Wave characteristics
This section deals with ways to describe waves and the important principle 
of superposition. When two tennis balls collide they bounce off  each 
other, but waves are diff erent: they can go through each other without 
any ‘memory’ of a collision. Polarisation is a phenomenon that applies to 
transverse waves only. Light can be polarised, and so light is a transverse wave.

Learning objectives

• Describe waves in terms of 
wavefronts and rays.

• Solve problems using the 
concepts of intensity and 
amplitude and the inverse 
square law.

• Apply the principle of 
superposition to pulses and waves.

• Interpret diagrams of incident, 
refl ected and transmitted beams 
in terms of polarisation.

• Solve problems with Malus’ law.

a State what is meant by a longitudinal wave pulse. 
The diagram shows a line of nine molecules separated 
by 1.0 cm. The positions shown are the equilibrium 
positions of the molecules when no wave travels in 
the medium.
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direction of wave
propagation

Figure 4.27 A two-dimensional wave.

ray
x

y

z

wavefronts

λ λ

Figure 4.28 Surfaces through crests 
and normal to the direction of energy 
propagation of the wave are called 
wavefronts. Rays are mathematical lines 
perpendicular to the wavefronts and give the 
direction of energy transfer.

a b

source of disturbance

point source

Figure 4.29 Example of cylindrical and spherical wavefronts. a The cylinders go through 
the crests and are normal to the plane of the paper. b The wavefronts from a point source 
radiate in all directions. For clarity, only half of each spherical wavefront is shown.

Amplitude and intensity
A wave carries energy and the rate at which the energy is carried is 
the power P of the wave. Thus a 60 W light bulb radiates energy in all 
directions such that 60 J of energy are emitted every second. When some 
of this power is incident on an area a we defi ne the intensity to be I  = Pa . 
The unit of intensity is W m−2. 

Wavefronts and rays
Imagine waves on the surface of water approaching the shore (Figure 
4.27). These waves are propagating in a horizontal direction. If we 
imagine vertical planes going through the crests of the waves, the planes 
will be normal to the direction of the wave. These planes are called 
wavefronts. Lines at right angles to the wavefronts show the direction of 
wave propagation – these are called rays (Figure 4.28).

A wavefront is a surface through crests and normal to the 
direction of energy transfer of the wave. Lines in the direction of 
energy transfer of the wave (and hence normal to the wavefronts) 
are called rays.

(A wavefront is properly defi ned through the concept of phase diff erence: 
all points on a wavefront have zero phase diff erence.)

Now imagine the waves on the surface of water caused by a stone 
dropped in a pool of water. These waves radiate out across the water 
surface from the point of impact. In this case the wavefronts are cylindrical 
surfaces (Figure 4.29a). 

A source that emits waves in all directions is called a point source. The 
wavefronts from a point source are spherical (Figure 4.29b).
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If a point source of power P radiates equally in all directions, then the 
intensity at a distance x from the source is given by:

I = 
P

4πx2

since the power is distributed over the surface area of a sphere of radius 
x, which is 4πx2. This can also be expressed as an inverse square law 
relationship:

I ∝ x−2

The intensity at a particular point is related to the amplitude A of the 
wave at that point. Since the energy of a wave is proportional to the 
square of the amplitude, we can write:

I ∝ A2

So, doubling the amplitude of a wave increases the energy carried by a 
factor of 22 = 4.

Worked examples
4.8 The power radiated by the Sun is 3.9 × 1026 W. The distance between the Sun and the Earth is 1.5 × 1011 m. 

a Calculate the intensity of the Sun’s radiation at the upper atmosphere of the Earth. 
b  On a clear summer day 70% of this amount arrives at the surface of the Earth. Calculate how much energy 

is received by an area of 0.50 m2 in 1 hour.

Applying the formula for intensity gives:

I = 
3.9 × 1026

4π × (1.5 × 1011)2
 = 1379 ≈ 1.4 kW m−2

P = IA and so:

P = 0.70 × 1379 × 0.50 = 482.65 W

The energy in 1 hour is therefore E = 482.65 × 60 × 60 = 1.7 × 106 J

4.9 A stone dropped in still water creates circular ripples that move away from the point of impact, Z. The height 
of the ripple at point P is 2.8 cm and at point Q it is 1.5 cm. Calculate the ratio of the energy carried by the 
wave at P to that at Q.

Let EP be the energy carried by the wave at point P and EQ be the energy carried by the wave at point Q.

The energy carried by the wave is proportional to the square of the amplitude. Hence:

EP
EQ

 =    
2.8
1.5

2
 ≈ 3.5
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The principle of superposition
Suppose that two pulses are produced in the same rope and are travelling 
towards each other from opposite ends. Something truly amazing happens 
when the two pulses meet. Figure 4.30 shows what happens in a sequence 
of pictures. For simplicity we have drawn idealised square pulses.

The disturbance gets bigger when the two pulses meet but subsequently 
the two pulses simply ‘go through each other’ with no ‘memory’ of what 
happened. You should contrast this with what happens in the motion of 
material particles: when two balls collide they bounce off  each other.

What happens when two (or more) pulses meet at some point in space 
is described by the principle of superposition, which states that:

When two or more waves of the same type arrive at a given point 
in space at the same time, the displacement of the medium at that 
point is the algebraic sum of the individual displacements. So if y1 
and y2 are individual displacements, then at the point where the 
two meet the total displacement has the value:

y = y1 + y2

Note the word ‘algebraic’. This means that if one pulse is ‘up’ and the 
other is ‘down’, then the resulting displacement is the diff erence of the 
individual ones.

Let us look at Figure 4.30b in detail. In Figure 4.30b the two pulses 
are partially overlapping – Figure 4.31 shows both of them separately (the 
pulse moving toward the right is drawn in dark blue and the one moving 
to the left in pale blue). There are fi ve regions to consider. In region a, 
both pulses are zero. In region b, the dark blue pulse is non-zero and the 

Imagine a white ball moving to the right colliding 
elastically with a heavier stationary black ball. The white 
ball will bounce back and the black ball will start moving 

to the right. If you try to solve this problem in mechanics by 
applying the laws of conservation of energy and momentum to the 
problem you will fi nd that there is another solution. The equations 
say that the black ball stays where it is and the white ball goes 
straight through unaff ected. In mechanics we reject this solution as 
unphysical but this is exactly what happens when pulses collide. The 
laws of physics apply equally to particles as they do to waves and do 
not distinguish between the two!

a The pulses are approaching each other.

b The pulses are beginning to overlap.

c The overlap is complete; the pulses are on top
of each other.

d The pulses move through each other.

Figure 4.30 The superposition of two 
positive pulses.

a b bc cd de = ea

Figure 4.31 The situation in Figure 4.30b analysed.
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a Positive and negative pulses are approaching
each other.

c The positive and negative pulses move through
each other.

b The positive and negative pulses momentarily
cancel each other out when they totally overlap.

Figure 4.32 The superposition of a positive 
and a negative pulse.

Figure 4.33 Parts of the rope are moving 
when the two pulses cancel each other out.

a Fixed end

b End free to move

a Fixed end

b End free to move

Figure 4.34 Refl ection of a pulse from a a fi xed end and b a free end. Notice the 
inversion in the case of the fi xed end. 

pale blue is zero. In region c, both are non-zero. In region d, the dark 
blue is zero and the pale blue is not. In region e, both are zero. The shape 
of the resulting pulse is simply the sum of the two pulses. Thus, in region 
a, we get zero. In region b, we get the height of just the dark blue pulse. 
In region c, we get a pulse whose height is the sum of the heights of the 
dark blue and pale blue pulses. In region d, the height equals the height of 
just the grey pulse. In region e, we get zero.

Figure 4.32 shows the superposition of a positive and a negative pulse 
on the same rope. In Figure 4.32a the positive and negative pulses are 
approaching each other. In Figure 4.32b the positive and negative pulses 
momentarily cancel each other out when they totally overlap. The pulses 
move through each other, and Figure 4.32c shows the positive and 
negative pulses continuing along the rope.

At that instant when there is complete cancellation of the two pulses, 
the rope looks fl at but it is moving as shown in Figure 4.33.

Refl ection of pulses
What happens when a pulse created in a rope with one end fi xed 
approaches that fi xed end? Consider the pulse of Figure 4.34a. The instant 
the pulse hits the fi xed end, the rope attempts to move the fi xed end 
upward: that is, it exerts an upward force on the fi xed end. By Newton’s 
third law, the wall will then exert an equal but opposite force on the rope. 
This means that a displacement will be created in the rope that will be 
negative and will start moving towards the left.

The pulse has been refl ected by the wall and has been inverted. This 
is the same as saying that the wave experiences a phase change of 180° 
when refl ected.

If the end of the rope is not fi xed but free to move (imagine that the 
end of the rope is now tied to a ring that can slide up and down a vertical 
pole), the situation is diff erent (Figure 4.34b). As the pulse arrives at the 
ring it pulls it upwards. Eventually the ring falls back down and in so 
doing creates a pulse moving to the left that is not inverted, i.e. there is no 
phase change.
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Worked example
4.10 Use the results about pulses refl ecting from fi xed and free ends to predict what happens when:

a a pulse in a heavy rope encounters a light rope (Figure 4.35a)
b a pulse in a light rope encounters a heavy rope (Figure 4.35b).

Figure 4.35

a With the light rope to the right, the situation is similar to a pulse in a rope approaching a free end. So the 
refl ected pulse will not be inverted.

b With the heavy rope to the right, the situation is similar to a pulse in a rope approaching a fi xed end. So the 
refl ected pulse will be inverted.

Notice that in both cases, there will a pulse transmitted into the rope to the right.

a b

Polarisation
Like all other electromagnetic waves, visible light is a transverse wave in 
which an electric fi eld and a magnetic fi eld at right angles to each other 
propagate along a direction that is normal to both fi elds.

Figure 4.36a shows light in which the electric fi eld oscillates on a 
vertical plane. We say that the light is vertically polarised. In Figure 4.36b 
the electric fi eld oscillates on a horizontal plane and we have horizontally 
polarised light.

c

electric
field

magnetic
field

plane of polarisation

a

c

b

plane of polarisation

a b

Individual emitters of light emit polarised light waves. But in a large 
collection of individual emitters the plane of polarisation of one emitter 
is diff erent from that of another. The result is that a given ray of light may 
consist of a huge number of diff erently polarised waves and so we call this 
light unpolarised. Most of the light around us, for example light from 
the Sun or from a light bulb, is unpolarised light. We show polarised and 
unpolarised light as in Figure 4.37.

Figure 4.36 An EM wave that is a vertically polarised and b horizontally polarised.

Figure 4.37 Electric fi eld vectors of a 
polarised and b unpolarised light. Both 
waves are propagating at right angles to the 
electric fi eld, i.e. into the page.

An electromagnetic wave is said 
to be plane polarised if the 
electric fi eld oscillates on the 
same plane.
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Unpolarised light can be polarised by passing it through a polariser. A 
polariser is a sheet of material with a molecular structure that only allows 
a specifi c orientation of the electric fi eld to go through (Figure 4.38). 
The most common polariser is a plastic invented by Edwin Land in 1928, 
when he was a 19-year-old undergraduate at Harvard. The material was 
improved in 1938 and given the name Polaroid. Thus a sheet of Polaroid 
with a vertical transmission axis (this means only the vertical components 
of electric fi elds can go through) placed in the path of unpolarised light 
will transmit only vertically polarised light. In diagrams, the transmission 
axis of the polariser is indicated with a line.

Malus’s law
Consider an electromagnetic wave whose electric fi eld E0 makes an angle 
θ with the transmission axis of a polariser. Since electric fi eld strength is a 
vector quantity, we may resolve the electric fi eld into a component along 
the transmission axis and a component at right angles to it. Only the 
component along the axis will go through (Figure 4.39).

This component of the electric fi eld along the transmission axis is:

E = E0 cos θ

θ

polariser with
vertical
transmission axis

this component
is blocked

this 
component is
transmitted

E0

Figure 4.39 This polariser has a vertical transmission axis. Therefore, only the 
component of the electric fi eld along the vertical axis will be transmitted.

polariser

polarised light

unpolarised light

line shows
direction of
polarisation

Figure 4.38 This polariser only allows components of electric fi elds parallel to the 
vertical transmission axis to go through. The light transmitted by this polariser is 
vertically polarised light.
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Figure 4.40 The variation of the transmitted 
intensity I through a polariser as the angle 
θ between the transmission axis and the 
electric fi eld is varied. The red curve applies 
to polarised incident light. The blue line 
applies to unpolarised incident light.

The transmitted intensity I is proportional to the square of the amplitude 
of the electric fi eld, i.e. I = kE2 where k is a constant. So we have that:

I = k(E0 cos θ)2 = (kE0
2 ) cos2 θ = I0 cos2 θ

where I0 is the incident intensity.
This relationship is known as Malus’s law, named after the Frenchman 

Etienne Malus (1775–1812), who studied this eff ect in 1808. Depending 
on the angle between the electric fi eld vector and the transmission axis, the 
polariser reduces the intensity of the transmitted light. When the electric 
fi eld is along the transmission axis (θ = 0), then I = I0. When the electric fi eld 
is at right angles to the transmission axis (θ = 90°), then I = 0. This is illustrated 
in Figure 4.40. When unpolarised light is incident on a polariser, very many 
angles of θ are involved and so we need to take the average of cos2 θ. This is 12, 
and so the transmitted intensity is half of the incident intensity.

Worked example
4.11 Vertically polarised light of intensity I0 is incident on a polariser that 

has its transmission axis at θ = 30° to the vertical. The transmitted light 
is then incident on a second polariser whose axis is at θ = 60° to the 
vertical, as shown in Figure 4.41.

Calculate the factor by which the transmitted intensity is reduced.

After passing through the fi rst polariser the intensity of light is:

I1 = I0 cos2 θ = I0 cos2 30° = 
3I0
4

The second polariser has its transmission axis at θ = 30° to the fi rst polariser, and so the fi nal transmitted light has 
intensity:

I2 = 
3I0
4  cos2 30° = 

9I0
16

The intensity is thus reduced by a factor of 
9
16 

.

Figure 4.42 shows two polarisers with their transmission axes at right 
angles. Only the vertical components of the electric fi eld are transmitted 
through the fi rst polariser. The axis of the second polariser is horizontal, 
so no light emerges.

second
polariser

first polariser

Figure 4.41 

Figure 4.42 Crossed polarisers transmit no 
light, so where they overlap appears black.
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Figure 4.44 The refl ected light from the 
water is reduced when observed through 
a vertical polariser. This allows detail inside 
the water (the vegetation and pebbles) to be 
seen more clearly.

Polarisation by refl ection
Polarised light can be obtained not only by passing light through a 
polariser, but also by refl ection from a non-metallic surface. When 
unpolarised light refl ects off  a non-metallic surface, the refl ected ray is 
partially polarised (Figure 4.43). Partially polarised light means that 
the refl ected light has various components of electric fi eld of unequal 
magnitude. The component with the greatest magnitude is found in the 
plane parallel to the surface, and so the light is said to be partially polarised 
in this plane. The plane of polarisation is parallel to the refl ecting surface.

The ‘glare’ from refl ections from the surface of water, such as from lakes 
or the sea, is partially horizontally polarised. The glare can be reduced by 
wearing Polaroid sunglasses (which have vertical transmission axes), which 
makes it possible to see what lies beneath the water surface (Figure 4.44).

field perpendicular to page

field parallel to page

incident

refracted

reflected

Figure 4.43 Partial polarisation by refl ection. The refl ected ray has a small electric 
fi eld component in the plane of incidence and a larger electric fi eld component in the 
plane parallel to the refl ecting surface.

Nature of science
Particles or a wave?
The early 19th century saw a revival of the wave approach to light, 
mainly due to the work of Young and Fresnel. In the 18th century, the 
Newtonian view of a particle nature of light prevailed, making research 
in directions that Newton would not ‘approve’ almost impossible. So the 
early researchers of the 19th century had to be brave as well as ingenious! 
It is interesting to note, however, that light waves were fi rst thought to 
be longitudinal waves, like sound. The discovery of polarisation created 
enormous diffi  culties for the supporters of the wave theory because it 
could not be understood in terms of a longitudinal wave theory of light. 
It was Young who fi nally suggested that light was a transverse wave (an 
idea which Maxwell took much further when he proposed that light was 
an electromagnetic wave). So the phenomenon of polarisation that helps 
Monarch butterfl ies, bees and ants navigate (it may even have helped the 
Vikings reach Vinland, i.e. North America) is the phenomenon that for 
the fi rst time introduced light as a transverse wave in physics.
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 16 The diagram shows two pulses of equal width 
and height travelling in opposite directions on 
the same string. Draw the shape of the string 
when the pulses completely overlap.

? Test yourself

 17 The wave pulses shown in the diagram travel at 
1 cm s−1 and both have width 2 cm. The heights 
are indicated on the diagram. In each case, draw 
the shape of the resulting pulse according to 
the principle of superposition at times t = 0.5 s, 
t = 1.0 s and t = 1.5 s. Take t = 0 s to be the time 
when the pulses are about to meet each other.

 18 Two waves are simultaneously generated on 
a string. The graph shows the variation of 
displacement y with distance x. Draw the actual 
shape of the string.

 19 In the context of wave motion explain, with the 
aid of a diagram, the terms:
a wavefront
b ray.

20  a State what is meant by polarised light.
b State two methods by which light can be 

polarised.
 21 Suggest why only transverse waves can be 

polarised.
 22 Light is incident on a polariser. The transmitted 

intensity is measured as the orientation of the 
polariser is changed. In each of the following 
three outcomes, determine whether the 
incident light is polarised, partially polarised or 
completely unpolarised, explaining your answers.
a The intensity of the transmitted light is the 

same no matter what the orientation of the 
polariser.

b The intensity of the transmitted light varies 
depending on the orientation of the polariser. 
At a particular orientation, the transmitted 
intensity is zero.

c The transmitted intensity varies as the 
orientation varies, but it never becomes zero.

 23 a State Malus’s law.
b Polarised light is incident on a polariser 

whose transmission axis makes an angle of 
25° with the direction of the electric fi eld of 
the incident light. Calculate the fraction of 
the incident light intensity that is transmitted 
through the polariser.

 24 Two polarisers have their transmission axes at 
right angles to each other.
a Explain why no light will get transmitted 

through the second polariser.
b A third polariser is inserted in between the 

fi rst two. Its transmission axis is at 45° to the 
other two. Determine whether any light will 
be transmitted by this arrangement of three 
polarisers.

c If the third polariser were placed in front 
of the fi rst rather than in between the two, 
would your answer to b change?

height = 1 unit

height = 2 units

1.0

0.8

0.6

0.4

0.2

−0.2

0

−0.4
x/cm

y/cm

10 30 4020

 15 The diagram shows two pulses of equal width 
and height travelling in opposite directions on 
the same string. Draw the shape of the string 
when the pulses completely overlap.
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4.4 Wave behaviour
This section deals with the wave phenomena of refl ection and refraction 
as they apply to waves, especially light. The study of light has played a 
crucial role in the history of science. Newton discovered that ordinary 
white light is composed of diff erent colours when he let sunlight go 
through a prism and saw the colours of the rainbow emerging from 
the other side. The wave nature of light was put forward by the Dutch 
physicist Christiaan Huygens in his book Treatise on Light published in 
1690. A bitter controversy between Huygens and Newton (Newton had 
postulated a particle theory of light) ended in Huygens’ favour.

Refl ection
Refl ection is an everyday phenomenon: you can see your refl ection in 
a mirror and the refl ection of the blue sky in sea water makes the water 
look blue. The law of refl ection states that:

The angle of incidence i (angle between the ray and the normal 
to the refl ecting surface at the point of incidence) is equal to the 
angle of refl ection r (angle between the normal and the refl ected 
ray).The refl ected and incident rays and the normal to the surface 
lie on the same plane, called the plane of incidence.

The ray diagrams in Figure 4.45 illustrate refl ection from a plane surface.

Learning objectives

• Interpret incident, refl ected and 
refracted waves at boundaries 
between media.

• Solve problems using Snell’s 
law, the critical angle and total 
internal refl ection.

• Qualitatively describe diff raction 
through a single slit and around 
objects.

• Describe interference from two 
sources.

• Describe double-slit interference 
patterns.

angle of
incidence

incident
ray

reflected
ray

angle of
reflection

i r

mirror

normal

a

b

mirror

objectO

image

eye

I

Figure 4.45 a Refl ection at a plane (fl at) surface. b The position of an image seen in a plane 
mirror.

Refl ection takes place when the refl ecting surface is suffi  ciently 
smooth. This means that the wavelength of the incident wave has to be 
larger than the size of any irregularities of the surface. The wavelength of 
the refl ected waves is the same as that of the incident wave.

Refraction and Snell’s law
Light travels with a velocity of (approximately) 3.0 × 108 m s−1 in a 
vacuum. In all other media, the velocity of light is smaller. Refraction is 
the travel of light from one medium into another where it has a diff erent 
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speed. Refraction changes the direction of the incident ray (unless the 
incident ray is normal to the boundary of the two media).

Usually, when a ray of light strikes an interface between two media, 
there is both refl ection and refraction (Figure 4.46).

Experiments (and theory) show that:

sin θ2
sin θ1

 = 
c2
c1

where θ1 is the angle of incidence, θ2 is the angle of refraction, and c1 
and c2 are the speeds of the wave in the two media (Figure 4.46). This 
relationship is known as Snell’s law. This law relates the sines of the 
angles of incidence and refraction to the wave speeds in the two media. 
This form of the law applies to all waves. 

In the case of light only, we usually defi ne a quantity called the 
refractive index of a given medium nm as:

nm = 
c
cm

where c is the speed of light in vacuum and cm is the speed of light in the 
medium in question.

So for light, Snell’s law may be rewritten as:

sin θ2
sin θ1

 = 
c/c1
c/c 2

sin θ2
sin θ1

 = 
n1
n2

(This is sometimes better remembered as n1 sin θ1 = n2 sin θ2.)
So for light we have the equivalent forms:

n1
n2

 = 
sin θ2
sin θ1

 = 
c2
c1 

Since the speed of light is always greatest in a vacuum, the refractive index 
of any medium other than a vacuum is always larger than 1. By defi nition, 

medium 1

medium 2

normal to surface
incident ray

n1

n2

refracted ray

θ1
θ1

θ2

reflected ray

Figure 4.46 A ray of light incident on the interface of two media partly refl ects and 
partly refracts.
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the refractive index of a vacuum (and approximately of air) is 1. Table 4.1 
lists some values of refractive index. Media with high values of refractive 
index are called optically dense. Thus, if we are given the refractive index 
of a medium we can fi nd the speed of light in that medium. For example, 
in a glass with n = 1.5, the speed of light is:

cglass = 
c

nglass
 = 

3.0 × 108

1.5  = 2.0 × 108 m s−1

The refractive index depends slightly on wavelength, so rays with 
the same angle of incidence but of diff erent wavelength are refracted by 
diff erent angles. This phenomenon is called dispersion. White light that 
is transmitted through a prism will, because of dispersion, split up into the 
colours of the rainbow.

The frequency cannot change as the wave moves into the second medium: 
imagine an observer right at the boundary of the two media. The frequency 
can be found from the number of wavefronts that cross the interface per 
second. This number is the same for both media. So since the frequency does 
not change but the speed does, it follows that in refraction the wavelength 
also changes as the medium changes (see Worked example 4.12).

Worked examples
4.12 Light of wavelength 686 nm in air enters water, making an angle of 40.4° with the normal.

 Determine a the angle of refraction and b the wavelength of light in water. Explain your working.

 (The refractive index of water is 1.33.)

a By straightforward application of Snell’s law we fi nd:

1 × sin 40.4° = 1.33 × sin θ

⇒ θ = 29.2°

b The wavelength in air is 680 nm, so the frequency in air is:

f = 
3.00 × 108

686 × 10−9 ≈ 4.37 × 1014 Hz

The frequency cannot change as the wave moves into the second medium. Since the speed of light in water is:

cw = 
3.00 × 108

1.33

cw = 2.26 × 108 m s−1 

It follows that the wavelength in water is:

λ = 
2.26 × 108

4.37 × 1014

λ = 517 nm

Medium Refractive index

vacuum 1

water 1.33

acetone 1.36

quartz 1.46

crown glass 1.52

sapphire 1.77

diamond 2.42

Table 4.1 Values of refractive index for 
diff erent media.
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4.13 The paths of rays of red and violet light passing through a glass prism are as shown in Figure 4.47. Discuss 
what can be deduced about the refractive index of glass for red and violet light.

Figure 4.47 Dispersion of white light passing through a prism.

Considering the fi rst refraction when the rays fi rst enter the glass, we see that blue makes a smaller angle of refraction 
(draw the normal at the point of incidence to see that this is so). Hence its index of refraction must be larger.

Total internal refl ection
An interesting phenomenon occurs when a wave moving in an optically 
dense medium arrives at the interface with a less dense medium, for 
example light in water reaching the boundary with air. Some light is 
refl ected at the boundary and some light is refracted. As shown in Figure 
4.48a, the angle of refraction is greater than the angle of incidence. As the 
angle of incidence increases the angle of refraction eventually reaches 90°, 
as shown in Figure 4.48b. The angle of incidence for which the angle of 
refraction is 90° is called the critical angle. 

red

violet

white light

normal

incident ray

refracted ray

θ < θc

reflected ray

θ > θcθc

a b c

Figure 4.48 Total internal refl ection occurs when the angle of incidence is greater 
than the critical angle.

The critical angle for light passing between two media can be found 
using Snell’s law. For example, for light moving from a medium with 
refractive index 1.60 into a medium with refractive index 1.20, the critical 
angle can be found using the relationship n1 sin θ1 = n2 sin θ2:

1.60 sin θc = 1.20 sin 90° 
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This gives:

 sin θc = 
1.20 × 1

1.60  = 0.75

⇒ θc = sin−1 (0.75) = 48.6°

Now, let the angle of incidence exceed the critical angle, say θ1 = 52°. If 
we now try to fi nd the angle of refraction we get:

 1.60 sin 52° = 1.20 sin θ2

⇒ sin θ2 = 1.05

which is impossible. There is no refracted ray when the angle of incidence 
is greater than the critical angle; there is just the refl ected ray and so we 
call this phenomenon total internal refl ection.

One of the great modern applications of total internal refl ection is the 
propagation of digital signals, carrying information, in optical fi bres. The 
signal stays within the core, as shown in Figure 4.49.

Diff raction
The spreading of a wave as it goes past an obstacle or through an aperture 
is called diff raction. Let us consider a plane wave of wavelength λ moving 
towards an aperture of size a (Figure 4.50). What will the wavefronts look 
like after the wave has gone through the aperture? The answer depends on 
the size of the wavelength compared with the size of the aperture. 

Figure 4.49 Laser light carrying coded 
information travels down the length of the 
optical fi bre in a sequence of total internal 
refl ections.

In Figure 4.50a the wavelength is small compared with a. There is 
little diff raction. In Figure 4.50b the wavelength is comparable to a 
and the diff raction is greater. The width of the diff racted wavefronts is 
proportional to the intensity of the wave. In the diagrams, the paler colour 
at the edges of the wavefronts shows that the intensity decreases as we 
move to the sides. 

wavelength λ

a b

Figure 4.50 The eff ect of aperture size on a wave passing through an aperture. 
a Wavelength small compared to gap so little diff raction. b Wavelength comparable to 
gap so lots of diff raction

Exam tip
When you draw diff raction 
diagrams, make sure that you 
do not change the distance 
between the wavefronts.
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diffraction around an obstacle

diffraction at an edge

diffraction around an obstacle

diffraction at an edge

Figure 4.51 shows diff raction around obstacles, and Figure 4.52 shows 
a real-life example of diff raction of water waves.

Diff raction takes place when a wave with wavelength comparable 
to or larger than the size of an aperture or an obstacle moves 
through or past the aperture or obstacle. In general, the larger the 
wavelength, the greater the eff ect.

Figure 4.51 Diff raction around obstacles.

Figure 4.53 Rays leaving diff erent parts 
of the slit interfere creating complicated 
intensity patterns, see Subtopic 9.2.

Figure 4.52 Waves in a ripple tank passing through an aperture, demonstrating 
the principle of diff raction. a When these waves pass through a large aperture they 
change shape and form fl attened concentric waves centred on the aperture. The 
amount by which the waves change shape depends on the size of the aperture. 
Diff raction is greatest when the aperture size is similar to the wavelength. This is seen 
in b, where waves of the same wavelength are passing through a smaller aperture. 

a b

Interference eff ects in a single slit create a complicated pattern, 
Figure 4.53. Diff raction explains why we can hear, but not see, around 
corners. For example, a person talking in the next room can be heard 
through the open door because sound diff racts around the opening of 
the door – the wavelength of sound for speech is roughly the same as the 
door size. On the other hand, light does not diff ract around the door since 
its wavelength is much smaller than the door size. Hence we can hear 
through the open door, even though we cannot see the speaker.

Double-source interference
When two waves meet at the same point in space the principle of 
superposition states that the resulting wave has a displacement that is the 
sum of the individual displacements. The resulting pattern when two (or 
more) waves meet is called interference. All waves show interference.

Consider two identical sources S1 and S2 (Figure 4.54). Wavefronts from 
the two sources meet at various points. The waves from both sources have 
the same speed, wavelength, frequency and amplitude. Let us focus on 
point P. Point P is a distance from source S1 equal to 2λ and a distance of 
3λ from S2. The path diff erence is the diff erence in distance of the point 
from the two sources, Δr = |S1P − S2P|. For point P the path diff erence is 
equal to λ. All the points marked red in Figure 4.54 have a path diff erence 
that is one wavelength, λ. At point P the waves from both sources arrive as 
crests. At point Q (the path diff erence is still λ) the waves arrive as troughs. 

P
Q

R

S1

S2

λ
λ

Figure 4.54 Wavefronts from two sources 
meet and interfere.
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In either case when the individual waves are added (as the principle of 
superposition says) the resulting wave will have the same wavelength, 
frequency and speed as the individual waves but double the amplitude. 
This is true for all the points in red. 

Now look at the points marked in black on Figure 4.54. The path 
diff erence for all of these points is Δr = λ2. At point R, the wave from 
source S2 arrives as a crest but the wave from S1 arrives as a trough. When 
the two waves are added the resulting wave has amplitude zero – the 
waves cancel each other out and vanish! This is true for all the points in 
black. We say there is constructive interference for the points in red and 
destructive interference for those in black. 

We can imagine joining points with the same path diff erence with a 
smooth curve. Figure 4.55 shows this. Red curves go through points whose 
path diff erence is 0, λ, 2λ. Black curves go through points whose path 
diff erence is λ

2 and 3λ
2 . (If the diagram showed more wavefronts from the two 

sources, we would be able to fi nd points with larger path diff erences.)
From this we can make the general observation that points in red have 

a path diff erence that is an integer times the wavelength, whereas points in 
black have a path diff erence that is a half-integer times the wavelength. So 
we conclude that:

Constructive interference occurs when the path diff erence 
|S1P − S2P| = n λ with n = 0, 1, 2, 3, ... 
Destructive interference occurs when the path diff erence is 
|S1P − S2P| = (n + 12)λ with n = 0, 1, 2, 3, ... 

Thus constructive interference occurs when the waves are in phase 
(so waves meet crest to crest and trough to trough), and destructive 
interference occurs when they are exactly out of phase (so they meet crest 
to trough) (Figure 4.56).

(Note that the discussion above applies to sources that emit waves in 
phase, and this will be the case in most exam questions. If the sources have 
a phase diff erence φ, then an amount of φλ

2π
 must be added to the path 

diff erence.)

Δr = 2λ

Δr = 2λ

Δr = λ

Δr = λ

Δr = 0

3
2Δr = λ

3
2Δr = λ

1
2Δr = λ

1
2Δr = λ

Figure 4.55 Curves in red join points where 
the path diff erence is an integral multiple of 
the wavelength. Curves in black join points 
with a path diff erence that is a half integral 
multiple of the wavelength. (The curves are 
hyperbolas.)
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Figure 4.56 Displacement–time curves for waves that interfere a constructively and 
b destructively.
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Worked example
4.14 Identical waves leaving two sources arrive at point P. Point P is 12 m from the fi rst source and 16.5 m from 

the second. The waves from both sources have a wavelength of 3 m. State and explain what is observed at P.

The path diff erence is 16.5 − 12 = 4.5 m. 

Dividing by the wavelength, the path diff erence is equal to (1 + 12) × 3 m, i.e. it is a half-integral multiple of the 
wavelength. We thus have destructive interference.

If the path diff erence is anything other than an integral or half-integral 
multiple of the wavelength, then the resultant amplitude of the wave at 
P will be some value between zero and 2A, where A is the amplitude of 
one of the waves (we are again assuming that the two waves have equal 
amplitudes).

When sound waves from two sources interfere, points of constructive 
interference are points of high intensity of sound. Points of destructive 
interference are points of no sound at all. If the waves involved are light 
waves, constructive interference produces points of bright light, and 
destructive interference results in points of darkness. Complete destructive 
interference takes place only when the two waves have equal amplitudes.

Double-slit interference
Interference for light was fi rst demonstrated in 1801 by Thomas Young. 
Figure 4.57 shows plane wavefronts of light approaching two extremely 
thin, parallel, vertical slits. Because of diff raction the wavefronts spread out 
from each slit. Wavefronts from the slits arrive on a screen and so interfere. 
At those points on the screen where the path diff erence is an integral 
multiple of the wavelength of light constructive interference takes place. 
The screen looks bright at those points, marked on the diagram as n = 0, 
n = ±1, … . The value of n indicates that the path diff erence is nλ. At other 
points where the path diff erence is a half-integral multiple of λ, the screen 
looks dark: we have destructive interference.

λ

n = 4

n = 3

n = 2

n = –2

n = –3

n = –4

n = 1

n = –1

n = 0 central
maximum

top view of double slit

d

D

S

Figure 4.57 Double-slit interference for light.
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The distance on the screen between the middle of a bright spot and the 
middle of the next bright spot is called the ‘fringe spacing’ and is denoted 
by s. It can be shown that:

s = 
λD
d

where D is the distance between the slits and the screen and d is the 
distance between the slits.

The graphs in Figure 4.58 show how the intensity of the waves on the 
screen varies with distance from the middle of the screen. The graph in 
Figure 4.58a applies if the slit width is negligible. In this case successive 
peaks in intensity (corresponding to points of constructive interference) 
have the same intensity and are separated by a distance equal to s. The 
graph in Figure 4.58b shows the intensity when the slit width cannot be 
neglected. In this case the width is about 45 times the wavelength.

In Figure 4.58, the units on the vertical axis are arbitrary. An intensity 
of one unit corresponds to the intensity from only one slit. At points of 
constructive interference the amplitude is double that of just one wave. 
Since intensity is proportional to the square of the amplitude, the intensity 
is four times as large. Figure 4.59 shows actual interference patterns with 
two slits and two diff erent wavelengths.

Worked example
4.15 Use the graph in Figure 4.58a for this question. In a double-slit 

interference experiment the two slits are separated by a distance 
of 4.2 × 10−4 m and the screen is 3.8 m from the slits.
a Determine the wavelength of light used in this experiment.
b Suggest the eff ect on the separation of the fringes of 

decreasing the wavelength of light.
c State the feature of the graph that enables you to deduce that 

the slit width is negligible.

a Reading from the graph, the separation of the bright fringes is 

 0.50 cm. Applying s = 
λD
d  gives:

λ = 
ds
D = 

4.2 × 10−4 × 0.50 × 10−2

3.8  

λ = 5.5 × 10−7 m

b From the separation formula we see that if we decrease the 
wavelength the separation decreases.

c The intensity of the side fringes is equal to the intensity of the 
central fringe.

Figure 4.58 The intensity pattern for two 
slits a of negligible width and b with a slit 
width that is not negligible. The horizontal 
axis label y refers to the distance from the 
centre of the screen.

Figure 4.59 Slit patterns for two slits of fi nite 
width with two diff erent wavelengths. Notice 
that the largest separation of the fringes is 
obtained with the longest wavelength i.e. 
red light.

Exam tip
Watch the units!



4  WAVES 181

Nature of science
Competing theories and progress in science
At the start of this section we mentioned the confl ict between the 
Newton and Huygens over the nature of light. In 1817 Augustin-Jean 
Fresnel published a new wave theory of light. The mathematician Siméon 
Poisson favoured the particle theory of light, and worked out that Fresnel’s 
theory predicted the presence of a bright spot in the shadow of a circular 
object, which he believed was impossible. François Arago, a supporter of 
Fresnel, was able to show there was indeed a bright spot in the centre of 
the shadow. In further support of his theory, Fresnel was able to show that 
the polarisation of light could only be explained if light was a transverse 
wave. The wave theory then took precedence, until new evidence showed 
that light could behave as both a wave and a particle.

 28 The speed of sound in air is 340 m s−1 and in 
water it is 1500 m s−1. Determine the angle at 
which a beam of sound waves must hit the air–
water boundary so that no sound is transmitted 
into the water.

 29 Planar waves of wavelength 1.0 cm approach an 
aperture whose opening is also 1.0 cm. Draw the 
wavefronts of this wave as they emerge through 
the aperture.

 30 Repeat question 52 for waves of wavelength 
1 mm approaching an aperture of size 20 cm.

 31 A radio station, R, emits radio waves of 
wavelength 1600 m which reach a house, H, 
directly and after refl ecting from a mountain, M, 
behind the house (see diagram). The reception 
at the house is very poor. Estimate the shortest 
possible distance between the house and the 
mountain. (Pay attention to phase changes.)

? Test yourself

glass

40°
airnormal

d

4.0 cm

air

MHR

 25 Red light of wavelength 6.8 × 10−7 m in air 
enters glass with a refractive index of 1.583, with 
an angle of incidence of 38°. Calculate:
a the angle of refraction
b the speed of light in the glass
c the wavelength of light in the glass.

 26 Light of frequency 6.0 × 1014 Hz is emitted 
from point A and is directed toward point B a 
distance of 3.0 m away.
a Determine how long will it take light to get 

to B.
b Calculate how many waves fi t in the space 

between A and B.
 27 A ray of light is incident on a rectangular block 

of glass of refractive index 1.450 at an angle of 
40°, as shown in the diagram. The thickness of 
the block is 4.00 cm. Calculate the amount d by 
which the ray is deviated.
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4.5 Standing waves
A special wave is formed when two identical waves travelling in opposite 
directions meet and interfere. The result is a standing (or stationary) wave: 
a wave in which the crests stay in the same place. The theory of wind and 
string musical instruments is based on the theory of standing waves.

Standing waves on strings and tubes
When two waves of the same speed, wavelength and amplitude travelling 
in opposite directions meet, a standing wave is formed. According to the 
principle of superposition, the resulting wave has a displacement that is 
the sum of the displacements of the two travelling waves.

Figure 4.60 shows a red travelling wave moving to the left and an 
identical blue travelling wave travelling to the right. Both waves travel 
on the same string. The graphs show the displacement due to each wave 
every one-tenth of a period. The purple wave is the sum of the two and 
therefore shows the actual shape of the string. In the top graph, at t = 0, 
the two travelling waves are on top of each other and so the resultant 
wave has its maximum displacement at this time. In the next graphs the 
waves are moving apart and the amplitude decreases. In the last graph, half 
a period later, the two waves are opposite and the resulting wave is zero: 
the entire string is fl at at that particular instant of time. 

We can make the following observations that apply to standing waves 
but not to travelling waves.
• The crests of the standing wave (i.e. the purple peaks) stay at the same 

place – they do not move right or left as they do in the case of travelling 
waves. Thus the shape of the wave does not move in a standing wave.

• There are some points on the string where, as a result of destructive 
interference between the two waves, the displacement is always zero. We 
call these points nodes. The distance between two consecutive nodes is 
half a wavelength.

• Half-way between nodes are points where, as a result of constructive 
interference, the displacement gets as large as possible. These points are 
called antinodes. Note that the nodes always have zero displacement 
whereas the antinodes are at maximum displacement for an instant of 
time only.

• Points between consecutive nodes are in phase. This implies that such 
points have a velocity in the same direction.

• Points in-between the next pair of consecutive nodes have a velocity 
direction that is opposite (Figure 4.63).

• The amplitude of oscillation is diff erent at diff erent points on the string.
• A standing wave does not transfer energy: it consists of two travelling 

waves that transfer energy in opposite directions so the standing wave 
itself transfers no energy.

• The ends of a standing wave are either nodes or antinodes. These ‘end 
or boundary conditions’ determine the possible shape of the wave.

How do we create standing waves in practice? We will examine just two 
cases: standing waves on strings and in pipes. 

Learning objectives

• Explain the formation 
of standing waves using 
superposition.

• Discuss the diff erences between 
standing waves and travelling 
waves.

• Describe nodes and antinodes.
• Work with standing waves on 

strings and in pipes.
• Solve problems with standing 

waves on strings and pipes.

Exam tip
You must be able to explain the 
formation of a standing waves 
in terms of the superposition 
of two oppositely moving 
travelling waves.



4  WAVES 183

0

D
isp

la
ce

m
en

t

Time

D
isp

la
ce

m
en

t

Time

D
isp

la
ce

m
en

t

Time

D
isp

la
ce

m
en

t

Time

D
isp

la
ce

m
en

t

Time

D
isp

la
ce

m
en

t

Time

0

0

0

0

0

Figure 4.60 A series of graphs showing two 
travelling waves and their superposition.

Standing waves on strings
Take a string of length L, tighten it and keep both ends fi xed by attaching 
one end to a clamp and the other end to an oscillator. In this case the 
end conditions are node–node. The oscillator creates travelling waves that 
move towards the fi xed end of the string. The waves refl ect at the fi xed 
end and so at any one time there are two identical travelling waves on the 
string travelling in opposite directions. As we saw, this is the condition for 
a standing wave to form. Depending on the frequency of the oscillator, 
diff erent standing wave patterns will be established on the string. Figure 
4.61 shows four possibilities. In the top diagram we see one loop, with 
two nodes and one antinode. This is the standing wave with the longest 
wavelength (and the lowest frequency): it is called the fi rst harmonic. The 
higher harmonics have more loops and the wavelength decreases, as shown 
in the lower part of Figure 4.61. These harmonics appear as the frequency 
of the oscillator increases. In the fi gure, the symbol n stands for the number 
of the harmonic, so that, for example, n = 3 indicates the third harmonic.

n = 1

L

n = 2

n = 3

n = 4

2L
1λ1 = v

2L

2L
2

v
2L

f1 =

λ2 = f2 =

λ3 = f3 =

λ4 = f4 =

2

2L
3

v
2L3

2L
4

v
2L4

Figure 4.61 Standing waves on a string with both ends fi xed. The fi rst four harmonics 
are shown.

It is important to realise that for each harmonic there is a defi nite 
relationship between the wavelength and the length of the string. 
Remember that the distance between two consecutive nodes is half a 
wavelength. 

So for the fi rst harmonic we have:

λ1
2  = L

⇒ λ1 = 2L = 
2L
1
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For the second harmonic:

2 × 
λ2
2   = L

⇒ λ2 = L = 
2L
2

For the third harmonic:

3 × 
λ3
2  = L

⇒ λ3 = 
2L
3

In general, we fi nd that the wavelengths satisfy:

λn = 
2L
n ,  n = 1, 2, 3, 4, …

Figure 4.60 also gives the frequencies of the harmonics using the equation 

f = 
v
λ , where v is the speed of the travelling waves making up the standing 

wave and λ the wavelength of the harmonic. The fi rst harmonic has the 
lowest frequency, called the fundamental frequency.

Notice the important fact that:

All harmonics have frequencies that are integral multiples of the 
fundamental frequency, i.e. of the fi rst harmonic.

The diagrams in Figure 4.61 show the extreme positions of the string 
as the string oscillates in a standing wave pattern. Successive positions of 
the string for the fi rst harmonic are shown in Figure 4.62. This diagram 
shows that diff erent points on the standing wave oscillate with diff erent 
amplitudes. Figures 4.63 and 4.64 shows how the string oscillates in its 
second harmonic. The arrows represent the velocity vectors of points on 
the string. Notice how the direction changes as we move from one loop 
and into the next.

The standing waves discussed in this section apply to string musical 
instruments such as guitars and violins.

N NA

N N NA A

Figure 4.62 Diff erent points on the string 
have diff erent amplitudes. 

Figure 4.63 Points within consecutive nodes 
have velocity in the same direction. Points 
in the next loop have opposite velocity 
directions.

Figure 4.64 A string vibrating.
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Standing waves in pipes
Standing waves can also be produced within pipes which can have open 
or closed ends. Consider fi rst a pipe of length L that is open at both ends, 
i.e. the end conditions are antinode–antinode (Figure 4.65). A fl ute is an 
example of this. A travelling wave sent down the pipe will refl ect from the 
ends (even though they are open) and we again have the condition for the 
formation of a standing wave. 

The top diagram in Figure 4.65a represents the fi rst harmonic in a 
pipe with open ends. The dots represent molecules of air in the pipe. The 
double-headed arrows show how far these molecules oscillate back and 
forth (the amplitude of the oscillations). We see that the molecules at the 
ends oscillate the most: they are at antinodes. The molecules in the middle 
of the pipe do not oscillate at all: they are at a node. We have antinodes 
at the open ends and there is a node in the middle. The lower diagram 
is how we normally represent the standing wave in the pipe – you must 
understand that it represents what the top diagram shows. Figure 4.65b 
represents the second harmonic. 

Exam tip
You must be able to explain 
how molecules move in a 
longitudinal standing wave 
such as those in pipes.

a

b

a

b

a

b

Figure 4.65 a A pipe with both ends open has two antinodes at the open ends and a 
node in the middle. b The second harmonic in an open pipe.

Note that these diagrams also give 
the harmonics for the unrealistic 
case of a string with both ends free.

The case of a pipe with both ends closed (which is not very useful) is 
similar to that of a string with ends fi xed: Figure 4.65 shows the fi rst and 
second harmonics. 

The wavelength for pipes with both ends closed or both ends open is:

λn = 
2L
n ,  n = 1, 2, 3, 4, …

We consider fi nally the case of a pipe with one closed and one open end 
(i.e. end conditions node–antinode). This could apply to some organ pipes. 
The closed end will be a node and the open end an antinode. 

a

b

a

b

a

b

Figure 4.66 The fi rst and second harmonics for a pipe with both ends closed.
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Figure 4.67 shows the fi rst two harmonics. The distance between a node 
and an antinode is a quarter of a wavelength and so the wavelength of fi rst 
harmonic (the fundamental wavelength) is given by:

 1 × 
λ1
4  = L

⇒ λ1 = 4L = 
4L
1

The wavelength of the next harmonic is:

 3 × 
λ3
4  = L

⇒ λ3 = 
4L
3

Notice that there only ‘odd’ harmonics present. In general, the allowed 
wavelengths are:

λn = 
4L
n ,  n = 1, 3, 5, …

This formula also gives the wavelength in the unrealistic case of a string 
with one fi xed and one free end.

Table 4.2 summarises the relationships for standing waves in strings and 
pipes.

String of length L Both ends fi xed or both free: λn =
 

2L
n   

n = 1, 2, 3, 4, …

One end fi xed, the other free: λn = 4L
n

  n = 1, 3, 5, …

Pipe of length L Both ends open or both closed: λn =
 

2L
n

  n = 1, 2, 3, 4, …

One end closed, the other open: λn = 4L
n

  n = 1, 3, 5, …

Table 4.2 Wavelengths for allowed harmonics for standing waves in strings and pipes.

N A N A N A

a b

Figure 4.67 The fi rst two harmonics in a pipe with one open and one closed end.
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Worked examples
4.16 A standing wave is set up on a string with both ends fi xed. The frequency of the fi rst harmonic is 150 Hz. 

Calculate:
a the length of the string
b the wavelength of the sound produced. 
(The speed of the wave on the string is 240 m s−1 and the speed of sound in air is 340 m s−1.)

a The wavelength is given by:

λ1 = 
240
150 = 1.6 m

The wavelength of the fi rst harmonic is 2L and so L = 0.80 m.

b The sound will have the same frequency as that of the standing wave, i.e. 150 Hz. The wavelength of the sound 
is thus:

λ = 
340
150 ≈ 2.3 m

4.17 A pipe has one open and one closed end. Determine the ratio of the frequency of the fi rst harmonic to that 
of the next harmonic.

The fi rst harmonic has wavelength λ1 = 4L and the next harmonic has wavelength λ3 = 
4L
3 . Hence:

f1
f3

 = 
4L/3
4L  = 

1
3

4.18 A source of sound of frequency 2100 Hz is placed at the open end of a tube. The other end of the tube is 
closed. Powder is sprinkled inside the tube. When the source is turned on it is observed that the powder 
collects in heaps a distance of 8.0 cm apart.
a Explain this observation.
b Use this information to estimate the speed of sound.

a A standing wave is established inside the tube since the travelling waves from the source superpose with the 
refl ected waves from the closed end. At the antinodes air oscillates the most and pushes the powder right and 
left. The powder collects at the nodes where the air does not move.

b The heaps collect at the nodes and the distance between nodes is half a wavelength. So the wavelength is 16 cm. 
The speed of sound is then:

 v = f λ = 2100 × 0.16 = 336 ≈ 340 m s−1
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4.19 A tube with both ends open is placed inside a container of water. When a tuning fork above the tube is 
sounded a loud sound comes out of the tube. The shortest length of the column of air for which this happens 
is L. The frequency of the tuning fork is 486 Hz and the speed of sound is 340 m s−1.
a Determine the length L.
b Predict the least distance by which the tube must be raised for another loud sound to be heard from the 

tube when the same tuning fork is sounding.

Figure 4.68 

a The wave in the tube must be the fi rst harmonic whose wavelength is 4L. The wavelength is given by:

λ = 
340
486 = 0.6996 ≈ 0.70 m

and so:

L = 
0.6996

4  = 0.1749 ≈ 0.17 m

b The length of the air column in the tube must be increased so that the next harmonic can fi t. This means that 
the distance by which the tube must be raised is a half wavelength, i.e. 0.35 m.

L

Exam tip
Draw the standing wave in part a. It is the fi rst harmonic. Now 
raise the tube and draw the next harmonic. What is the connection 
between the distance the tube was raised and the wavelength?

Nature of science
Physics is universal
The universality of physics is evident almost everywhere including in 
the theory of standing waves. From the time of Pythagoras onwards 
philosophers and scientists have used mathematics to model the formation 
of standing waves on strings and in pipes. The theory that we have 
developed here applies to simple vibrating strings and air columns, but it 
can be used to give detailed accounts of the formation of musical sound 
in instruments as well as the stability of buildings shaken by earthquakes.
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 41 A glass tube with one end open and the other 
closed is used in an experiment to determine 
the speed of sound. A tuning fork of frequency 
427 Hz is used and a loud sound is heard when 
the air column has length equal to 20.0 cm.
a Calculate the speed of sound.
b Predict the next length of air column when a 

loud sound will again be heard.
 42 A pipe with both ends open has two consecutive 

harmonics of frequency 300 Hz and 360 Hz.
a Suggest which harmonics are excited in the 

pipe.
b Determine the length of the pipe.
 (Take the speed of sound to be 340 m s−1.)

 43 A pipe X with both ends open and a pipe Y with 
one open and one closed end have the same 
frequency in the fi rst harmonic. Calculate the 
ratio of the length of pipe X to that of pipe Y.

 44 If you walk at one step a second holding a cup 
of water (diameter 8 cm) the water will spill out 
of the cup. Use this information to estimate the 
speed of the waves in water.

 45 Consider a string with both ends fi xed. A 
standing wave in the second harmonic mode 
is established on the string, as shown in the 
diagram. The speed of the wave is 180 m s−1.

a Explain the meaning of wave speed in the 
context of standing waves.

b Consider the vibrations of two points on the 
string, P and Q. The displacement of point P is 
given by the equation y = 5.0 cos (45πt), where 
y is in mm and t is in seconds. Calculate the 
length of the string.

c State the phase diff erence between the 
oscillation of point P and that of point Q. 
Hence write down the equation giving the 
displacement of point Q.

? Test yourself

P

Q

 32 Describe what is meant by a standing wave. List 
the ways in which a standing wave diff ers from a 
travelling wave.

 33 Outline how a standing wave is formed.
 34 In the context of standing waves describe what is 

meant by:
a node
b antinode
c wave speed.

 35 a  Describe how you would arrange for a string 
that is kept under tension, with both ends 
fi xed, to vibrate in its second harmonic mode.

b Draw the shape of the string when it is 
vibrating in its second harmonic mode.

 36 A string is held under tension, with both ends 
fi xed, and has a fi rst harmonic frequency of 
250 Hz. The tension in the string is changed so 
that the speed increases by √2. Predict the new 
frequency of the fi rst harmonic.

 37 A string has both ends fi xed. Determine the ratio 
of the frequency of the second to that of the fi rst 
harmonic.

 38 The wave velocity of a transverse wave on a 
string of length 0.500 m is 225 m s−1.
a Determine the frequency of the fi rst 

harmonic of a standing wave on this string 
when both ends are kept fi xed.

b Calculate the wavelength of the sound 
produced in air by the oscillating string 
in a. (Take the speed of sound in air to be 
340 m s−1.)

 39 Draw the standing wave representing the third 
harmonic standing wave in a tube with one 
closed and one open end.

 40 A glass tube is closed at one end. The air column 
it contains has a length that can be varied 
between 0.50 m and 1.50 m. A tuning fork of 
frequency 306 Hz is sounded at the top of the 
tube. Predict the lengths of the air column at 
which loud sounds would be heard from the 
tube. (Take the speed of sound to be 340 m s−1.)
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 46 A horizontal aluminium rod of length 1.2 m 
is hit sharply with a hammer. The hammer 
rebounds from the rod 0.18 ms later.
a Explain why the hammer rebounds.
b Calculate the speed of sound in aluminium.
c The hammer created a longitudinal standing 

wave in the rod. Estimate the frequency of the 
sound wave by assuming that the rod vibrates 
in the fi rst harmonic.

Exam-style questions

1 The diagram shows a point P on a string at a particular instant of time. A transverse wave is travelling along the 
string from left to right.

P

 Which is correct about the direction and the magnitude of the velocity of point P at this instant?

Direction Magnitude

A up maximum
B up minimum
C down maximum
D down minimum

2 A tight horizontal rope with one end tied to a vertical wall is shaken with frequency f so that a travelling wave of 
wavelength λ is created on the rope. The rope is now shaken with a frequency 2f. Which gives the new wavelength 
and speed of the wave?

Wavelength Speed

A λ f λ
B λ 2f λ
C λ

2
f λ

D λ
2

2f λ
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3 The graph shows the displacement of a medium when a longitudinal wave travels through the medium from 
left to right. Positive displacements correspond to motion to the right. Which point corresponds to the centre 
of a compression?

4 The diagram shows wavefronts of a wave entering a medium in which the wave speed decreases. Which diagram is 
correct?
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5 The graph shows the variation with time of the displacement of 
a particle in a medium when a wave of intensity I travels through 
the medium.

 The intensity of the wave is halved. Which graph now represents 
the variation of displacement with time? (The scale on all graphs is 
the same.)
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 6 Which of the following does not apply to longitudinal waves?

A superposition
B formation of standing waves
C interference
D polarisation

 7 Interference is observed with two identical coherent sources. The intensity of the waves at a point of constructive 
interference is I. What is the intensity when one source is removed?

A 0 B I C 
I 
2 D 

I 
4

 8 Unpolarised light of intensity I0 is incident on two polarisers, one behind the other, with parallel transmission 
axes. The fi rst polariser is rotated by 30° clockwise and the second 30° counter-clockwise. What is the intensity 
transmitted?

A 
I0 
2 B 

I0 
4 C 

I0 
8 D 

I0 
16

 9 A pipe of length 8.0 m is open at one end and closed at the other. The speed of sound is 320 m s−1. Which is the 
lowest frequency of a standing wave that can be established within this pipe?

A 5.0 Hz B 10 Hz C 15 Hz D 30 Hz

10 Travelling waves of wavelength 32 cm are created in a closed–open pipe X of length 40 cm and an open–open 
pipe Y of length 50 cm.

X

40 cm

Y

50 cm
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–4

 In which pipe or pipes will a standing wave be formed?

A X only B Y only C neither X nor Y D both X and Y

11 A longitudinal wave is travelling through a medium. The displacement of the wave at t = 10 s is shown below. 
Positive displacements are directed to the right.
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 Point P is at a distance of 20 cm from the origin. The graph shows the variation with time of the displacement 
of point P.
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 a Distinguish a longitudinal from a transverse wave.  [2]

 b State, for this wave:
  i the amplitude [1]
  ii the wavelength [1]
  iii the frequency. [1]

 c Calculate the speed of the wave. [2]

 d Suggest whether the wave is travelling to the right or to the left. [3]

 e Point Q is a distance of 15 cm to the right of P. Draw the variation of the displacement of Q with time. [2]

 f The travelling wave in parts a–d is directed towards a pipe that has one end closed and the other open.
  i  State and explain the length of the pipe so that a standing wave in its fi rst harmonic is established 

within the pipe. [2]
  ii State two diff erences between a standing wave and a travelling wave. [2]
  iii In the context of a standing wave state the meaning of the term wave speed. [2]

12 Two pulses travel towards each other on the same taut rope. The two graphs show the pulses before and after 
the collision. The speed of the black pulse is 15 m s−1. The left diagram shows the pulses at t = 0.
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 a State the principle of superposition. [2]

 b State the speed of the grey pulse. [1]

 c i Determine the time after which the two pulses completely overlap. [1]
  ii Draw the shape of the rope at the time of complete overlap. [2]

 d i Suggest whether any energy was lost during the collision of the two pulses. [2]
  ii Comment on the shape of the rope in c ii by reference to your answer in d i. [3]
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13 A man is swimming underwater at a depth of 2.0 m. The man looks upwards.

 a Explain why he can see the world outside the water only through a circle on the surface of the water. [2]

 b Calculate the radius of this circle given that the refractive index of water is 1.33. [2]

 c Discuss how the answer to b changes (if at all) if he looks up from a greater depth. [2]

 d  Sound waves travelling in air approach an air–water boundary. The speed of sound in air is 340 m s−1 and in 
water it is 1500 m s−1. The wavefronts make an angle of 12° with the boundary.

  i Calculate the angle the wavefronts in the water make with the boundary. [2]
  ii Draw three wavefronts in the water. [2]
  iii  Use your answer to ii to suggest why a person swimming underwater near a noisy beach does not 

hear much noise. [2]

14 a Describe what is meant by polarised light. [1]

 b  Unpolarised light of intensity 320 W m–2 is incident on the fi rst of three polarisers that are one behind the 
other. The fi rst and third polarisers have vertical transmission axes. The middle polariser’s transmission axis 
is rotated by an angle θ to the vertical. The transmitted intensity is 10 W m–2. Determine θ. [3]

 c  Partially polarised light is a combination of completely unpolarised light and light that is polarised. 
Partially polarised light is transmitted through a polariser. As the polariser is rotated by 360° the ratio of the 
maximum to the minimum transmitted intensity is 7.

  Determine the fraction of the beam’s intensity that is due to the polarised light. [3]

 d  A person is sitting behind a vertical glass wall. The person cannot be clearly seen because of the glare 
of refl ections from the glass wall. Suggest how the use of a polariser makes it easier to see the person 
more clearly. [3]

15 In a two-slit experiment, red light is incident on two parallel slits. The light is observed on a screen far from 
the slits. The graph shows how the intensity of the light on the screen varies with distance y from M.

air12°

water

–2 –1 0

Intensity/W m–2

y/cm
1 2

M

1

2

3

4

5
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61 cm

 a Explain why light is able to reach the middle of the screen. [2]

 b One of the slits is covered. State and explain the intensity of the light at M. [3]

 c State the feature of this graph that shows that the slit width is not negligibly small. [1]

 The distance to the screen is 3.2 m and the separation of the slits is 0.39 mm. 

 d Determine the wavelength of the light. [2]

 e  The red light is replaced by blue light. Predict what (if anything) will happen to the separation of the 
bright fringes on the screen. [2]

16 a Outline how a standing wave may be formed. [2]

 A source of sound is placed above a tube containing water. The longest length of the air column above the 
water for which a strong sound is heard from the tube is 61 cm. The next length of the air column for which 
another strong sound is heard is 49 cm.

 b i Explain the origin of the loud sound from the tube. [2]
  ii Suggest why a strong sound is heard for specifi c lengths of the air column. [2]
  iii Predict the next length of the air column for which a loud sound will be heard. [1]
  iv The frequency of the source is 1400 Hz. Estimate the speed of sound in the tube. [2]
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5.1 Electric fi elds
This section examines the properties of electric charge and the 
phenomena that take place when charge is allowed to move so as to 
create an electric current. The concept of electric fi eld is crucial to 
understanding electric current, as it is the electric fi eld inside a conductor 
that forces electric charge to move.

Electric charge
Electric charge is a property of matter. Ordinarily, matter appears 
electrically neutral but if, for example, we take two plastic rods and rub 
each with a piece of wool, we fi nd that the two rods repel each other. If 
we now rub two glass rods with silk, we fi nd that the glass rods again repel 
each other, but the charged glass rod attracts the charged plastic rod. We 
can understand these observations (Figure 5.1) by assuming that:
• charge can be positive or negative, and the process of rubbing involves 

the transfer of charge from one body to the other
• there is a force between charged bodies that can be attractive or repulsive.

Learning objectives

• Understand the concept and 
properties of electric charge.

• Apply Coulomb’s law.
• Understand the concept of 

electric fi eld.
• Work with electric current and 

direct current (dc).
• Understand the concept of 

electric potential diff erence.

Plastic rubbed
with wool Plastic

rubbed
with
wool

Glass rubbed
with silk

Benjamin Franklin (1706–1790) decided to call the sign of the charge 
on the glass rubbed with silk ‘positive’. Much later, when electrons were 
discovered, it was found that electrons were attracted to the charged glass 
rod. This means that electrons must have negative charge. But if Franklin 
had called the charge on the glass rod negative, we would now be calling 
the electron’s charge positive! 

From experiments with charged objects, we learn that there is a force 
of attraction between charges of opposite sign and a force of repulsion 
between charges of the same sign. The magnitude of the force becomes 
smaller as the distance between the charged bodies increases.

Properties of electric charge
In ordinary matter, negative charge is a property of particles called 
electrons. Positive charge is a property of protons, which exist in the 
nuclei of atoms. (There are many other particles that have charge but they 
do not appear in ordinary matter – see Topic 7.)

Figure 5.1 Two simple experiments to investigate properties of electric charge.
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The second important property of electric charge is that it is 
quantised; this means the amount of electric charge on a body is always 
an integral multiple of a basic unit. The basic unit is the magnitude of the 
charge on the proton, an amount equal to 1.6 × 10−19 C, where C stands 
for coulomb, the SI unit of charge. This amount of charge is symbolised 
by e. The charge on an electron is –e. (If we take quarks into account, see 
Topic 7, then the basic unit of charge is e

3.)
The third property is that charge is conserved. Like total energy, 

electric charge cannot be created or destroyed. In any process the total 
charge cannot change (see Worked example 5.1).

In solid metals the atoms are fi xed in position in a lattice but there 
are many ‘free’ electrons that do not belong to a particular atom. These 
electrons can move, carrying charge through the metal (see the section on 
the Tolman–Stewart experiment below). In liquids, and especially in gases, 
positive ions can also transport charge. 

Materials that have many ‘free’ electrons (Figure 5.2) are called 
conductors. As we will see, when these electrons are exposed to an electric 
fi eld they begin to drift in the same direction, creating electric current.

Materials that do not have many ‘free’ electrons, so charge cannot move 
freely, are called insulators. 

Worked example
5.1 Two separated, identical conducting spheres are charged with charges of 4.0 µC and −12 µC, respectively. 

The spheres are allowed to touch and then are separated again. Determine the charge on each sphere.

The net charge on the two spheres is 4.0 − 12 = −8.0 µC. By symmetry, when the spheres are allowed to touch they 
will end up with the same charge, since they are identical. 

The total amount of charge on the two spheres after separation must be −8.0 µC by charge conservation. 

When they separate, each will therefore have a charge of −4.0 µC.

The Tolman–Stewart experiment
Conclusive proof that the charge carriers in metals are electrons came 
in 1916 in an amazing experiment by R.C. Tolman (1881–1948) and 
T.D. Stewart (1890–1958). The idea behind the experiment was that if 
the charge carriers in a piece of metal were negative electrons, then these 
would be ‘fl oating’ inside the metal and would be free to move, whereas 
the positive charges would be anchored to fi xed positions. Therefore, if the 
metal was very suddenly accelerated with a very large acceleration (Figure 
5.3), the electrons would be ‘thrown back’, creating an excess negative 
charge at the back of the metal and leaving an excess positive charge at 
the front – a great example of inertia! This excess charge was measured 
by Tolman and Stewart and found to be consistent with negative charge 
carriers inside metals. (More evidence is provided by the Hall eff ect – see 
Exam-style question 14 at the end of this topic.)

atom with
electron
cloud

‘free’
electrons

Figure 5.2 In a conductor there are many 
‘free’ electrons that move around much like 
molecules of a gas.

acceleration

excess
negative

charge

excess
positive
charge

Figure 5.3 Redistribution of charge in a 
conductor accelerated to the right.
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Coulomb’s law for the electric force
The electric force between two electric charges, q1 and q2, was 
investigated in 1785 by Charles Augustin Coulomb (1736–1806). 
Coulomb discovered that this force is inversely proportional to the square 
of the separation of the charges and is proportional to the product of the 
two charges. It is attractive for charges of opposite sign and repulsive for 
charges of the same sign.

In equation form, Coulomb’s law states that the electric force F 
between two point charges q1 and q2 is given by:

F = k 
q1q2

r2

where r is the separation of the two charges (Figure 5.4).

The constant k is also written as 
1

4πε0
, so that Coulomb’s law reads:

F = 
1

4πε0
 
q1q2

r2

The numerical value of the factor 
1

4πε0
 or k is 8.99 × 109 N m2 C−2 in a 

vacuum. The constant ε0 is called the electric permittivity of vacuum 
and ε0 = 8.85 × 10−12 C2 N−1 m−2. If the charges are in a medium, such 
as plastic or water, then we must use the value of ε appropriate to that 
medium. Air has roughly the same value of ε as a vacuum. 

–

q1 q2

r

+ –

–

+ +

Figure 5.4 The force between two point 
electric charges is given by Coulomb’s law 
and can be attractive or repulsive. 

Worked examples
5.2 The electric permittivity of graphite is 12 times larger than that of a vacuum. The force between two point 

charges in a vacuum is F. The two charges are embedded in graphite and their separation is doubled. Predict 
the new force between the charges in terms of F.

The force F in a vacuum is given by:

F = 
1

4πε0
 
q1q2

r2

The new value of ε is 12ε0 and the separation of the charges is 2r. Force F ′ in graphite is therefore:

 F ′ = 
1

4π(12ε0)
 
q1q2

(2r)2
 = 

1
12 × 4

 
1

4πε0
 
q1q2

r2
 = 

1
48

 × F

The new force is 
F
48

.
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5.3 Two charges, q1 = 2.0 μC and q2 = 8.0 μC, are placed along a straight line separated by a distance of 3.0 cm. 
 a Calculate the force exerted on each charge. 
 b The charge q1 is increased to 4.0 μC. Determine the force on each charge now.

a This is a straightforward application of the formula F = k 
q1q2

r2 . We fi nd that:

  F = 
9 × 109 × 2.0 × 8.0 × 10−12

9.0 × 10−4

  F = 160 N

 This is the force that q1 exerts on q2, and vice versa.

b Since the charge doubles the force doubles to F = 320 N on both charges.

5.4 A positive charge q is placed on the line joining q1 and q2 in Worked example 5.3. Determine the distance 
from q1 where this third positive charge experiences zero net force.

Let that distance be x. A positive charge q at that point would experience a force from q1 equal to F1 = k 
q1q
x2

 

and a force in the opposite direction from q2 equal to F2 = k 
q2q

(d − x)2

where d = 3.0 cm is the distance between q1 and q2 (Figure 5.5).

Figure 5.5

Charge q will experience no net force when F1 = F2, so:

 k 
q1q
x2

 = k 
q2q

(d − x)2

Dividing both sides by kq and substituting q1 = 2.0 μC and q2 = 8.0 μC gives:

 
2.0
x2  = 

8.0
(d − x)2

 (d − x)2 = 4x2

 (d − x) = 2x

 x = 
d
3

 = 1.0 cm

x

q1
F2 F1 q2

d

Q

Exam tip
It is a common mistake to 
double the force on one 
charge, but not the other.

Exam tip
We do not have to change 
units to C. The units on 
both sides of the equation 
are the same (μC) and 
cancel out.
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Electric fi eld
The space around a charge or an arrangement of charges is diff erent from 
space in which no charges are present. It contains an electric fi eld. We can 
test whether a space has an electric fi eld by bringing a small, point, positive 
charge q into the space. If q experiences an electric force, then there is an 
electric fi eld. If no force is experienced, then there is no electric fi eld (the 
electric fi eld is zero). For this reason the small charge is called a test charge: 
it tests for the existence of electric fi elds. It has to be small so that its 
presence does not disturb the electric fi eld it is trying to detect.

The electric fi eld strength is defi ned as the electric force per unit 
charge experienced by a small, positive point charge q:

E = 
F
q

Note that electric fi eld is a vector quantity. The direction of the 
electric fi eld is the same as the direction of the force experienced 
by a positive charge at the given point (Figure 5.6). The unit of 
electric fi eld is N C−1.

The force experienced by a test charge q placed a distance r from a 
point charge Q is (by Coulomb’s law):

F = k 
Qq
r2

and so from the defi nition E = 
F
q the magnitude of the electric fi eld is:

E = k 
(Qq/r2 )

q

E = k 
Q
r2

+

–

a

b

Action at a distance and fi elds
These are some of the words of the Scottish theoretical 

physicist James Clerk Maxwell (1831–1879). Maxwell was one of 
the scientists who created the concept of the fi eld.

I have preferred to seek an explanation [of electricity and 
magnetism] by supposing them to be produced by actions which 
go on in the surrounding medium as well as in the excited 
bodies, and endeavouring to explain the action between distant 
bodies without assuming the existence of forces capable of acting 
directly … The theory I propose may therefore be called a theory 
of the Electromagnetic fi eld because it has to do with the space 
in the neighbourhood of the electric and magnetic bodies.

J.C. Maxwell, 1865

Figure 5.6 The electric fi eld at various 
positions near a a positive and b a negative 
point charge.
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This formula also applies outside a conducting sphere that has charge Q 
on its surface. (Inside the sphere the fi eld is zero; the net charge on the 
sphere is distributed on the surface.)

Electric current
In a conductor the ‘free’ electrons move randomly, much like gas 
molecules in a container. They do so with high speeds, of the order of 
105 m s–1. This random motion, however, does not result in electric current 
– as many electrons move in one direction as in another (Figure 5.7) and 
so no charge is transferred.

As we just mentioned, the electric fi eld inside a conductor is zero in 
static situations, i.e. when there is no current. 

If an electric fi eld is applied across the conductor, the free electrons 
experience a force that pushes them in the opposite direction to the 
direction of the fi eld (the direction is opposite because the charge of the 
electron is negative). This motion of electrons in the same direction is a 
direct current (dc). This topic deals with direct current and we will refer 
to this as, simply, current. (Alternating current (ac) will be dealt with in 
Topic 11.)

We defi ne electric current I in a conductor as the rate of fl ow of charge 
through its cross-section:

I = 
∆q
∆t

The unit of electric current is the ampere (A), which is a fl ow of one 
coulomb of charge per second (1 A = 1 C s−1). The ampere is one of the 
fundamental units of the SI system. 

(The defi nition of the ampere is in terms of the magnetic force 
between two parallel conductors; we will look at this in Subtopic 5.4.) 

Figure 5.8 shows the electric fi eld inside a conductor. The fi eld follows 
the shape of the conductor, forcing electrons to move in the opposite 
direction along the conductor.

In Figure 5.9, electrons are moving in a metallic wire. The average 
speed with which the electrons move in the direction opposite to the 
electric fi eld is called the drift speed, v. How many electrons will move 
through the cross-sectional area of the wire (coloured orange) within 

Figure 5.7 The random electron velocities 
do not carry net charge in any direction.

E

cross-section
of wire

A

these electrons
will not reach

the orange cross-
section in time

vΔt

Figure 5.9 Only the electrons within the shaded volume will manage to go through 
the marked cross-sectional area in time Δt.

Figure 5.8 The electric fi eld inside a 
conductor follows the shape of the 
conductor.
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time Δt? Those electrons that are far away from the orange cross-section 
will not travel far enough. The distance covered by electrons in a time 
interval Δt is v Δt, and so only those electrons within the volume of the 
wire shaded pale orange will reach the cross-section in time. How many 
electrons are there in this volume? The shaded volume is Av Δt, where 
A is the cross-sectional area of the wire. If there are n electrons per unit 
volume, the number of electrons within the shaded volume is nAv Δt . If 
each electron carries charge q, then the charge that passes through the 
cross-section is nAvq Δt. So:

I = 
∆q
∆t

I = 
nAvqΔt

∆t

I = nAvq

(For charge carriers other than electrons, q is the charge on that carrier.) 

Worked examples
5.5 Estimate the magnitude of the drift speed in a wire that carries a current of 1 A. The wire has radius 2 mm and 

the number of electrons per unit volume (the number density) of free electrons is n = 1028 m−3 .

The cross-sectional area of the wire is A = π(2 mm)2 ≈ 1.3 × 10–5 m2.

Substituting in I = nAvq, we have:

1 = 1028 × 1.3 × 10−5 × v × 1.6 × 10−19

Collecting powers of 10 and rearranging:

 v = 
1

1.3 × 1.6 × 104

 v ≈ 5 × 10−5 m s–1 

So v is about 0.5 mm s−1. This is quite a low speed, perhaps surprisingly so. 

5.6 In view of the very low drift speed of electrons, discuss why lights turn on essentially without delay after the 
switch is turned on.

Lights come on immediately because when the switch is turned on, an electric fi eld is established within the wire 
at a speed close to the speed of light. As soon as the fi eld is established, every free electron in the wire starts moving 
no matter where it is, and this includes the electrons in the lamp fi lament itself.
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5.7 Figure 5.10 shows electric current that fl ows in a conductor 
of variable cross-sectional area. State and explain whether 
the electron drift speed at B is smaller than, equal to, or 
greater than that at A.

The current at A and B is the same (because of conservation of charge). Since the current is given by I = nAvq, and 
n and q are constant, the drift speed at B is smaller than that at A because the area is greater.

Elect ric potential diff erence
When charge q moves near other charges it will, in general, experience 
forces. So in moving the charge, work must be done. If the work done in 
moving a charge q from A to B is W, the ratio W /q is defi ned to be the 
potential diff erence between points A and B (Figure 5.11).

The potential diff erence V between two points is the work done 
per unit charge to move a point charge from one point to the other:

V = 
W
q

The unit of potential is the volt, V, and 1 V = 1 J C−1. 

Therefore the work required to move a charge q between two points 
with potential diff erence V is W = qV. 

It is very important to realise that whenever there is a potential 
diff erence there has to be an electric fi eld.

The actual path taken does not aff ect the amount of work that has to be 
done on the charge, as shown in Figure 5.12.

Worked example
5.8 The work done in moving a charge of 2.0 µC between two points in an electric fi eld is 1.50 × 10−4 J. 

Determine the potential diff erence between the two points.

From the defi nition, the potential diff erence is:

V = 
W
q

V = 
1.50 × 10−4

2.0 × 10−6

V = 75 V

A B

Q

A
q

B

work done
is W

V = 25 V

A

B

Figure 5.11 The potential diff erence 
between points A and B is the work done to 
move the charge from A to B divided by q. 

Figure 5.12 The work done in moving a 
charge q from A to B is the same no matter 
what path is followed. If q = 2 μC, the work 
done is 50 μJ for all three paths.

Figure 5.10
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The electronvolt
The joule is too large a unit of energy for the microscopic world. A more 
convenient unit (but not part of the SI system) is the electronvolt, eV.

We defi ne the electronvolt as the work done when a charge equal 
to one electron charge is taken across a potential diff erence of one 
volt.

Thus, using W = qV:

 1 eV = 1.6 × 10−19 C × 1 V

 = 1.6 × 10−19 J

When a charge equal to two electron charges is taken across a potential 
diff erence of 1 V, the work done is 2 eV; moving a charge equal to three 
electron charges across a potential diff erence of 5 V results in work of 
15 eV, and so on.

Exam tip
If we move the charge q 
between two points whose 
potential diff erence is V, we 
will have to do work qV. We 
are assuming that the charge 
is moved slowly and with 
constant speed from one point 
to the other. If, on the other 
hand, the charge is left alone in 
the electric fi eld, the electric 
forces will do work qV on the 
charge; this work will go into 
changing the kinetic energy of 
the charge. The kinetic energy 
may increase or decrease – see 
Worked example 5.9.

Worked example
5.9 a  Determine the speed of a proton (m = 1.67 × 10–27 kg) that is accelerated from rest by a potential diff erence 

of 5.0 × 103 V.
 b  A proton with speed 4.4 × 106 m s−1 enters a region of electric fi eld directed in such a way that the proton is 

slowed down. Determine the potential diff erence required to slow the proton down to half its initial speed.

a The work done by the electric forces in accelerating the 
proton is W = qV, so:

  W = 5.0 × 103 eV

 In joules this is:

  W = 1.6 × 10−19 × 5.0 × 103 = 8.0 × 10–16 J

 The work done goes into increasing the kinetic energy 
of the proton. Thus:

  EK = 12 mv2

 ⇒ v =    
2EK
m

  v =    
2 × 8.0 × 10−16

1.67 × 10−27

  v = 9.8 × 105 m s−1

Exam tip
In a it is clear that the proton 
is being accelerated and so 
qV goes towards increasing 
the kinetic energy. In b it is 
equally clear that the kinetic 
energy is decreasing. 
In calculations, the unit eV 
must be changed to joules, the 
SI unit of energy.

W ( J) = W (eV) × e
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b The magnitude of the decrease in kinetic energy of the proton is:

  ∆EK = 12 × 1.67 × 10−27 [(4.4 × 105)2 − (2.2 × 105)2]

  ∆EK = 1.2 × 10−16 J

 Converting to electronvolts:

  ∆EK = 
1.2 × 10−16 J

1.6 × 10−19 J eV−1

  = 750 eV

 Hence qV = 750 eV, implying V = 750 volts.

Nature of science
The microscopic–macroscopic connection
If you are plumber, do you need to know the molecular structure of 
water? The fl ow of water in pipes is a macroscopic phenomenon whereas 
the detailed molecular structure of water is microscopic. We have a vast 
diff erence in scales of length in the two cases. In very many phenomena 
the presence of two diff erent scales means that the detailed physics 
operating at one scale does not aff ect the physics at the other. This is 
also the case with current: it was possible to give detailed descriptions 
of the behaviour of current in circuits long before it was discovered that 
current is electrons moving in the same direction. (However, the most 
complicated problems in physics are those in which the physics at one 
length scale does aff ect the physics at the other scale.)

3 In the previous question, determine the position 
of the middle charge so that it is in equilibrium.

4 Calculate the force (magnitude and direction) on 
the charge q in the diagram where q = 3.0 µC.

4.0 cm 2.0 cm

4.0 μC 3.0 μC–2.0 μC

4 cm

3 
cm

q

–q

2q

? Test yourself
1 a  Calculate the force between two charges q1 of 

2.0 µC and q2 4.0 µC separated by r = 5.0 cm.
 b  Let the force calculated in a be F. In terms of F 

and without further calculations, state the force 
between these charges when:

  i the separation r of the charges is doubled
  ii q1 and r are both doubled
  iii q1, q2 and r are all doubled.
2 Three charges are placed on a straight line as 

shown in the diagram. Calculate the net force on 
the middle charge.
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5 Two plastic spheres each of mass 100.0 mg are 
suspended from very fi ne insulating strings of 
length 85.0 cm. When equal charges are placed 
on the spheres, the spheres repel and are in 
equilibrium when 10.0 cm apart.

 a Determine the charge on each sphere.
 b  Estimate how many electron charges this 

corresponds to.
6 Consider two people, each of mass 60 kg, a 

distance of 10 m apart.
 a  Assuming that all the mass in each person is 

made out of water, estimate how many electrons 
there are in each person.

 b  Hence, estimate the electrostatic force of 
repulsion between the two people due to the 
electrons.

 c  List any other simplifying assumptions you have 
made to make your estimate possible.

 d  No such force is observed in practice. Suggest 
why this is so.

7 A charge of magnitude +5.0 µC experiences an 
electric force of magnitude 3.0 × 10−5 N when 
placed at a point in space. Determine the electric 
fi eld at that point.

8 The electric fi eld is a vector and so two electric 
fi elds at the same point in space must be added 
according to the laws of vector addition. Consider 
two equal positive charges q, each 2.00 µC, 
separated by a = 10.0 cm and a point P a distance 
of d = 30.0 cm, as shown in the diagram. The 
diagram shows the directions of the electric fi elds 
produced at P by each charge. Determine the 
magnitude and direction of the net electric fi eld 
at P.

 9 Repeat the calculation of question 8 where the 
top charge is +2.00 µC and the bottom charge is 
–2.00 µC.

10 The electron drift speed in a copper wire of 
diameter 1.8 mm is 3.6 × 10-4 m s−1. The number 
of free electrons per unit volume for copper is 
8.5 × 1028 m−3. Estimate the current in the wire.

11 In the diagram, the current through the 1.0 mm 
diameter part of the wire is 1.2 A and the drift 
speed is 2.2 × 10−4 m s−1.

 Calculate a the current and b the drift speed in 
the part of the wire with 2.0 mm diameter.

12 Silver has 5.8 × 1028 free electrons per m3. If the 
current in a 2 mm radius silver wire is 5.0 A, fi nd 
the velocity with which the electrons drift in the 
wire.

13 a  If a current of 10.0 A fl ows through a heater, 
how much charge passes through the heater 
in 1 h?

 b  How many electrons does this charge 
correspond to?

14 A conducting sphere of radius 15.0 cm has a 
positive charge of 4.0 µC deposited on its surface. 
Calculate the magnitude of the electric fi eld 
produced by the charge at distances from the 
centre of the sphere of:

 a 0.0 cm 
 b 5.0 cm
 c 15.0 cm
 d 20.0 cm.

q

q

a
d

P

1.0 mm 2.0 mm
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5.2 Heating eff ect of electric currents
This section will introduce the main ideas behind electric circuits. We 
begin by discussing how the movement of electrons inside conductors (i.e. 
electric current) results in heating of the conductor.

Collisions of electrons with lattice atoms
The eff ect of an electric fi eld within a conductor, for example in a metal 
wire, is to accelerate the free electrons. The electrons therefore gain kinetic 
energy as they move through the metal. The electrons suff er inelastic 
collisions with the metal atoms, which means they lose energy to the 
atoms of the wire. The electric fi eld will again accelerate the electrons until 
the next collision, and this process repeats. In this way, the electrons keep 
providing energy to the atoms of the wire. The atoms in the wire vibrate 
about their equilibrium positions with increased kinetic energy. This shows 
up macroscopically as an increase in the temperature of the wire. 

Electric resistance
In Subtopic 5.1 we stressed that whenever there is a potential diff erence 
there must also be an electric fi eld. So when a potential diff erence is 
established at the ends of a conductor, an electric fi eld is established 
within the conductor that forces electrons to move, i.e. creating an electric 
current (Figure 5.13a). Now, when the same potential diff erence is 
established at the ends of diff erent conductors, the size of the current is 
diff erent in the diff erent conductors. What determines how much current 
will fl ow for a given potential diff erence is a property of the conductor 
called its electric resistance.

The electric resistance R of a conductor is defi ned as the potential 
diff erence V across its ends divided by the current I passing 
through it:

R = 
V
I

The unit of electric resistance is the volt per ampere. This is 
defi ned to be the ohm, symbol Ω. 

The electric resistance of conducting wires is very small so it is a good 
approximation to ignore this resistance. Conducting wires are represented 
by thin line segments in diagrams. Conductors whose resistance cannot be 
neglected are denoted by boxes; they are called resistors (Figure 5.13b).

In 1826, the German scientist Georg Ohm (1789–1854) discovered 
that, when the temperature of most metallic conductors is kept constant, 
the current through the conductor is proportional to the potential 
diff erence across it:

I ∝ V

This statement is known as Ohm’s law. 

Learning objectives

• Understand how current in a 
circuit component generates 
thermal energy.

• Find current, potential diff erence 
and power dissipated in circuit 
components.

• Defi ne and understand electric 
resistance.

• Describe Ohm’s law.
• Investigate factors that aff ect 

resistance.
• Apply Kirchhoff ’s laws to more 

complicated circuits.

V

I

+

resistor

connecting wire

–

a

b

Figure 5.13 a The potential diff erence V 
across the ends of the conductor creates an 
electric fi eld within the conductor that forces 
a current I through the conductor. b How we 
represent a resistor and connecting wires in a 
circuit diagram.

Learning objectivesLearning objectives
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Materials that obey Ohm’s law have a constant resistance at constant 
temperature. For these ohmic materials, a graph of I versus V gives a 
straight line through the origin (Figure 5.14a).

A fi lament light bulb will obey Ohm’s law as long as the current 
through it is small. As the current is increased, the temperature of the 
fi lament increases and so does the resistance. Other devices, such as the 
diode or a thermistor, also deviate from Ohm’s law. Graphs of current 
versus potential diff erence for these devices are shown in Figure 5.14.

I /mA

I /mA

I /mA

I /mA

V / V V / V

–1.5 –0.6 –0.4 –0.2 0 0.2 0.4 0.6

–2
a b

c d

–1

1

3

2

1

60

50

40

30

20

10

0
0 50 100 200 250 300150–1

–3 –2 –1 0 1 2 3
V / V

V / V

2

0.5

–0.5

–1.0

–1.0 –0.5 0 0.5 1.0 1.5

1.0

Figure 5.14 Graph a shows the current–potential diff erence graph for a material that obeys Ohm’s law. The graphs for b a lamp fi lament, 
c a diode and d a thermistor show that these devices do not obey this law. (Notice that for the thermistor we plot voltage versus current.)

In the fi rst graph for the ohmic material, no matter which point on the 
graph we choose (say the one with voltage 1.2 V and current 1.6 mA), the 
resistance is always the same:

R = 
1.2

1.6 × 10−3 = 750 Ω

However, looking at the graph in Figure 5.14b (the lamp fi lament), we 
see that at a voltage of 0.2 V the current is 0.8 mA and so the resistance is:

R = 
0.2

0.8 × 10−3 = 250 Ω
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At a voltage of 0.3 V the current is 1.0 mA and the resistance is:

R = 
0.3

1.0 × 10−3 = 300 Ω

We see that as the current in the fi lament increases the resistance increases, 
so Ohm’s law is not obeyed. This is a non-ohmic device.

Experiments show that three factors aff ect the resistance of a wire kept 
at constant temperature. They are:
• the nature of the material
• the length of the wire
• the cross-sectional area of the wire. 
For most metallic materials, an increase in the temperature results in an 
increase in the resistance.

It is found from experiment that the electric resistance R of a wire 
(at fi xed temperature) is proportional to its length L and inversely 
proportional to the cross-sectional area A:

R = ρ 
L
A

The constant ρ is called resistivity and depends on the material of 
the conductor and the temperature. The unit of resistivity is Ω m.

The formula for resistance shows that if we double the cross-sectional 
area of the conductor the resistance halves; and if we double the length, 
the resistance doubles. How do we understand these results? Figure 5.15 
shows that if we double the cross-sectional area A of a wire, the current in 
the metal for the same potential diff erence will double as well (recall 

that I = nAvq). Since R = 
V
I , the resistance R halves. What if we double 

the length L of the wire? The work done to move a charge q can be 
calculated two ways: one is through W = qV.  The other is through  
W = FL = qEL. So, if L doubles the potential diff erence must also double. 
The current stays the same and so the resistance R doubles.

For most metallic conductors, increasing the temperature increases 
the resistance. With an increased temperature the atoms of the conductor 
vibrate more and this increases the number of collisions per second. This 
in turn means that the average distance travelled by the electrons between 
collisions is reduced, i.e. the drift speed is reduced. This means the current 
is reduced and so resistance increases.

IA

length 2L

potential difference = 2V

2I2A

potential difference = V

IA

length L

Figure 5.15 The eff ect of change in length 
L and cross-sectional area A on the current 
fl owing in a wire.
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Worked example
5.10 The resistivity of copper is 1.68 × 10−8 Ω m. Calculate the length of a copper wire of diameter 4.00 mm that 

has a resistance of 5.00 Ω.

We use R = ρ 
L
A to get L = 

RA
ρ  and so:

 L = 
5.00 × π × (2.00 × 10−3)2

1.68 × 10−8

 L = 3739 m 

The length of copper wire is about 3.74 km.

Voltage
The defi ning equation for resistance, R = 

V
I , can be rearranged in terms of 

the potential diff erence V:

V = IR

This says that if there is a current through a conductor that has resistance, 
i.e. a resistor, then there must be a potential diff erence across the ends 
of that resistor. The term voltage is commonly used for the potential 
diff erence at the ends of a resistor. 

Figure 5.16 shows part of a circuit. The current is 5.0 A and 
the resistance is 15 Ω. The voltage across the resistor is given by 
V = IR = 5.0 × 15 = 75 V. The resistance between B and C is zero, so the 
voltage across B and C is zero.

Electric power
We saw earlier that whenever an electric charge q is moved from one 
point to another when there is a potential diff erence V between these 
points, work is done. This work is given by W = qV. 

Consider a resistor with a potential diff erence V across its ends. Since 
power is the rate of doing work, the power P dissipated in the resistor in 
moving a charge q across it in time t is:

P = 
work done
time taken

P = 
qV
t

But 
q
t  is the current I in the resistor, so the power is given by:

P = IV

R = 15 Ω

I = 5.0 AA B C

Figure 5.16 There is a voltage across points 
A and B and zero voltage across B and C.

Exam tip
Do not confuse diameter with radius.
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Worked examples
5.11 A resistor of resistance 12 Ω has a current of 2.0 A fl owing through it. How much energy is generated in the 

resistor in one minute?

The power generated in the resistor is:

P = RI2

P = 12 × 4 = 48 W

Thus, in one minute (60 s) the energy E generated is:

E = 48 × 60 J = 2.9 × 103 J

Electrical devices are usually rated according to the power they use. A light bulb rated as 60 W at 220 V means 
that it will dissipate 60 W when a potential diff erence of 220 V is applied across its ends. If the potential diff erence 
across its ends is anything other than 220 V, the power dissipated will be diff erent from 60 W.

5.12 A light bulb rated as 60 W at 220 V has a 
potential diff erence of 110 V across its ends. 
Find the power dissipated in this light bulb.

Let R be the resistance of the light bulb and P the power we want to fi nd. Assuming R stays constant (so that it is 
the same when 220 V and 110 V are applied to its ends), we have:

P = 
1102

R  and 60 = 
2202

R

Dividing the fi rst equation by the second, we fi nd:

P
60

 = 
1102

2202

This gives:

P = 15 W

Figure 5.17 The metal fi lament in a light 
bulb glows as the current passes through it. 
It is also very hot. This shows that electrical 
energy is converted into both thermal energy 
and light.

This power manifests itself in thermal energy and/or work performed by 

an electrical device (Figure 5.17). We can use R = 
V
I  to rewrite the 

formula for power in equivalent ways:

P = IV = RI2 = 
V2

R

Exam tip
The power of the light bulb is 60 W only 
when the voltage across it is 220 V. If we 
change the voltage we will change the power.



212

Electromotive force (emf)
The concept of emf will be discussed in detail in Subtopic 5.3. Here we 
need a fi rst look at emf in order to start discussing circuits. Charges need 
to be pushed in order to drift in the same direction inside a conductor. To 
do this we need an electric fi eld. To have an electric fi eld requires a source 
of potential diff erence. Cells use the energy from chemical reactions to 
provide potential diff erence. Figure 5.18 shows a simple circuit in which 
the potential diff erence is supplied by a battery – a battery is a collection 
of cells. The symbols for cells and batteries are shown in Table 5.1.

external resistor

internal resistor

battery

+–

Figure 5.18 A simple circuit consisting of a battery, connecting wires and a resistor. 
Note that the battery has internal resistavnce. The current enters the circuit from the 
positive pole of the battery. 

Symbol Component name

connection lead

cell

battery of cells

resistor

dc power supply

ac power supply

junction of conductors

crossing conductors 
(no connection)

lamp

voltmeter

ammeter

switch

galvanometer

potentiometer

variable resistor

heating element

Table 5.1 Names of electrical components 
and their circuit symbols.

+ –

V

A

Exam tip
You must understand the ideas 
that keep coming up in this 
topic: to make charges move 
in the same direction we need 
an electric fi eld to exert forces 
on the charges. To have an 
electric fi eld means there must 
be a potential diff erence. So 
something must provide that 
potential diff erence.

We defi ne emf as the work done per unit charge in moving charge 
across the battery terminals. As we will see in Subtopic 5.3, emf is the 
potential diff erence across the battery terminals when the battery has 
no internal resistance. Emf is measured in volts. Emf is also the power 
provided by the battery per unit current:

ε = emf = 
W
q  = 

P
I

This defi nition is very useful when discussing circuits.

Simple circuits
We have so far defi ned emf, voltage, resistance, current and power 
dissipated in a resistor. This means that we are now ready to put all these 
ideas together to start discussing the main topic of this chapter, electric 
circuits. The circuits we will study at Standard Level will include cells and 
batteries, connecting wires, ammeters (to measure current) and voltmeters 
(to measure voltage). The symbols used for these circuit components are 
shown in Table 5.1. In Topic 11 we will extend things so as to include 
another type of circuit element, the capacitor.
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ԑ = 12 V
I

R = 24 Ω
Figure 5.19 A simple one-loop circuit with 
one cell with negligible internal resistance 
and one resistor.

We start with the simplest type of circuit – a single-loop circuit, as 
shown in Figure 5.19. The current enters the circuit from the positive 
terminal of the cell. The direction of the current is shown by the blue 
arrow. The terminals of the cell are directly connected to the ends of the 
resistor (there is no intervening internal resistor). Therefore the potential 
diff erence at the ends of the resistor is 12 V. Using the defi nition of 

resistance we write R = 
V
I , i.e. 24 = 

12
I , giving the current in the circuit to 

be I = 0.5 A.

Resistors in series
Figure 5.20 shows part of a simple circuit, but now there are three 
resistors connected in series. Connecting resistors in series means that 
there are no junctions in the wire connecting any two resistors and so the 
current through all of them is the same. Let I be the common current in 
the three resistors.

I R1 R2 R3

The potential diff erence across each of the resistors is:

V1 = IR1, V2 = IR2 and V3 = IR3

The sum of the potential diff erences is thus:

V = IR1 + IR2 + IR3 = I(R1 + R2 + R3)

If we were to replace the three resistors by a single resistor of value 
R1 + R2 + R3 (in other words, if we were to replace the contents of the dotted 
box in Figure 5.20 with a single resistor, as in the circuit shown in Figure 
5.21), we would not be able to tell the diff erence. The same current comes 
into the dotted box and the same potential diff erence exists across its ends. 

We thus defi ne the equivalent or total resistance of the three resistors of 
Figure 5.21 by:

Rtotal = R1 + R2 + R3

If more than three were present, we would simply add all of them. Adding 
resistors in series increases the total resistance.

In a circuit, a combination of resistors like those in Figure 5.21 is 
equivalent to the single total or equivalent resistor. Suppose we now 
connect the three resistors to a battery of negligible internal resistance 
and emf equal to 24 V. Suppose that R1 = 2.0 Ω, R2 = 6.0 Ω and 
R3 = 4.0 Ω. We replace the three resistors by the equivalent resistor of 
Rtotal = 2.0 + 6.0 + 4.0 = 12 Ω. We now observe that the potential diff erence 

Figure 5.20 Three resistors in series.

R1 R2 R3

A

I

B

24 V

Rtotal

A

I

B

24 V

Figure 5.21 The top circuit is replaced by 
the equivalent circuit containing just one 
resistor.
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across the equivalent resistor is known. It is simply 24 V and hence the 
current through the equivalent resistor is found as follows:

 R = 
V
I

⇒ I = 
V
R = 

24
12 = 2.0 A

This current, therefore, is also the current that enters the dotted box: that is, 
it is the current in each of the three resistors of the original circuit. We may 
thus deduce that the potential diff erences across the three resistors are:

V1 = IR1 = 4.0 V

V2 = IR2 = 12 V

V3 = IR3 = 8.0 V

Resistors in parallel
Consider now part of another circuit, in which the current splits into 
three other currents that fl ow in three resistors, as shown in Figure 5.22. 
The current that enters the junction at A must equal the current that 
leaves the junction at B, by the law of conservation of charge. The left 
ends of the three resistors are connected at the same point and the same 
is true for the right ends. This means that three resistors have the same 
potential diff erence across them. This is called a parallel connection.

We must then have that:

I = I1 + I2 + I3

This is a consequence of charge conservation. The current entering 
the junction is I and the currents leaving the junction are I1, I2 and I3 
Whatever charge enters the junction must exit the junction and so the 
sum of the currents into a junction equals the sum of the currents leaving 
the junction. This is known as Kirchhoff ’s current law.

Kirchhoff ’s current law (Kirchhoff ’s fi rst law) states that:

ΣIin = ΣIout

Let V be the common potential diff erence across the resistors. Then:

I1 = 
V
R1

, I2 = 
V
R2

  and I3 = 
V
R3

and so:

I = 
V
R1

 + 
V
R2

 + 
V
R3

I = V(
1
R1

 + 
1
R2

 + 
1
R3

)

R1

R2

R3

I1

I2

I3

I
A B

Figure 5.22 Three resistors connected in 
parallel.
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If we replace the three resistors in the dotted box with a single resistor, 
the potential diff erence across it would be V and the current through it 
would be I. Thus:

I = 
V

Rtotal

Comparing with the last equation, we fi nd:

1
Rtotal

 = 
1
R1

 + 
1
R2

 + 
1
R3

The formula shows that the total resistance is smaller than any of the 
individual resistances being added.

We have thus learned how to replace resistors that are connected in 
series or parallel by a single resistor in each case, thus greatly simplifying 
the circuit.

More complex circuits
A typical circuit will contain both parallel and series connections.
 In Figure 5.23, the two top resistors are in series. They are equivalent to a 
single resistor of 8.0 Ω. This resistor and the 24 Ω resistor are in parallel, so 
together they are equivalent to a single resistor of:

 
1

Rtotal
 = 

1
8.0 + 

1
24 = 

1
6

⇒ Rtotal = 6.0 Ω

3.0 Ω 5.0 Ω

8.0 Ω
6.0 Ω

24 Ω

24 Ω

4 Ω 9 Ω

13 Ω

6 Ω 6 Ω 12 Ω

12 Ω 24 Ω6 Ω

A B

12 Ω

6 Ω 36 Ω

12 Ω

Figure 5.23 Part of a circuit with both series and parallel connections.

Figure 5.24 A complicated part of a 
circuit containing many parallel and series 
connections.

Exam tip
Adding resistors in series 
increases the total resistance of 
a circuit (and so decreases the 
current leaving the battery).
Adding resistors in parallel 
decreases the total resistance of 
the circuit (and so increases the 
current leaving the battery).

Consider now Figure 5.24. The two top 6.0 Ω resistors are in series, so 
they are equivalent to a 12 Ω resistor. This, in turn, is in parallel with the 
other 6.0 Ω resistor, so the left block is equivalent to:

 
1

Rtotal
 = 

1
12 + 

1
6.0  = 

1
4

⇒ Rtotal = 4.0 Ω

Let us go to the right block. The 12 Ω and the 24 Ω resistors are in series, 
so they are equivalent to 36 Ω. This is in parallel with the top 12 Ω, so the 
equivalent resistor of the right block is:

 
1

Rtotal
 = 

1
36 + 

1
12 = 

1
9

⇒ Rtotal = 9.0 Ω
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Worked examples
5.13 a Determine the total resistance of the circuit shown in Figure 5.25. 
 b Hence calculate the current and power dissipated in each of the resistors.

Figure 5.25

a The resistors of 2.0 Ω and 3.0 Ω are connected in parallel and are equivalent to a single resistor of resistance R 
that may be found from:

  
1
R = 

1
2 + 

1
3 = 

5
6

 ⇒ R = 
6
5 = 1.2 Ω

 In turn, this is in series with the resistance of 1.8 Ω, so the total equivalent circuit resistance is 1.8 + 1.2 = 3.0 Ω. 

b The current that leaves the battery is thus:

I = 
6.0
3.0 = 2.0 A

 The potential diff erence across the 1.8 Ω resistor is V = 1.8 × 2.0 = 3.6 V, leading to a potential diff erence across 
the two parallel resistors of V = 6.0 − 3.6 = 2.4 V. Thus the current in the 2 Ω resistor is:

I = 
2.4
2.0 = 1.2 A

The overall resistance is thus:

4.0 + 9.0 = 13 Ω

Suppose now that this part of the circuit is connected to a source of 
emf 156 V (and negligible internal resistance). The current that leaves the 

source is I = 
156
13  = 12 A. When it arrives at point A, it will split into two 

parts. Let the current in the top part be I1 and that in the bottom part 
I2. We have I1 + I2 = 12 A. We also have that 12I1 = 6I2, since the top and 
bottom resistors of the block beginning at point A are in parallel and 
so have the same potential diff erence across them. Thus, I1 = 4.0 A and 
I2 = 8.0 A. Similarly, in the block beginning at point B the top current is 
9.0 A and the bottom current is 3.0 A.

2.0 Ω

3.0 Ω

1.8 Ω

6.0 V
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 This leads to power dissipated of:

  P = RI2 = 2.0 × 1.22 = 2.9 W

 or P = 
V2

R  = 
2.42

2.0  = 2.9 W

 or P = VI = 2.4 × 1.2 = 2.9 W

 For the 3 Ω resistor:

I = 
2.4
3.0 = 0.80 A

 which leads to power dissipated of P = RI2 = 3.0 × 0.802 = 1.9 W

 The power in the 1.8 Ω resistor is P = RI2 = 1.8 × 2.02 = 7.2 W

5.14 In the circuit of Figure 5.26 the three lamps are identical and may be assumed to have a 
constant resistance. Discuss what happens to the brightness of lamp A and lamp B when the 
switch is closed. (The cell is ideal, i.e. it has negligible internal resistance.)

Method 1
A mathematical answer. Let the emf of the cell be ε and the resistance of each lamp be R: before the switch is 

closed A and B take equal current 
ε

(2R) and so are equally bright (the total resistance is 2R). When the switch is 

closed, the total resistance of the circuit changes and so the current changes as well. The new total resistance is 
3R
2  (lamps B and C in parallel and the result in series with A) so the total current is now 

2ε
(3R), larger than before. 

The current in A is thus greater and so the power, i.e. the brightness, is greater than before. The current of 
2ε

(3R) is 

divided equally between B and C. So B now takes a current 
ε

(3R), which is smaller than before. So B is dimmer.

Method 2
The potential diff erence across A and B before the switch is closed is 

ε
2 and so A and B are equally bright. When 

the switch is closed the potential diff erence across A is double that across B since the resistance of A is double the 

parallel combination of resistance of B and C. This means that the potential diff erence across A is 2
ε
3 and across B it 

is 
ε
3. Hence A increases in brightness and B gets dimmer.

A

B C

Figure 5.26
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5.15 Look at Figure 5.27. Determine the current in the 2.0 Ω resistor 
and the potential diff erence across the two marked points, A and 
B, when the switch is a open and b closed.

a When the switch is open, the total resistance is 4.0 Ω and thus the total current is 3.0 A. 

 The potential diff erence across the 2.0 Ω resistor is 2.0 × 3.0 = 6.0 V.

 The potential diff erence across points A and B is thus 6.0 V.

b When the switch is closed, no current fl ows through the 2.0 Ω resistor, since all the current takes the path 
through the switch, which off ers no resistance. (The 2.0 Ω resistor has been shorted out.) 

 The resistance of the circuit is then 2.0 Ω and the current leaving the battery is 6.0 A. 

 The potential diff erence across points A and B is now zero. (There is current fl owing from A to B, but the 
resistance from A to B is zero, hence the potential diff erence is 6.0 × 0 = 0 V.)

5.16 Four lamps each of constant resistance 60 Ω are connected as shown in Figure 5.28. 
 a Determine the power in each lamp. 
 b  Lamp A burns out. Calculate the power in each lamp and the potential diff erence across the 

burnt-out lamp.

a We know the resistance of each lamp, so to fi nd the power we need to fi nd the current in each lamp.

 Lamps A and B are connected in series so they are equivalent to one resistor of value RAB = 60 + 60 = 120 Ω. 
This is connected in parallel to C, giving a total resistance of:

  
1

RABC
 = 

1
120 + 

1
60

  
1

RABC
 = 

1
40

 ⇒ RABC = 40 Ω

Figure 5.28

A B

D

30 V
C

60 Ω

60 Ω

60 Ω

60 Ω

2.0 Ω

A S B

12.0 V

4.0 Ω

4.0 Ω

Figure 5.27
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 Finally, this is in series with D, giving a total circuit resistance of:

  Rtotal = 40 + 60 = 100 Ω

 The current leaving the battery is thus:

I = 
30
100 = 0.30 A

 The current through A and B is 0.10 A and that through C is 0.20 A. The current through D is 0.30 A. 
Hence the power in each lamp is:

 PA = PB

 PA = 60 × (0.10)2 = 0.6 W

 PC = 60 × (0.20)2 = 2.4 W

 PD = 60 × (0.30)2 = 5.4 W

b With lamp A burnt out, the circuit is as shown in Figure 5.29.

Figure 5.29

 Lamp B gets no current, so we are left with only C and D connected in series, giving a total resistance of:

Rtotal = 60 + 60 = 120 Ω

 The current is thus I = 
30
120 = 0.25 A. The power in C and D is thus:

PC = PD = 60 × (0.25)2 = 3.8 W

 We see that D becomes dimmer and C brighter. The potential diff erence across lamp C is:

V = IR

V = 0.25 × 60

V = 15 V

Lamp B takes no current, so the potential diff erence across it is zero. The potential diff erence across points X and 
Y is the same as that across lamp C, i.e. 15 V.

A B

D

30 V
C

X Y

60 Ω

60 Ω

60 Ω
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Multi-loop circuits
In the circuit shown earlier in Figure 5.19, we found the current in the 
circuit quite easily. Let us fi nd the current again using a diff erent approach 
(Figure 5.30). This approach will use Kirchhoff ’s loop law, which will 
be stated shortly. This method is best used for complicated multi-loop 
circuits, but once you master it, you can easily apply it in simple circuits as 
well, such as the circuit of Figure 5.30.

voltage positive voltage negative

voltage negative voltage positive

Figure 5.31 The rules for signs of voltages 
in Kirchhoff ’s loop law. The blue arrow shows 
the direction of the current through the 
resistor.

ԑ = 12 V
I

R = 24 Ω

S

ԑ
I

R = 24 Ω

Figure 5.30 Solving a circuit using loops.

Draw a loop through the circuit and put an arrow on it (red loop). 
This indicates the direction in which we will go around the circuit. In 
the left-hand diagram we have chosen a clockwise direction. Now follow 
the loop starting anywhere; we will choose to start at point S. As we travel 
along the circuit we calculate the quantity ΣV, i.e. the sum of the voltages 
across each resistor or cell that the loop takes us through, according to the 
rules in Figure 5.31.

Follow the clockwise loop. First we go through the cell whose emf 
is ε = 12 V. The loop takes us through the cell from the negative to the 
positive terminal and so we count the voltage as +ε, i.e. as + 12 V. 

Next we go through a resistor. The loop direction is the same as the 
direction of the current so we take the voltage across the resistor as 
negative, i.e. −RI, which gives−24I. 

So the quantity ΣV is 12 − 24I.

Kirchhoff ’s loop law (Kirchhoff ’s second law) states that:
ΣV = 0

The loop law is a consequence of energy conservation: the power delivered 
into the circuit by the cell is εI. The power dissipated in the resistor is RI2. 
Therefore εI = RI2. Cancelling one power of the current, this implies ε = RI 
or ε – RI = 0 which is simply the Kirchhoff  loop law for this circuit. So 
12 − 24I = 0, which allows us to solve for the current as 0.50 A. 

Had we chosen a counter-clockwise loop (right-hand diagram in Figure 
5.30) we would fi nd ΣV = −12 + 24I = 0, giving the same answer for the 
current. (This is because we go through the cell from positive to negative so 
we count the voltage as negative, and we go through resistors in a direction 
opposite to that of the current so we count the voltage as positive.)
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Consider now the circuit with two cells, shown in Figure 5.32. Again, 
choose a loop along which to travel through the circuit. We choose a 
clockwise loop. Draw the arrow for the current. With two cells it is not 
obvious what the correct direction for the current is. But it does not 
matter, as we will see. Let’s calculate ΣV. The cells give +12 − 9.0 since 
we go through the lower cell from positive to negative. The resistors give 
−4.0I − 2.0I and so 12 − 9.0 − 4.0I − 2.0I = 0 which gives I = 0.50 A. The 
current has come out with a positive sign, so our original guess about 
its direction is correct. Had the current come out negative, the actual 
direction would be opposite to what we assumed.

Figure 5.33 is another example of a circuit with two sources of emf. 
Each of the four resistors in the circuit of Figure 5.33 is 2.0 Ω. Let’s 
determine the currents in the circuit. 

First we assign directions to the currents. Again it does not matter 
which directions we choose. Call the currents I1, I2 and I3. The loop law 
states that:

top loop:  ΣV = + 6.0 – 2I1 – 2I2 – 2I1 = 0

bottom loop:  ΣV = + 6.0 – 2I2 – 2I3 = 0

6.0 V

6.0 V

J

I1

I1

I2

I1

I3
I3

Figure 5.33 A circuit with more than one loop.
J

I1

I3

I2

Figure 5.34 Currents at junction J.

Exam tip
Using the current law we 
eliminate one of the currents 
(I2), making the algebra easier.

4.0 Ω2.0 Ω

9.0 V

12 V
 I

Figure 5.32 A single-loop circuit with two 
cells.

From Kirchhoff ’s current law at junction J (Figure 5.34):

 I1 + I3 = I2   
 current in  current out

So the fi rst loop equation becomes:

 +6.0 − 2I1 − 2(I1 + I3) − 2I1 = 0

⇒ 6I1 + 2I3 = 6.0

⇒ 3I1 + I3 = 3.0

and the second loop equation becomes:

 6.0 − 2(I1 + I3) − 2I3 = 0

⇒ 2I1 − 4I3 = 6.0
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So we need to solve the system of equations: 

 3I1 + I3 = 3.0

 I1 − 2I3 = 3.0

Figure 5.35 Currents entering and leaving a 
junction.

I1 I4

I3I2

R1

R2 R3

A1

A2

A3

Figure 5.36 An ammeter measures the current in the resistor connected in series to it.

Exam tip
1 For each loop in the circuit, give a name to each current in each 

resistor in the loop and show its direction.
2 Indicate the direction in which the loop will be travelled.
3 Calculate ΣV for every cell or battery and every resistor: 
 •  For a cell or battery V is counted positive if the cell or battery 

is travelled from the negative to the positive terminal; negative 
otherwise.

 •  For resistors the value of V is negative (−RI) if the resistor is 
travelled in the direction of the current; positive otherwise.

4 Set ΣV = 0.
5 Repeat for other loops.
6 Use Kirchhoff ’s current law to reduce the number of currents that 

need to be found.

Solving, I1 = 0.60A. Substituting this into the equations gives I3 = 1.2 A 
and I2 = 1.8

The IB data booklet writes the Kirchhoff  current law as ΣI = 0. This is 
completely equivalent to the version ΣIin = ΣIout used here. In using the 
booklet’s formula you must include a plus sign for a current entering a 
junction and minus sign for currents leaving. So consider Figure 5.35.

We would write I1 + I2 + I4 = I3. The booklet formula would write this 
as I1 + I2 + I4 − I3= 0, two identical results.

Ammeters and voltmeters
The current through a resistor is measured by an instrument called an 
ammeter, which is connected in series to the resistor as shown in 
Figure 5.36.

The ammeter itself has a small electric resistance. An ideal ammeter 

R1 R2

V V

Figure 5.37 A voltmeter is connected in 
parallel to the device we want to measure the 
potential diff erence across.

has zero resistance. The potential diff erence across a device is measured 
with a voltmeter connected in parallel to the device (Figure 5.37). 

An ideal voltmeter has infi nite resistance, which means that it takes 
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Worked example
5.17 In the circuit in Figure 5.39, the emf of the cell is 9.00 V 

and the internal resistance is assumed negligible. A non-ideal 
voltmeter whose resistance is 500 kΩ is connected in parallel to 
a resistor of 500 kΩ. 

a Determine the reading of the (ideal) ammeter.

b A student is shown the circuit and assumes, incorrectly, that 
the voltmeter is ideal. Estimate the resistance the student 
would calculate if he were to use the current found in a.

a Since the two 500 kΩ resistances are in parallel, the total resistance of the circuit is found from:

  
1
R = 

1
500 + 

1
500 = 

1
250

 ⇒ R = 250 kΩ

 Using I = 
V
R, the current that leaves the battery is:

I = 
9.0

250 000 = 3.6 × 10−5 A

I = 36 μA

 This is the reading of the ammeter in the circuit.

b The reading of the voltmeter is 9.0 V. If the student assumes the voltmeter is ideal, he would conclude that the 
current in the resistor is 36 μA. He would then calculate that:

R = 
V
I  = 

9.0 V
36 μA = 250 kΩ  and would get the wrong answer for the resistance.

variable
resistorA

V

R

Figure 5.38 The correct arrangement for 
measuring the current through and potential 
diff erence across a resistor. The variable 
resistor allows the current in the resistor R 
to be varied so as to collect lots of data for 
current and voltage.

no current when it is connected to a resistor. Real voltmeters have very 
high resistance. Unless otherwise stated, ammeters and voltmeters will be 
assumed to be ideal.

Thus, to measure the potential diff erence across and current through a 
resistor, the arrangement shown in Figure 5.38 is used.

Voltmeters and ammeters are both based on a current sensor called a 
galvanometer. An ammeter has a small resistance connected in parallel to 
the galvanometer and a voltmeter is a galvanometer connected to a large 
resistance in series.

A

V

R
 

Figure 5.39
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The potential divider
The circuit in Figure 5.40a shows a potential divider. It can be used to 
investigate, for example, the current–voltage characteristic of some device 
denoted by resistance R. This complicated-looking circuit is simply 
equivalent to the circuit in Figure 5.40b. In this circuit, the resistance R1 
is the resistance of the resistor XY from end X to the slider S, and R2 is 
the resistance of the resistor from S to end Y. The current that leaves the 
cell splits at point M. Part of the current goes from M to N, and the rest 
goes into the device with resistance R. The right end of the resistance R 
can be connected to a point S on the resistor XY.

X

R R

M N M
S

N
S

Y

I

I I

A
I1 I1

I2

R1 R2

I2

I

V

A

V

a b

Figure 5.40 a This circuit uses a potential divider. The voltage and current in the device with resistance 
R can be varied by varying the point where the slider S is attached to the variable resistor. b The potential 
divider circuit is equivalent to this simpler-looking circuit.

By varying where the slider S connects to XY, diff erent potential 
diff erences and currents are obtained for the device R. The resistor XY could 
also be just a wire of uniform diameter. One advantage of the potential 
divider over the conventional circuit arrangement (Figure 5.38) is that now 
the potential diff erence across the resistor can be varied from a minimum of 
zero volts, when the slider S is placed at X, to a maximum of ε, the emf of 
the battery (assuming zero internal resistance), by connecting the slider S to 
point Y. In the conventional arrangement of Figure 5.38, the voltage can be 
varied from zero volts up to some maximum value less than the emf.

Worked example
5.18 In the circuit in Figure 5.41, the battery has emf ε and negligible 

internal resistance. Derive an expression for the voltage V1 across 
resistor R1 and the voltage V2 across resistor R2.

Since I = 
ε

R1 + R2
 and V = IR, we have that:

V1 = (
R1

R1 + R2
)ε and V2 =   

R2
R1 + R2

ε

Figure 5.41

R1 R2

ԑ
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Nature of science
In 1825 in England Peter Barlow proposed a law explaining how wires 
conducted electricity. His careful experiments using a constant voltage 
showed good agreement, and his theory was accepted. At about the 
same time in Germany, Georg Ohm proposed a diff erent law backed up 
by experimental evidence using a range of voltages. The experimental 
approach to science was not popular in Germany, and Ohm’s fi ndings 
were rejected. It was not until 1841 that the value of his work was 
recognised, fi rst in England and later in Germany. In modern science, 
before research fi ndings are published they are reviewed by other scientists 
working in the same area (peer review). This would have shown the errors 
in Barlow’s work and given Ohm recognition sooner.

21 The diagram shows two resistors with a current 
of 2.0 A fl owing in the wire.

 a  Calculate the potential diff erence across each 
resistor.

 b State the potential between points B and C.

22 The fi lament of a lamp rated as 120 W at 220 V 
has resistivity 2.0 × 10−6 Ω m.

 a  Calculate the resistance of the lamp when it is 
connected to a source of 220 V.

 b  The radius of the fi lament is 0.030 mm. 
Determine its length.

23 Determine the total resistance for each of the 
circuit parts in the diagram.

A B C D

4.0 Ω 6.0 Ω

I = 2A

a b

c

4.0 Ω 4.0 Ω

2.0 Ω 2.0 Ω

6.0 Ω

4.0 Ω
8.0 Ω2.0 Ω

3.0 Ω
3.0 Ω
3.0 Ω

? Test yourself
15 Outline the mechanism by which electric current 

heats up the material through which it fl ows.
16 Explain why doubling the length of a wire, at 

constant temperature, will double its resistance.
17 The graphs show the current as a function of 

voltage across the same piece of metal wire 
which is kept at two diff erent temperatures.

 a Discuss whether the wire obey Ohm’s law.
 b  Suggest which of the two lines on the graph 

corresponds to the higher temperature.

18 The current in a device obeying Ohm’s law is 
1.5 A when connected to a source of potential 
diff erence 6.0 V. What will the potential 
diff erence across the same device be when a 
current of 3.5 A fl ows in it?

19 A resistor obeying Ohm’s law is measured to 
have a resistance of 12 Ω when a current of 3.0 A 
fl ows in it. Determine the resistance when the 
current is 4.0 A.

20 The heating element of an electric kettle has 
a current of 15 A when connected to a source 
of potential diff erence 220 V. Calculate the 
resistance of the heating element.

A B

I

V
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24 In the potentiometer in the diagram, wire AB 
is uniform and has a length of 1.00 m. When 
contact is made at C with BC = 54.0 cm, the 
galvanometer G shows zero current. Determine 
the emf of the second cell.

25 In the circuit shown the top cell has emf 3.0 V 
and the lower cell has emf 2.0 V. Both cells have 
negligible internal resistance.

 Calculate:
 a the readings of the two ammeters 
 b  the potential diff erence across each resistor.

26 Calculate the current in each resistor in the 
circuit shown in the diagram.

27 In the circuit in the diagram the ammeter reads 
7.0 A. Determine the unknown emf ε.

28 Two resistors, X and Y, have I–V characteristics 
given by the graph.

 a  Circuit A shows the resistors X and Y 
connected in parallel to a cell of emf 1.5 V 
and negligible internal resistance. Calculate 
the total current leaving the cell.

 b  In circuit B the resistors X and Y are 
connected in series to the same cell. Estimate 
the total current leaving the cell in this circuit.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

X

Y

0.0 0.5 1.0 1.5 2.0
V / V

I /A

X

X YY

Circuit A Circuit B

12.0 V

A

C
B

G

ԑ

30 Ω

3.0 V

2.0 V

A1

A2

10 Ω

20 Ω

R3 = 3.0 Ω

9.0 V

3.0 V

R2 = 2.0 Ω

R1 = 4.0 Ω

R2 = 3.0 Ω

R3 = 5.0 Ω

9.0 V ε

A

R1 = 2.0 Ω
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29 The top cell in the circuit in the diagram has 
emf 6.0 V. The emf of the cell in the lower part 
of the circuit is 2.0 V. Both cells have negligible 
internal resistance. AB is a uniform wire of 
length 1.0 m and resistance 4.0 Ω. 

 When the variable resistor is set at 3.2 Ω the 
galvanometer shows zero current. Determine the 
length AC.

5.3 Electric cells
Batteries are now used to power watches, laptops, cars and entire 
submarines. Substantial advances in battery technology have resulted 
in batteries that store more energy, recharge faster and pose smaller 
environmental dangers.

Emf
We have already discussed that electric charges will not drift in the same 
direction inside a conductor unless a potential diff erence is established 
at the ends of the conductor. In a circuit we therefore need a source of 
potential diff erence. The most common is the connection of a battery 
in the circuit. (Others include a generator, a thermocouple or a solar 
cell.) What these sources do is to convert various forms of energy into 
electrical energy.

To understand the function of the battery, we can compare a battery 
to a pump that forces water through pipes up to a certain height and 
down again (Figure 5.42). The pump provides the gravitational potential 
energy mgh of the water that is raised. The water, descending, converts 
its gravitational potential energy into thermal energy (frictional losses) 
and mechanical work. Once the water reaches the pump, its gravitational 
potential energy has been exhausted and the pump must again perform 
work to raise the water so that the cycle repeats. 

In an electric circuit a battery performs a role similar to the pump’s. A 
battery connected to an outside circuit will force current in the circuit. 
Thus, the chemical energy of the battery is eventually converted into 
thermal energy (the current heats up the wires), into mechanical work 
(the circuit may contain a motor that may be used to raise a load) and 
into chemical energy again if it is used to charge another battery in the 
external circuit. Within the battery itself, negative ions are pushed from 
the negative to the positive terminal and positive ions in the opposite 
direction. This requires work that must be done on the ions (Figure 5.43). 
This work is provided by the chemical energy stored in the battery and 
is released by chemical reactions taking place inside the battery. 

Learning objectives

• Distinguish between primary 
and secondary cells.

• Understand the presence of an 
internal resistance.

• Distinguish between emf and 
terminal potential diff erence.

pump

h
paddle
wheel 

flow of water 

electrons

positive ions

electrons

negative ions

negative
terminal

positive
terminal

Figure 5.42 In the absence of the pump, the 
water fl ow would stop. The work done by the 
pump equals the work done to overcome 
frictional forces plus work done to operate 
devices, such as, for example, a paddle wheel.

Figure 5.43 Inside the battery, negative 
ions move from the negative to the positive 
terminal of the battery. Positive ions move in 
the opposite direction. In the external circuit, 
electrons leave the negative battery terminal, 
travel through the circuit and return to the 
battery at the positive terminal.

6.0 V

2.0 V

A C B

R
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This work is used to defi ne emf: 

The emf ε (of a battery) is the work done per unit charge in 
moving charge from one terminal of the battery to the other. 
The unit of emf is the volt, V. 

(In batteries, the work done is chemical work. In general, in defi ning emf, 
the work done is always non-electrical.)

By conservation of energy, this work is also equal to the work done W 
in moving charge q around the circuit: 

ε = emf = 
W
q

If we divide both numerator and denominator by time we may also 
obtain the very convenient fact:

ε = emf = 
P
I

i.e. the power P provided by the battery per unit current I.

Internal resistance and terminal potential 
diff erence
A real battery (as opposed to an ideal battery) has an internal resistance, 
denoted by r (Figure 5.44). We cannot isolate this resistance – it is inside 
the battery and it is connected in series to the battery. 

The potential diff erence at the ends of an ideal battery (i.e. one with 
zero internal resistance) is the emf, ε. In the case of a non-ideal battery, the 
current that leaves the battery is I. Then the potential diff erence, across the 
internal resistance is Ir. The internal resistance reduces the voltage from a 
value of ε to the value ε − Ir. The potential diff erence across the battery is 
therefore:

V = ε − Ir

We see that, for a real battery, V = ε only when I = 0. In other words, even 
for a real battery, the voltage across its terminals is ε when there is no 
current leaving the battery. So an ideal voltmeter connected across the 
terminals of a battery would read the emf, since in this case no current 
leaves the battery. But if there is a current, the voltmeter reading is less 
than ε.

Ideal battery

V = ε

I

V

Real battery

V = ε – Ir

r

I

V

Figure 5.44 The potential diff erence across 
the terminals of a battery is equal to the 
emf when there is no internal resistance and 
is less than the emf when there is internal 
resistance.
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Worked examples
5.19 The potential diff erence across the terminals of a battery is 4.8 V when the current is 1.2 A and 4.4 V when 

the current is 1.4 A. Determine the emf of the battery and the internal resistance.

We need to use V = ε − Ir twice:

 4.8 = ε – 1.2r 

and 4.4 = ε – 1.4r

Solving simultaneously we get 0.4 = 0.2r and so r = 2.0 Ω. Hence ε = 7.2 V.

5.20 The graph in Figure 5.45 shows how the potential diff erence across the terminals of a battery varies with the 
current leaving the battery.

Figure 5.45

Determine the emf of the battery and its internal resistance.

We again need to use V = ε − Ir, from which we deduce that the emf is the vertical intercept and the internal 
resistance the negative of the slope of the graph. Extending the straight line we fi nd an intercept of 11 m V, which 
is the emf, and a (negative) slope of 0.25 Ω, which is the internal resistance. 

Primary and secondary cells
The term primary cell applies to a cell that can only be used once 
(until it runs out) and is then discarded. A secondary cell is a cell that is 
rechargeable and can be used again.

Consider the circuit of Figure 5.46, which shows a battery with emf 2.0 V 
being charged. Applying Kirchhoff ’s loop law to the circuit we have that:

ΣV = +12 − 2.0I − 6.0I − 2.0I  − 2.0 − 6.0I = 0

This gives:

I = 
10
16 = 0.625 A

40
0

2

0 10 20 30

4

6

8

10

I /mA

12V / mV

2.0 V

12 V

2.0 Ω

6.0 Ω 6.0 Ω

2.0 Ω

I

Figure 5.46 A battery that is being charged.
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31 A battery has emf = 10.0 V and internal resistance 
2.0 Ω. The battery is connected in series to a 
resistance R. Make a table of the power dissipated 
in R for various values of R and then use your 
table to plot the power as a function of R. For 
what value of R is the power dissipated maximum?

32 A battery of emf ε and internal resistance r sends 
a current I into a circuit.

 a  Sketch the potential diff erence across the 
battery as a function of the current.

 b  What is the signifi cance of i the slope and ii 
the vertical intercept of the graph?

Let us now calculate the power generated by the 12 V battery:

P = εI = 12 × 0.625 = 7.5 W

The total resistance of the circuit is 16 Ω and so the total power dissipated 
in the resistors is 16 × 0.6252 = 6.25 W. The remaining 1.25 W is stored 
in the 2.0V battery that is being charged. This is the same as the power 
‘dissipated’ by the battery: 2.0 × (−0.625) = −1.25 W. We give the current a 
negative sign because it fl ows the ‘wrong’ way in the battery. The negative 
sign for the power means that this is power being stored, not being 
dissipated.

Discharging a cell
A characteristic of a cell is the amount of charge it can deliver to an 
external circuit in its lifetime. This is known as the capacity of the 
cell. Suppose we connect a cell to an external resistor and monitor the 
potential diff erence across the cell, the terminal voltage. The general 
features are shown in Figure 5.47.

The bigger the current, the faster the cell discharges. After an initial 
sudden drop, the terminal voltage remains almost constant until the 
capacity of the cell is exhausted at the end if its lifetime, when there is 
again a sudden drop. The gentle drop in voltage for the majority of the 
cell’s lifetime is explained partly by an increasing internal resistance.

Nature of science
Consumers look for longer battery life in their electronic equipment, 
which drives research into electric cells. Mercury and cadmium are toxic 
components of some cells, and other cells contain fl ammable or otherwise 
dangerous materials. Scientists working to increase the storage capacity 
of cells need to balance the benefi ts (for example electric cars, which 
aim to be ‘greener’ than cars running on gasoline) with the long-term 
risks associated with the disposal of the chemical components when the 
batteries are discarded.

0.5 A
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1 A
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Figure 5.47 Discharge time for a cell for 
diff erent currents.
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? Test yourself
30 Describe the energy changes taking place in the 

circuit shown in the diagram.
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33 In an experiment, a voltmeter was connected 
across the terminals of a battery as shown in the 
diagram.

 The current in the circuit is varied using the 
variable resistor. The graph shows the variation 
with current of the reading of the voltmeter.

 a Calculate the internal resistance of the battery.
 b Calculate the emf of the battery.
34 Calculate the current in, and potential diff erence 

across, each resistor in the circuits shown in the 
diagram.

35 When two resistors, each of resistance 4.0 Ω, are 
connected in parallel with a battery, the current 
leaving the battery is 3.0 A. When the same two 
resistors are connected in series with the battery, 
the total current in the circuit is 1.4 A. Calculate:

 a the emf of the battery
 b the internal resistance of the battery.

36 In the circuit shown in the diagram each of the 
cells has an internal resistance of 1.0 Ω.

 a Determine the current in the circuit.
 b Calculate the power dissipated in each cell.
 c Comment on your answer to b.

A

V

ε

0
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4
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8
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0 2 4 6 8

V / V
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ε = 12.0 V
r = 0 Ω

2.0 Ω 10.0 Ω 20.0 Ω

a

ε = 6.0 V
r = 2.0 Ω 4.0 Ω

2.0 Ω

4.0 Ω

b

ε = 12.0 V
r = 3.0 Ω

60.0 Ω

40.0 Ω 20.0 Ω

60.0 Ω

57.0 Ω

3.0 V
r = 1.0 Ω

9.0 V

R1 = 4.0 Ω R2 = 2.0 Ω

r = 1.0 Ω
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5.4 Magnetic fi elds
Eff ects of magnetic fi elds have been known since ancient times and the 
magnetic compass has been used in navigation since the 12th century 
and probably earlier. In modern times the use of magnetic fi elds is 
abundant in modern devices such as computers and mobile phones. Very 
powerful magnets are used to steer elementary particles in circular paths in 
accelerators such as the Large Hadron Collider at CERN.

How are magnetic fi elds produced?
Simple experiments reveal that bar magnets have two poles; these are 
called north and south. Two like poles repel and two unlike poles attract. 
This is very similar to positive and negative electric charges, but the poles 
of a magnet and electric charge are diff erent things. 

It is well known that the needle of a compass (the needle is a small bar 
magnet) aligns itself in an approximately north–south direction. This can 
be explained by assuming that the Earth is itself a large magnet. Just as an 
electric charge creates an electric fi eld in the space around it, a magnet 
creates a similar (but distinct) fi eld, a magnetic fi eld. The magnetic 
needle of a compass can be used to investigate the presence of magnets. 
In fact, since the compass needle aligns itself with a magnetic fi eld (Figure 
5.48), it follows that we can use the direction in which a compass needle 
is pointing to defi ne the direction of the magnetic fi eld at the location 
of the compass. In 1819 the Danish scientist H.C. Ørsted (1777–1851) 
noticed a compass needle change direction when a current was turned 
on in a nearby wire. Although he could not explain why this happened, 
Ørsted had demonstrated that electric currents produce magnetic fi elds. 
(The Earth’s magnetic fi eld is also thought to be created by currents in the 
Earth’s molten iron core.)

Like the electric fi eld, E, the magnetic fi eld, B, is a vector quantity – it 
has magnitude and direction. 

Figure 5.49 shows small magnetic compasses around a long straight 
wire that carries current upwards. The compass needles align with the 
magnetic fi eld. The direction of the needles at each point, give the 
direction of the magnetic fi eld at that point. Drawing a smooth curve 

Learning objectives

• Work with magnetic fi elds.
• Understand how magnetic fi elds 

exert magnetic forces on moving 
charges and electric currents.

B BF

F

B

N

S

Figure 5.48 A magnetic needle in an 
external magnetic fi eld experiences forces 
that align it with the direction of the 
magnetic fi eld. The direction of the needle 
(from its south to the north pole) gives the 
direction of the external magnetic fi eld.

current

wire

Figure 5.49 Magnetic fi eld around a straight wire.
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through the compass needles gives a circle. The magnetic fi eld is tangent 
to this circle (Figure 5.50). The imaginary curves whose tangents give the 
magnetic fi eld are called magnetic fi eld lines.

Figure 5.51 shows the magnetic fi eld lines for a solenoid and a bar 
magnet. They are no longer circular as they were for the straight wire. 
The magnetic fi eld lines within the solenoid are fairly uniform, indicating 
that the fi eld is roughly constant in both magnitude and direction. Notice 
the similarity between the fi eld outside the solenoid and that around the 
bar magnet. Notice also that magnetic fi eld lines always exit from a north 
(N) pole and enter at a south (S) pole.

current

B

B

B

wire

Figure 5.50 A three-dimensional view of the 
magnetic fi eld pattern around a long straight 
wire. The magnetic fi eld is symbolised by 
B. The cross in the wire indicates that the 
current is entering from left to right. The 
magnitude of the fi eld decreases as we move 
away from the wire.

solenoid
bar magnet

I I

S N S N

The direction of the magnetic fi eld around a straight wire carrying a 
current is given by the right-hand grip rule illustrated in Figure 5.52.

Grip the wire with the fi ngers of the right hand in such a way 
that the thumb points in the direction of the current. Then the 
direction in which the fi ngers curl is the direction of the ‘fl ow’ of 
the magnetic fi eld vectors.

A diff erent right-hand grip rule gives the direction of the magnetic fi eld 
for a solenoid, illustrated in Figure 5.53.

Figure 5.51 The magnetic fi eld of a solenoid and a bar magnet.

magnetic
field line
direction

current
direction magnetic

field
direction

current

right hand

NS

Figure 5.52 The right-hand grip rule for the magnetic fi eld around 
a straight current-carrying wire. The thumb is in the direction of the 
current. The fi ngers curl in the direction of the magnetic fi eld. 

Figure 5.53 The right-hand grip rule for the magnetic fi eld 
around a solenoid. The fi ngers curl in the direction of the current. 
The thumb points in the direction of the magnetic fi eld. 



234

Worked example
5.21 Figure 5.54 shows two wires carrying equal currents into the page. 

 State the direction of the magnetic fi eld at point P.

Using the right-hand grip rule for each wire, the magnetic fi elds are as shown in Figure 5.55a. The arrows 
representing the fi eld are at right angles to the line joining P to each wire. Both fi elds have the same magnitude, 
as P is equidistant from both wires and the current is the same in both wires. The resultant fi eld points to the left 
(Figure 5.55b).

Figure 5.55

P

P

the magnetic field due to each
current at P

the resultant magnetic field

P

Figure 5.54

One of the great 
advances of 19th-
century physics was 

the realisation by Maxwell 
that electricity and magnetism 
are not separate phenomena. 
Magnetic phenomena have their 
origin in electric processes.

F = 0

F = 0

B

B

Figure 5.56 There is no magnetic force if the 
velocity is parallel to the magnetic fi eld.

The magnetic force on a moving charge
The direction of a magnetic feld can always be found by how a magnetic 
compass aligns. How is the magnitude of the magnetic fi eld defi ned? 
Experiments show that an electric charge moving in a region of magnetic 
fi eld experiences a new type of force called a magnetic force. 

If the velocity of the charge is parallel to the direction of the fi eld, the 
magnetic force is zero (Figure 5.56). 

There is no magnetic force on a moving charge if the charge 
moves along the fi eld direction.

In any other direction there will be a force on the charge. If the magnetic 
force is F when a charge q moves with speed v making an angle θ with 
the direction of the fi eld, then the magnitude of the fi eld, B, also called 
the magnetic fl ux density, is defi ned to be:

B = 
F

qv sin θ

The unit of the magnetic fl ux density is the tesla (T). A magnetic fl ux 
density of 1 T produces a force of 1 N on a charge of 1 C moving at 
1 m s−1 at right angles to the direction of the fi eld. 
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A charge q moving with speed v in a region of magnetic fi eld of 
magnetic fl ux density B will experience a magnetic force F given 
by:

F = qvB sin θ

We see that there is no magnetic force if the charge is not moving. This 
is diff erent from the electric force on a charge, which is always non-zero 
whether the charge moves or not. The magnetic force on particles that are 
electrically neutral (q = 0) is, of course, zero. 

What about the direction of the magnetic force? An example is shown 
in Figure 5.57. We see that the force is at right angles to both the velocity 
vector and the magnetic fi eld. 

There are a number of ‘rules’ to help us fi nd this direction. Three of 
these are shown in Figure 5.58. 

v

F

B

θ

magnetic field

magnetic field

velocity
(of positive charge)

velocity
(of positive charge)

force

force

force screw moves
this way

direction of turn

a b c

Figure 5.57 The charge shown is positive. 
The direction of the force is perpendicular to 
both the velocity vector and the magnetic 
fi eld vector. 

Try the diff erent versions and choose the one that you are comfortable 
with. 
• Version A – hold your right hand as if you are going to shake hands. 

Place your hand so that the four fi ngers point in the direction of the 
fi eld and the thumb in the direction of the velocity. The direction away 
from the palm is the direction of the force. 

• Variant B – hold your right hand as in version A, but then bend the 
middle fi nger at right angles to your palm. The middle fi nger now 
represents the force, the index fi nger the fi eld and the thumb the 
velocity.

• Version C – curl the right-hand fi ngers so that they rotate from the 
vector v to the vector B (along the smallest of the two possible angles). 
The direction of the thumb is the direction of the force. (In this version 
you can also imagine you are rotating a screw in the direction from v to 
B. The direction the screw moves is the force direction.) 

Most people fi nd version A the simplest. 

Figure 5.58 The right-hand rule gives the direction of the force on a positive charge. 
The force on a negative charge is in the opposite direction.

If you are familiar with the vector 
product of two vectors, you may 
recognise that F = qv × B.
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Worked examples
5.22 Express the tesla in terms of fundamental units.

From the defi nition B = 
F

qv sin θ it follows that:

 1 T = 
N

C × m s−1 = 
N

A × m

i.e. 1 T = 
kg m s−2

A × m
 = kg s−2 A−1

5.23 An electron approaches a bar magnet, as shown in Figure 5.59. 
What is the direction of the force on the electron?

The magnetic fl ux density at the position of the electron is to the left. Placing the right hand so that the thumb 
points up the page (velocity direction) and the fi ngers to the left (fi eld direction), the palm is pointing out of the 
page. But the charge is negative and so the force is into the page.

The magnetic force on a current-carrying wire
A current in a wire consists of moving charges. So a current-carrying wire 
placed in a magnetic fi eld will experience a magnetic force because there 
is a force on the moving charges in the wire. 

Part of the wire in Figure 5.60 is in a region of magnetic fi eld directed 
out of the page. In Figure 5.60a the current in the wire is zero and there 
is no force. Figures 5.60b and Figure 5.60c show the forces on the wire 
when current fl ows in opposite directions. The forces on the wire are also 
opposite.

The formula for the magnetic force on a length L (L is that length of 
the wire that fi nds itself in the region of the fi eld) is:

F = BIL sin θ

where θ is the angle between the current and the direction of the 
magnetic fi eld. (This formula follows from the force on moving charges, 
as shown in the next section.)

To fi nd the direction of the force, use the right-hand rules for the 
force on a charge (Figure 5.58) and replace the velocity by the 
current.

NS

I
I

I
I

I = 0

B BB

a cb

Figure 5.60 The magnetic force on a 
current-carrying wire.

Figure 5.59
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As we will see in detail in a later section, parallel currents attract and 
anti-parallel currents repel. Use this information to do the next worked 
example.

Worked example
5.24 The diagram shows three wires, X, Y and Z, carrying currents of equal magnitude. The directions of the 

currents are as shown.

 State the direction of the force on wire Z.

Parallel currents attract and anti-parallel repel. So 
X attracts Z and Y repels it. Y is closer to Z so the 
force it exerts is larger. Hence the force is to the right.

A closer look at the magnetic force on a current-
carrying wire
Consider a wire carrying a current in a region of magnetic fi eld. Figure 5.61 
shows one electron (green dot) that moves with speed v inside the wire. 
The electron experiences a magnetic force that pushes it downwards. The 
magnetic force on the moving charges makes electrons accumulate at the 
bottom of the wire, leaving an excess positive charge at the top of the wire.

X Y Z

Exam tip
It is simpler to remember that parallel currents 
attract rather than having to work out the 
direction of the magnetic fi eld at Z’s location 
and then fi nd the force.

Figure 5.61 a Electrons in the wire experience a magnetic force. b The electric force on the fi xed positive charges 
means there is a force on the wire itself.

The positive and negative charges at the top and bottom of the wire 
exert an electric force on the electrons so that no new electrons move 
towards the bottom of the wire: the magnetic force on the electrons is 
balanced by an electric force, qE = qvB. 

So, since the magnetic force on the electrons is balanced by an electric 
force neither of these forces is responsible for the force on the entire 
wire. The electric fi eld E between the top and bottom sides of the wire 
exerts an electric force on the fi xed positive charges inside the wire (the 
protons in the nuclei). It is this force that acts on the wire. 
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Let n be the density of positive charges within the wire (number of 
charges per unit volume). The number of charges within a length L of 
cross-sectional area A is N = nAL and so the force on this length of wire is:

F = (nAL)qE

But qE = qvB, so:

F = (nAL)qvB

F = (nAqv)BL

Using nAqv = I, we get:

F = BIL

as expected! (Recall that here sin θ = 1.)

Motion of charges in magnetic fi elds
When the velocity of a charge is at right angles to the magnetic fi eld, 
the path followed by the charge is a circle, as shown in Figure 5.62. The 
centripetal force is provided by the magnetic force, which is at right 
angles to the velocity. 

(Special cases involve motion along a straight line if the velocity is 
parallel to the fi eld, or helical if the velocity is at some angle to the fi eld, 
Figure 5.63 – see exam-style question 15 at the end of the topic.)

Consider a charge q moving with speed v at right angles to a magnetic 
fi eld B. The force on the charge is F = qvB at right angles to the velocity. 
The charge moves in a circle of radius R, and so by Newton’s second law:

qvB = m 
v2

R

Rearranging, we get:

R = 
mv
qB

Very massive or very fast charges will move in large circles; large charges 
and large magnetic fi elds will result in small circles. The time T to make 
one full revolution in a magnetic fi eld is found from:

T = 
2πR

v

T = 
2π
v  

mv
qB

T = 
2πm
qB

This shows that T is independent of the speed. This is an important result 
in experimental particle physics and forms the basis for an accelerator 
called the cyclotron.

v

F

B

B

B
particle

spiral path

FB

F
FB

Figure 5.62 A charge in a magnetic fi eld 
moves in a circle.

Figure 5.63 A charge enters a region of 
magnetic fi eld at an angle. It follows a helical 
path wrapping around the fi eld lines.
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Worked examples
5.25 Figure 5.64 shows a charged particle entering a region of magnetic 

fi eld that is directed into the plane of the page.

The path of the particle is a quarter circle. 
a Justify why the charge is positive. 
b The particle is in fact a proton with mass 1.67 × 10−27 kg and 

charge 1.6 × 10−19 C. The magnetic fl ux density is 0.25 T. Calculate 
the radius of the proton’s circular path.

c The proton enters the region of the fi eld with a speed of 
5.2 × 106 m s−1. Calculate the time the proton spends in the region 
of magnetic fi eld. 

a The force must be directed towards the centre of the circle. The fi eld is into the page so by the right-hand force 
rule the charge must be positive.

b From qvB = 
mv2

R  we deduce that R = 
mv
qB. Thus:

  R = 
1.67 × 10−27 × 5.2 × 106

1.6 × 10−19 × 0.25

  R = 0.217 ≈ 0.22 m

c The path is a quarter of a circle of radius R, so the length of the path is:

  
2πR

4  = 
2π × 0.217

4  = 0.34 m

 The time in the fi eld is therefore:

  
0.34

5.2 × 106 = 6.6 × 10−8 s

5.26 Figure 5.65 shows the path of a charged particle. The particle goes 
through a thin metallic foil.

 State and explain the direction of motion of the particle and the sign 
of its charge.

The path consists of two circular arcs of diff erent radius. The radius gets smaller because the particle loses energy 
as it passes through the foil. Therefore the direction of motion is counter-clockwise. Since the fi eld is directed into 
the plane of the page the charge must be positive by the right-hand force rule so that the force is directed towards 
the centre of the arcs.

metal foil

Figure 5.64

Figure 5.65 
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Work done and magnetic forces
Since the magnetic force is always normal to the velocity of the charge, 
it follows that it cannot do any work. The big magnets in particle 
accelerators are used only to defl ect particles, not to increase the particles’ 
kinetic energy (that job is done by electric fi elds).

Worked example
5.27 Justify why the proton in Worked example 5.26 exits the region of magnetic fi eld with the same speed as 

that at the entry point.

The work done on the proton by the magnetic force is zero. But the work done is the change in kinetic energy. 
So the kinetic energy does not change and so neither does speed.

The force between two current-carrying wires
Consider two long, straight, parallel wires carrying currents I1 and I2 
(Figure 5.66).The fi rst wire (wire 1) creates a magnetic fi eld in space. 
This fi eld has magnitude B1 at the position of the second wire (wire 2). 
This means wire 2 experiences a magnetic force. Similarly, wire 2 creates 
a magnetic fi eld of magnitude B2 at the position of wire 1, so that wire 1 
also experiences a magnetic force. By Newton’s third law, the force that 
wire 1 exerts on wire 2 must be accompanied by an equal and opposite 
force of wire 2 on wire 1. Therefore the forces experienced by the two 
wires are equal and opposite.

Exam tip
W = Fs cos θ
For the magnetic force, θ = 90° 
giving W = 0.

parallel currents

a

F1 F2
I1 I2

B2

B1

anti-parallel currents

b

F2
I2

B1

F1
I1

B2

We can use the right-hand rule to fi nd the directions of these forces. 
Assume fi rst that both currents are fl owing into the page. Then the 
magnetic fi elds are as shown in Figure 5.66a and the forces are attractive. 
If wire 1 carries current into the page and wire 2 carries current out of 
the page,  as shown in Figure 5.66b, the forces are repulsive. In both cases 
the forces are equal and opposite, consistent with Newton’s third law. So 
we have found that if the currents are parallel, the forces are attractive, and 
if they are anti-parallel, the forces are repulsive.

This force between two wires is used to defi ne the ampere, the unit of 
electric current. 

Figure 5.66 The forces on two parallel currents are equal and opposite.

The currents are diff erent in the 
two wires, so the magnetic fi elds 
are diff erent, but the two forces are 
equal in magnitude.
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The ampere is defi ned through the magnetic force between two 
parallel wires. If the force on a 1 m length of two wires that are 
1 m apart and carrying equal currents is 2 × 10−7 N, then the 
current in each wire is defi ned to be 1 A.

The coulomb is defi ned in terms of the ampere as the amount of charge 
that fl ows past a certain point in a wire when a current of 1 A fl ows for 1 s. 

The ampere is equal to a coulomb divided by a second; but it is defi ned 
as above.

Nature of science
Introduced in the 19th century by Michael Faraday as ‘lines of force’, the 
concept of magnetic fi eld lines allowed scientists to visualise the magnetic 
fi eld around a magnet, and the magnetic fi eld around a moving charge. A 
few years later, in one of the greatest unifi cations in physics, James Clerk 
Maxwell showed that all magnetic phenomena and electric phenomena 
are diff erent sides of the same general phenomenon, electromagnetism, 
and that light is a combination of electric and magnetic fi elds. In the early 
20th century, Albert Einstein showed that viewing electric and magnetic 
phenomena from diff erent frames of reference leads naturally to the theory 
of relativity. At about the same time, trying to understand magnetism in 
diff erent materials required the introduction of quantum theory.

39 Draw the magnetic fi eld lines that result when 
the magnetic fi eld of a long straight wire 
carrying current into the page is superimposed 
on a uniform magnetic fi eld pointing to the 
right that lies on the page.

a

F

v

b

v

B

c

F

v

d

B

v

e
v

B

? Test yourself
37 Draw the magnetic fi eld lines for two parallel 

wires carrying equal currents into the page. 
Repeat for anti-parallel currents.

38 Determine the direction of the missing quantity 
from B, v and F in each of the cases shown in the 
diagram. The circle represents a positive charge.
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40 A long straight wire carries current as shown in 
the diagram. Two electrons move with velocities 
that are parallel and perpendicular to the current. 
Determine the direction of the magnetic force 
experienced by each electron.

41 A proton moves past a bar magnet as shown in 
the diagram. Find the direction of the force it 
experiences in each case.

42 The diagram shows two parallel plates. The 
electric fi eld is directed from top to bottom 
and has magnitude 2.4 × 103 N C–1. The shaded 
region is a region of magnetic fi eld normal to 
the page.

 a  Deduce the magnetic fi eld magnitude and 
direction so that an electron experiences zero 
net force when shot through the plates with a 
speed of 2.0 × 105 m s−1.

 b  Suggest whether a proton shot with the same 
speed through the plates experiences zero net 
force.

 c  The electron’s speed is doubled. Suggest 
whether the electron would it still be 
undefl ected for the same magnetic fi eld found 
in a.

43 A bar magnet is placed in a uniform magnetic 
fi eld as shown in the diagram.

 a  Suggest whether there is a net force on the 
bar magnet.

 b Determine how it will move.
44 A high-tension electricity wire running along a 

north–south line carries a current of 3000 A. The 
magnetic fi eld of the Earth at the position of the 
wire has a magnitude of 5.00 × 10−5 T and makes 
an angle of 30° below the horizontal. Calculate 
the force experienced by a length of 30.0 m of 
the wire.

45 a  An electron of speed v enters a region of 
magnetic fi eld B directed normally to its 
velocity and is defl ected into a circular path. 
Deduce an expression for the number of 
revolutions per second the electron will make. 

 b  The electron is replaced by a proton. Suggest 
whether the answer to a changes.

46 A uniform magnetic fi eld is established in the 
plane of the paper as shown in the diagram. 
Two wires carry parallel currents of equal 
magnitudes normally to the plane of the paper at 
P and Q. Point R is on the line joining P to Q 
and closer to Q. The magnetic fi eld at position R 
is zero.

 a  Determine whether the currents are going 
into the paper or out of the paper.

 b  The magnitude of the current is increased 
slightly. Determine whether the point where 
the magnetic fi eld is zero moves to the right 
or to the left of R.

a

I

b

a

N S

b

N S

c

N S

velocity out
of page

+

–

N S

N

S

P R Q
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Exam-style questions

1 A small charge q is placed near a large spherical charge Q. The force experienced by both charges is F. The electric 
fi eld created by Q at the position of q is:

A 
F
Q B 

F
q  C 

F
Qq D 

FQ
q

2 Two charges are fi xed as shown. The charges are 2q and −q. In which regions can the electric fi eld strength due to 
the two particles be zero?

2qI II III–q

A

R v

C

R 2v

D

R
2

v

B

2R
v

electric field

path followed by
X and Y

A I only B II only C III only D I and III

3 The diagrams show equal lengths of wires made of the same material and various cross-sectional radii. The drift 
speed of electrons is indicated. In which wire is the current the greatest?

4 Two charged particles X and Y are projected horizontally with the same speed from the same point in a region of 
uniform electric fi eld. Gravity is not negligible.

 The two particles follow identical paths. What conclusion about X and Y can one draw from this?

A They have the same mass.
B They have the same charge.
C They have the same acceleration.
D They have the same momentum.

5 A charged particle moves in a circle of radius R in a region of uniform magnetic fi eld. The magnetic fi eld is at 
right angles to the velocity of the particle and exerts a force F on the particle. After half a revolution the change in 
the particle’s kinetic energy is:

A 0 B πRF C 2πRF D RF
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6 A negatively charged particle is at rest in a magnetic fi eld B. The force on the particle is:

A parallel to B
B opposite to B
C at right angles to B
D zero.

7 An electron enters a region of magnetic fi eld. 

A B C D

A

4 Ω

3 Ω

12 Ω

B

12 Ω

3 Ω

4 Ω

C

12 Ω

4 Ω

3 Ω

D

4 Ω

12 Ω

3 Ω

A

4 Ω

3 Ω

12 Ω

B

12 Ω

3 Ω

4 Ω

C

12 Ω

4 Ω

3 Ω

D

4 Ω

12 Ω

3 Ω

C = 4 Ω

A = 8 Ω B = 10 Ω
6 V

D = 2 Ω

 In which case is the initial force on the electron directed towards the bottom of the page?

8 In which of the following arrangements is the total resistance 6 Ω?

9 In which of the resistors in the circuit below is the power dissipated the least?
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10 Two long parallel wires carry equal currents in opposite directions. What fi eld do the two wires produce at point 
M, which is midway between the wires and on the plane of the paper?

M

I1

I2

I3

0.0
0.0

I / mA

V / V
1.0 2.0 3.0 4.0 5.0 6.0

0.5

1.0

1.5

2.0

2.5

3.0

A a magnetic fi eld parallel to the wires
B an electric fi eld parallel to the wires
C a magnetic fi eld at right angles to the plane of the page
D an electric fi eld at right angles to the plane of the page

11 A student assigns currents at a junction in a circuit as shown in the diagram. 

 The student’s calculations correctly give that I1 = 3 A and I2 = −2 A. The value of I3 is:

A 1 A
B −1 A
C 5 A
D −5 A

12 The graph shows the variation with voltage V across a fi lament lamp with the current I though the lamp.

a Suggest whether the resistor obeys Ohm’s law. [1]
b Calculate the resistance of the lamp when V = 4.0 V. [2]
c The resistivity of the fi lament of the lamp at a voltage of 4.0 V is 3.0 × 10−7 Ω m. The radius of the 

fi lament is 0.25 mm. Calculate the length of the fi lament. [2]
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d Two lamps whose I–V characteristics are given by the graph above are connected in parallel to a battery of 
negligible internal resistance. The current leaving the battery is 2.0 mA. Estimate:

  i the emf of the battery [1]
  ii the power dissipated in each lamp. [1]
e Thermal energy is generated in a fi lament lamp when it is operating. Describe the mechanism by 

which this energy is generated. [3]

13 The three devices in the circuit shown are identical and may be assumed to have constant resistance. 
Each device is rated as 1500 W at 230 V. The emf of the source is 230 V and its internal resistance is negligible.

ԑ

S1

S2

V

M

A

a Calculate the resistance of one of the devices. [2]
b Calculate the total power dissipated in the circuit when:
  i S1 is closed and S2 is open [1]
  ii S1 is closed and S2 is closed [1]
  iii S1 is open and S2 is open [1]
  iv S1 is open and S2 is closed. [1]
c In the circuit below the cell has internal resistance 0.0500 Ω. When the switch in series with a motor of 

resistance of 25.0 Ω is open, the voltmeter reads 11.5 V and the current in the ammeter is 9.80 A.

  The switch is closed. 
  i Determine the emf of the cell. [2]
  ii State and explain the eff ect, if any, of closing the switch on the brightness of the lamp. [2]
  iii Calculate the current through the motor. [2]
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14 A current I is established in the conductor. The diagram shows one of the electrons making up the current 
moving with drift speed v. The conductor is exposed to a magnetic fi eld B at right angles to the direction of 
motion of the electron.

v

B

d

X

Y

a On a copy of the diagram, draw an arrow to indicate the direction:
  i of the conventional current in the conductor [1]
  ii the magnetic force on the electron. [1]
b Show that the current in the conductor is given by I = qnAv, where q is the charge of the electron, 

A the cross-sectional area of the conductor, v the drift speed of the electrons and n is the number of 
free electrons per unit volume. [3]

c Explain why a potential diff erence will be established between the top (T) and bottom (B) faces of the 
conductor. [3]

d  i  The electric fi eld between T and B is given by E = Vd  where V is the potential diff erence between 
T and B and d is their separation. Show that the voltage between T and B (the Hall voltage) is 
given by V = vBd. [2]

  ii  The current in the conductor is 0.50 A, the number density of electrons is 3.2 × 1028 m−3, the cross-
sectional area of the wire is 4.2 × 10−6 m2 and the magnetic fi eld is 0.20 T. Calculate the Hall voltage 
in this conductor. [3]

e Outline how the existence of the Hall voltage can be used to verify that the charge carriers in the 
conductor are negatively charged. [2]

15 A proton of mass m and electric charge q enters a region of magnetic fi eld at point X and exits at point Y. 
The speed of the proton at X is v. The path followed by the proton is a quarter of a circle.
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a State and explain whether the speed of the proton at Y is the same as the speed at X. [2]
b Suggest why the path of the proton is circular. [2]
c  i Show that the radius of the circular path is given by R = mv

qB, where B is the magnetic fl ux density. [2]
  ii  The speed of the proton is 3.6 × 106 m s−1 at X and the magnetic fl ux density is 0.25 T. Show that the 

radius of the path is 15 cm. [2]
  iii Calculate the time the proton is in the region of the magnetic fi eld. [2]
d  i  The proton is replaced by a beam of singly ionised atoms of neon. The ions have the same speed 

when they enter at X. The beam splits into two beams: B1 of radius 38.0 cm and B2 of radius 41.8 cm. 
The ions in beam B1 have mass 3.32 × 10−26 kg. Predict the mass of the ions in beam B2. [2]

  ii Suggest the implication of d i for nuclear structure. [2]

16 In the circuit shown A, B and C are three identical light bulbs of constant resistance. The battery has negligible 
internal resistance.

a Determine the order of brightness of the light bulbs. [2]
b Bulb C burns out. Predict how the brightness of A will change. [2]
c Bulb C operates normally, but now bulb B burns out. Compare the brightness of A and of C now to the 

brightness they had before B burnt out. [2]

A B

C

4.0 Ω

4.0 Ω

4.0 V

4.0 V

A

B

2.0 V

4.0 Ω

17 Consider the circuit shown in which the batteries are assumed to have negligible internal resistance.

a Calculate the current, magnitude and direction, in each battery. [4]
b Determine the potential diff erence between points A and B. [2]
c Determine the total power in each battery, commenting on your answer. [3]
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Circular motion and gravitation  6
6.1 Circular motion
Circular motion is common in everyday life. Cornering in a car, the 
rotation of a salad spinner and most theme park rides are all examples 
of circular motion. A particular example is the motion of planets around 
the Sun in orbits that are approximately circular. As we will see, circular 
motion requires the presence of a force directed towards the centre of the 
circle. To account for the circular motion of planets around the Sun a new 
force was necessary: the force of gravitation.

Circular motion and angular speed
Consider the object in Figure 6.1, which rotates in a circle of radius r in a 
counter-clockwise direction, with constant speed v.

Let T be the time taken to complete one full revolution. We call T the 
period of the motion. Since the speed is constant and the object covers a 
distance of 2πr in a time of T seconds, it follows that:

v = 
2πr
T

As the object moves around the circle it sweeps out an angle Δθ radians 
in a time Δt, as shown in Figure 6.2. We can therefore defi ne the angular 
speed of the object, denoted by ω, by:

angular speed, ω = 
angle swept
time taken  = 

Δθ
Δt

For a complete revolution, Δθ = 2π and Δt = T, so we also have:

ω = 
2π
T

Since the rotating frequency f is given by:

f = 
1
T

we have:

ω = 
2π
T  = 2πf

The units of angular speed are radians per second, rad s−1.
The velocity vector is at a tangent to the circle. In a short time Δt 

the body travels a distance v Δt along the circle. The angle swept in that 
same time is Δθ. The distance travelled is an arc of the circle, and from 
trigonometry we know that the length of the arc of a circle radius r is 
given by r Δθ. So we have that:

v Δt = r Δθ 

Learning objectives

• Solve problems using the 
concepts of period, frequency, 
angular displacement, angular 
velocity and linear velocity.

• Identify forces (such as tension, 
electrical, gravitational or 
magnetic forces) which may act 
as centripetal forces in circular 
motion.

r

v 

Figure 6.1 An object moving in a circle of 
radius r. 

r

distance
travelled

reference line
t = 0

t = ∆t

∆θ

Figure 6.2 As the object rotates around the 
circle it sweeps out an angle measured from 
some arbitrary reference line.
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Dividing both sides by the time Δt gives:

v =r  
Δθ
Δt

v = r ω

This is the relation between the linear speed v and the angular speed ω.

Worked example
6.1 The radius of the Earth’s orbit is about 1.5 × 1011 m. Calculate:
 a the angular speed of the Earth as it rotates around the Sun
 b the linear speed of the Earth. 

a The Earth completes one full revolution in approximately 365 days, so T is 365 days. 

 Using ω = 
2π
T  for angular speed, we get:

ω = 
2π

365 × 24 × 60 × 60

ω = 1.99 × 10−7 ≈ 2.0 × 10−7 rad s−1

b Use the relation between angular and linear speed, v = ω r :

v = 1.99 × 10−7 × 1.5 × 1011 = 29 580 ≈ 3.0 × 104 m s−1

Figure 6.3 As the Earth rotates about its axis, 
stars appear to trace circles in the night sky.

The photograph in Figure 6.3 shows stars tracing arcs. 
Ancient people explained this observation by saying that 
the stars rotate around the fi xed Earth. Today we explain 

this by saying that the Earth rotates about its axis. Which view is 
correct and how do we know? In 1851, the French physicist Leon 
Foucault constructed a very long pendulum with a heavy bob at the 
end. When a Foucault pendulum is set into oscillation the plane of 
oscillation rotates slowly clockwise (in the northern hemisphere). 
The simple explanation for this behaviour is the rotation of the 
Earth about its axis. The same eff ect that makes the Foucault 
pendulum precess, i.e. change its plane of oscillation, is responsible 
for the patterns of wind and ocean currents on Earth.

It is quite remarkable how very simple observations reveal 
something deep about the world around us. In the same category 
we have Eratosthenes’ ingeniously simple method for measuring 
the radius of the Earth; and Olbers’ observation about the darkness 
of the night sky, which led to the abandonment of the Newtonian 
view of an infi nite universe.

Exam tip
Remember to convert days to seconds.



6  CIRCULAR MOTION AND GRAVITATION 251

Centripetal acceleration
Before going any further it is important to note that in circular motion 
even if the linear speed is constant the velocity is not: the velocity is 
changing because its direction is changing. Since the velocity changes, 
there is acceleration. What follows is a derivation of the expression for 
acceleration in circular motion. You may want to skip the derivation and 
go directly to the result just before the end of this section.

Look at Figure 6.4a, which shows the velocity of a particle at two 
points P and Q as it moves in a circle. We know that the velocity vector at 
each point must be a tangent to the circle. 

The acceleration is defi ned as:

a = 
Δv
Δt

where Δv is a vector. Thus, we have acceleration every time the velocity 
vector changes. This vector will change if:
• its magnitude changes
• the direction changes
• both magnitude and direction change.

For motion in a circle with constant speed, it is the direction of 
the velocity vector that changes. We must therefore fi nd the diff erence 
between the velocities at P and Q:

Δv = vQ − v P

This is shown in Figure 6.4b, where we see that the angle between the 
vectors is Δθ.

The magnitude of the vector Δv can be found from simple trigonometry. 
We know that the magnitudes of the velocity vectors at P and Q are the 
same – they are equal to the constant speed v of the moving particle. We use 
these to draw the triangle in Figure 6.4c, which is isosceles with two sides 
of length v, the speed of the particle, and angle Δθ. The third side is then the 
magnitude of the velocity change, Δv. If the angle Δθ is very small, then the 
distance Δv is approximately an arc of a circle of radius v and subtending an 
angle Δθ (in radians). Hence Δv = v Δθ. 

a b c

arc

Q

P
∆θ

∆θ ∆θ

∆v

v v

vQ

vQ

vP

vP

∆v

Figure 6.4 a The velocity vector changes direction as the particle moves from P to Q. 
b The change in the velocity vector from P to Q is given by Δv. c If the angle Δθ is very 
small, the arc length and the length of the chord are the same.
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Therefore using a = 
Δv
Δt  the acceleration has a magnitude given by:

a = v 
Δθ
Δt

 = v ω

But ω = 
v
r  and so the acceleration is:

a = v × 
v
r = 

v2

r

This gives us the magnitude of the acceleration vector for motion around 
a circle of radius r with constant speed v. The relationship shows that 
the magnitude of the acceleration vector is constant if v is constant. But 
what about its direction? As Δt gets smaller and smaller, the angle Δθ 
gets smaller and smaller, which means that the vector Δv, which is in the 
direction of acceleration, becomes perpendicular to v. This means that the 
acceleration vector is normal to the circle and directed towards the centre 
of the circle. It is a centripetal acceleration (Figure 6.5).

A body moving along a circle of radius r with speed v experiences 
centripetal acceleration that has magnitude given by: 

a = 
v2

r
and is directed toward the centre of the circle.

We can fi nd many equivalent expressions for the centripetal acceleration 
as follows: 

Using v = 2π
T

 we have that a = 
4π2r 2

rT 2
 = 

4π2r 
T 2

 

Using v = r ω  gives a = ω2r
We can defi ne a quantity called the frequency of the motion. This will 

also be useful in the context of waves. Frequency is the number of full 
revolutions per second. Since we make one full revolution in the course of 
one period T, the number of revolutions in one second is 

f = 1
T . So we have another expression for centripetal acceleration:

a = 4π 2rf  2

So we can use one of a = 
v 2
r  or a = ω2r or a = 

4π2r 
T 2  or a = 4π 2rf  2, 

depending on what is convenient.

v

a

v

a

v 
a

Figure 6.5 The centripetal acceleration 
vector is normal to the velocity vector.
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Worked examples
6.2 A particle moves along a circle of radius 2.0 m with constant angular speed 2.1 rad  s−1. Determine the 

centripetal acceleration of the particle.

Remember that a = ω2r and so a = 2.12 × 2.0

Hence a ≈ 8.8 m s−2

6.3 The radius of the Earth is r = 6.4 × 106 m. Determine the centripetal acceleration due to the spinning Earth 
experienced by someone on the equator.

A mass on the equator travels a distance of 2πr in a time T = 1 day. 

Thus: v = 
2 × π × 6.4 × 106

24 × 60 × 60  = 4.65 × 102 m s−1

and so: a = 
(4.65 × 102 )2

6.4 × 106  = 3.4 × 10−2 m s−2

This is quite small compared with the acceleration of free fall and we are not aware of it in daily life.

6.4 A mass moves in a circle with constant speed in a counter-clockwise direction, as in Figure 6.6a. Determine 
the direction of the velocity change when the mass moves from A to B.

Draw the velocity vectors, as shown in Figure 6.6b. The velocity at A is vertical and at B it points to the left. 
The change in the velocity vector is vB − vA and this diff erence of vectors is directed as shown in Figure 6.6b. 

Centripetal forces
If a body moves in a circle, there must be a net force acting on the 
body, since it is accelerating. If the speed is constant, the direction of the 
acceleration is towards the centre of the circle and therefore that is also the 
direction of the net force. It is a centripetal force. Its magnitude is given by:

F = 
mv2

r

A

B 

a b 

–vA

vB

vA

Figure 6.6 Change in velocity between two positions in circular motion.
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which can also be written as:

F = mω 2r

Consider a car moving on a circular level road of radius r with constant 
speed v. Friction between the wheels and the road provides the necessary 
force directed towards the centre of the circle that enables the car to take 
the turn (Figure 6.7). Note that in this example it is friction that provides 
the centripetal force. However, this does not mean that friction is always a 
centripetal force – it only applies to the case when the resulting motion is 
circular.

velocity vector

acceleration

path followed if
speed is too high

reaction
force, Rfriction

force, f

weight,
mg

top view

side view

Figure 6.7 A car will skid outwards (i.e. will cover a circle of larger radius) if the friction 
force is not large enough.

Worked examples
6.5 a  The coeffi  cient of static friction between the tyres of a car of mass 1100 kg and dry asphalt is about 0.80. 

Determine the maximum speed with which a car can take a circular turn of radius 95 m. 
 b  In wet conditions the coeffi  cient of friction is reduced to half its value in dry conditions. Predict the safe 

maximum speed now. 

a The maximum frictional force is given by Fmax = μSN, where μS is the coeffi  cient of static friction and N is the 
reaction force. Hence:

Fmax = 0.80 × 1100 × 9.81 = 8.6 × 103 N

This frictional force provides the centripetal force for the car and so:

mv2

r  = Fmax

v =     
Fmaxr

m

v =     
8.6 × 103 × 95

1100

v = 27 m s−1
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b You could repeat the calculation in part a, fi nding a new maximum force with the reduced coeffi  cient of 
friction. But it would be better to fi nd how the velocity depends on the coeffi  cient of friction. To do this you 
need to go back to the original expression for Fmax.

Fmax = μSN = μSmg

Therefore:

mv2

r  = μSmg ⇒ v =    μS  gr

So the mass is not relevant. In this case g and r are the same for both wet and dry conditions, so the velocity 
depends on the square root of the coeffi  cient of friction.

In wet conditions the coeffi  cient of friction is 0.40, so the new speed is:

v = 27     
0.40
0.80  ≈ 19 m s−1

6.6 A particle is tied to a string and moves with constant speed in a 
horizontal circle. The string is tied to the ceiling. Draw the forces 
on the particle.

A common mistake is to put a horizontal force pointing toward the centre and call it the centripetal force. When 
you are asked to fi nd forces on a body, the list of forces that are available include the weight, reaction forces (if the 
body touches another body), friction (if there is friction), tension (if there are strings or springs), resistance forces 
(if the body moves in air or a fl uid), electric forces (if electric charges are involved), etc. Nowhere in this list is there 
an entry for a centripetal force.

Think of the word centripetal as simply an adjective that describes forces already acting on a body, not as a new 
force. In this example, the only forces on the particle are the weight and the tension (Figure 6.8a). If we decompose 
the tension into horizontal and vertical components, we see that the weight is equal and opposite to the vertical 
component of the tension. This means that the only force left on the particle is the horizontal component of the 
tension, which points towards the centre of the circle. We may now call this force the centripetal force. But this is 
not a new force. It is simply the component of a force that is already acting on the particle (Figure 6.8b).

T 
T TV

TH

W W 

a b

Figure 6.8 a The forces on the particle. b Decomposing the 
tension into horizontal and vertical components, TH and TV.

Exam tip
It is very important that you 
understand Worked example 6.6.
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6.7 A mass m is tied to a string and made to move in a vertical circle of radius r with constant speed v. 
 a Determine the tension in the string at the lowest and highest points of the circle.
 b Calculate the minimum speed so that the string never goes slack.

a The forces are as shown in Figure 6.9. 

At the lowest point, the net force is T1 − mg and so:

T1 − mg = 
mv 2

r

Rearranging, this gives:

T1 = mg + 
mv 2

r

At the highest point, the net force is mg + T2 and so:

T2 = 
mv 2

r  − mg

b The string goes slack when the tension in the string becomes zero. 
T2 is less than T1 so we need to make sure T2 is always greater than zero, 

 i.e. 
mv2

r  > mg

Rearranging, we need v2 > gr.

mg

mg

T2 

T1 

Figure 6.9 The tension in the 
string is diff erent at diff erent 
positions of the mass.

It is important to note that, since a centripetal force is at right angles to 
the direction of motion, the work done by the force is zero. (Recall that 
W = Fs cos θ, and here the angle is a right angle.)

It is a common mistake in circular motion problems to include a 
force pushing the body away from the centre of the circle: a centrifugal 
force. It is important to stress that no such force exists. A body in circular 
motion cannot be in equilibrium and so no force pushing away from the 
centre is required.

Nature of science 
Simple deductions
Newton’s second law of motion implies that when a body accelerates a 
net force of magnitude ma must be acting on the body, and the direction 
of the force is the same as the direction of the acceleration vector. Circular 
motion involves an acceleration directed towards the centre of the circle. 
This means that the observation of the (approximate) circular motion of 
planets implies the existence of a force. Newton used this fact to deduce 
the existence of the gravitational force: the same force that causes objects 
to fall towards the surface of the Earth is responsible for the motion of 
planets around the Sun.

Exam tip
It is important that you 
understand why the centripetal 
force does no work. It is also 
important to avoid thinking 
about centrifugal forces, as 
‘centrifugal forces’ do not exist.
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 6 Estimate the length of the day if the centripetal 
acceleration at the equator due to the spinning 
Earth was equal to the acceleration of free fall 
(g = 9.8 m s−2 ).

 7 A neutron star has a radius of 50.0 km and 
completes one revolution every 25 ms. 
a  Calculate the centripetal acceleration 

experienced at the equator of the star.
b  The acceleration of free fall at the surface of 

the star is 8.0 × 1010 m s−2. State and explain 
whether a probe that landed on the star could 
stay on the surface or whether it would be 
thrown off .

 8 The Earth (mass = 6.0 × 1024 kg) rotates around 
the Sun in an orbit that is approximately circular, 
with a radius of 1.5 × 1011 m.
a  Estimate the orbital speed of the Earth around 

the Sun.
b  Determine the centripetal acceleration 

experienced by the Earth.
c Deduce the magnitude of the gravitational 

force exerted on the Sun by the Earth.
 9 A plane travelling at a speed 180 m s−1 along a 

horizontal circle makes an angle of θ = 35° to 
the horizontal. The lift force L is acting in the 
direction shown. Calculate the radius of the circle.

 10 A cylinder of radius 5.0 m rotates about its 
vertical axis. A girl stands inside the cylinder with 
her back touching the side of the cylinder. The 
fl oor is suddenly lowered but the girl stays ‘glued’ 
to the wall. The coeffi  cient of friction between 
the girl and the wall is 0.60. 
a Draw a free body diagram of the forces on 

the girl.
b Determine the minimum number of 

revolutions per minute for which the girl does 
not slip down the wall. 

? Test yourself

L

θ

1 a  Calculate the angular speed and linear speed of 
a particle that completes a 3.50 m radius circle 
in 1.24 s.

 b Determine the frequency of the motion.
2 Calculate the centripetal acceleration of a body 

that moves in a circle of radius 2.45 m making 
3.5 revolutions per second.

3 The diagram shows a mass moving on a circular 
path of radius 2.0 m at constant speed 4.0 m s−1.

 a  Calculate the magnitude and direction of the 
average acceleration during a quarter of a 
revolution (from A to B).

 b  Calculate the centripetal acceleration of the mass.
4 An astronaut rotates at the end of a test machine 

whose arm has a length of 10.0 m, as shown in the 
diagram. The acceleration she experiences must 
not exceed 5g (take g = 10 m s−2 ). Determine the 
maximum number of revolutions per minute of 
the arm.

5 A body of mass 1.00 kg is tied to a string and 
rotates on a horizontal, frictionless table.

 a  The length of the string is 40.0 cm and the 
speed of revolution is 2.0 m s−1. Calculate the 
tension in the string.

 b  The string breaks when the tension exceeds 
20.0 N. Determine the largest speed the mass 
can rotate at.

 c  The breaking tension of the string is 20.0 N 
but you want the mass to rotate at 4.00 m s−1. 
Determine the shortest length string that can 
be used.

B

A

10 m
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 11 A loop-the-loop machine has radius r of 18 m.

a Calculate the minimum speed with which a 
cart must enter the loop so that it does not fall 
off  at the highest point.

b Predict the speed at the top in this case.
 12 The diagram shows a horizontal disc with a hole 

through its centre. A string passes through the 
hole and connects a mass m on top of the disc 
to a bigger mass M that hangs below the disc. 
Initially the smaller mass is rotating on the disc 
in a circle of radius r. Determine the speed of m 
be such that the big mass stands still.

 13 The ball shown in the diagram is attached to 
a rotating pole with two strings. The ball has a 
mass of 0.250 kg and rotates in a horizontal circle 
at a speed of 8.0 m s−1. Determine the tension in 
each string.

 14 In an amusement park ride a cart of mass 300 kg 
and carrying four passengers each of mass 60 kg 
is dropped from a vertical height of 120 m along 
a frictionless path that leads into a loop-the-loop 
machine of radius 30 m. The cart then enters 
a straight stretch from A to C where friction 
brings it to rest after a distance of 40 m.

a Determine the velocity of the cart at A.
b Calculate the reaction force from the seat of 

the cart onto a passenger at B.
c Determine the acceleration experienced by 

the cart from A to C (assumed constant).

v = ?

r

M

m 

1.0 m0.50 m

0.50 m 1.0 m

R

A

h

B

C



6  CIRCULAR MOTION AND GRAVITATION 259

6.2 The law of gravitation
This section will introduce us to one of the fundamental laws of physics – 
Newton’s law of gravitation. The law of gravitation makes it possible to 
calculate the orbits of the planets around the Sun, and predicts the motion 
of comets, satellites and entire galaxies. Newton’s law of gravitation was 
published in his Philosophiae Naturalis Principia Mathematica in 1686. 

Newton’s law of gravitation
We have seen that Newton’s second law implies that whenever a particle 
moves with acceleration, a net force must be acting on it. The proverbial 
apple falling freely under gravity is accelerating at 9.8 m s−2 and thus 
experiences a net force in the direction of the acceleration. This force is 
what we call the ‘weight’ of the apple. Similarly, a planet that orbits around 
the Sun also experiences acceleration and thus a force is acting on it. 
Newton hypothesised that the force responsible for the falling apple is the 
same as the force acting on a planet as it moves around the Sun. 

Newton proposed that the attractive force of gravitation between two 
point masses is given by the formula:

F = G 
M1M2

r 2

where M1 and M2 are the masses of the attracting bodies, r the 
distance between their centres of mass and G a constant called 
Newton’s constant of universal gravitation. It has the value 
G = 6.667 × 10−11 N m2 kg−2. The direction of the force is along 
the line joining the two masses.

This formula applies to point masses, that is to say masses that are very 
small (in comparison with their separation). In the case of objects such as 
the Sun, the Earth, and so on, the formula still applies since the separation 
of, say, the Sun and a planet is enormous compared with the radii of the 
Sun and the planet. In addition, Newton proved that for bodies that are 
spherical and of uniform density, one can assume that the entire mass of 
the body is concentrated at its centre – as if the body is a point mass.

Learning objectives

• Solve problems where the 
gravitational force plays the 
role of a centripetal force, in 
particular orbital motion.

• Use the concepts of gravitational 
force, gravitational fi eld strength, 
orbital speed and orbital period.

• Determine the net gravitational 
fi eld strength due to two point 
masses.

Learning objectivesLearning objectives

The laws of mechanics, along with Newton’s law of 
gravitation, are the basis of classical physics. They describe a 
perfectly deterministic system. This means that if we know 

the positions and velocities of the particles in a system at some instant 
of time, then the future positions and velocities of the particles can 
be predicted with absolute certainty. Since the beginning of the 
20th century we have known that this is not true in many cases. 
In situations normally associated with ‘chaos’ the sensitivity of the 
system to the initial conditions is such that it is not possible to make 
accurate predictions of the future state.
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Figure 6.10 shows the gravitational force between two masses. The 
gravitational force is always attractive. The magnitude of the force on 
each mass is the same. This follows both from the formula as well as from 
Newton’s third law.

Worked example
6.8 Estimate the force between the Sun and the Earth.

The average distance between the Earth and the Sun is r = 1.5 × 1011 m.

The mass of the Earth is 5.98 × 1024 kg and the mass of the Sun is 1.99 × 1030 kg. 

Substituting these values into the formula F = 
GM1M2

r 2
 gives:

 F = 
6.67 × 10−11 × 5.98 × 1024 × 1.99 × 1030

(1.5 × 1011)2

So: F = 3.5 × 1022 N

Gravitational fi eld strength
Physicists (and philosophers) since the time of Newton, including 
Newton himself, wondered how a mass ‘knows’ about the presence of 
another mass nearby that will attract it. By the 19th century, physicists had 
developed the idea of a ‘fi eld’, which was to provide a (partial) answer to 
the question. A mass M is said to create a gravitational fi eld in the space 
around it. This means that when another mass is placed at some point near 
M, it ‘feels’ the gravitational fi eld in the form of a gravitational force. 

We defi ne gravitational fi eld strength as follows.

The gravitational fi eld strength at a certain point is the 
gravitational force per unit mass experienced by a small point 
mass m placed at that point. 

M

m 
F

r

M m 
F

F

F

Figure 6.10 The mass of the spherical body to the left can be thought to be 
concentrated at its centre.

Where did the law of 
gravitation come from? 
Not just from Newton’s 

great intuition but also from 
the knowledge obtained earlier 
by Kepler that planets move 
around the Sun with a period 
that is proportional to the 32 
power of the average orbit radius. 
To get such a law, the force of 
gravitation had to be an inverse 
square law.
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In other words, if the gravitational force exerted on m is F, then:

g = 
F
m

Turning this around, we fi nd that the gravitational force on a point mass 
m is F = mg. But this is the expression we previously called the weight of 
the mass m. So we learn that the gravitational fi eld strength is the same as 
the acceleration of free fall. 

The force experienced by a small point mass m placed at distance r 
from a (spherical) mass M is:

F = G 
Mm
r2

So the gravitational fi eld strength    
F
m  of the spherical mass M is:

g = G 
M
r 2

The unit of gravitational fi eld strength is N kg−1. (This unit is 
equivalent to m s−2.)

The gravitational fi eld strength is a vector quantity whose direction is 
given by the direction of the force a point mass would experience if placed 
at the point of interest. The gravitational fi eld strength around a single point 
or spherical mass is radial, which means that it points towards the centre of 
the mass creating the fi eld. This is illustrated in Figure 6.11. This fi eld is not 
uniform – the fi eld lines gets farther apart with increasing distance from the 
point mass. (You will learn more about fi elds in Topic 10.)

In contrast Figure 6.12 shows a fi eld with constant gravitational 
fi eld strength. Here the fi eld lines are equally spaced and parallel. The 
assumption of constant acceleration of free fall (which we used for 
projectile motion in Topic 2) corresponds to this case.

Worked examples
6.9 The distance between two bodies is doubled. Predict what will happen to the gravitational force between them.

Since the force is inversely proportional to the square of the separation, doubling the separation reduces the force 
by a factor of 22 = 4.

Figure 6.11 The gravitational fi eld around a 
point (or spherical) mass is radial.

Figure 6.12 The gravitational fi eld above a 
fl at mass is uniform.
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6.10 Determine the acceleration of free fall (the gravitational fi eld strength) on a planet 10 times as massive as the 
Earth and with a radius 20 times as large.

From g = 
GM
r 2

 we fi nd:

 g = 
G(10M)
(20r E)2

 g = 
10GME

400r E2

 g = 
1
40 

GME

r E2

 g = 
1
40 gE ≈ 0.25 m s−2

6.11 Calculate the acceleration of free fall at a height of 300 km from the surface of the Earth (the Earth’s radius, 
r E, is 6.38 × 106 m and its mass is 6.0 × 1024 kg).

The acceleration of free fall is the same as the gravitational fi eld strength. At height h from the surface:

 g = 
GME

(r E + h)2

where r E = 6.38 × 106 m is the radius of the Earth. We can now put the numbers in: 

 g = 
6.67 × 10−11 × 6.0 × 1024

(6.68 × 106)2

 g = 8.97 ≈ 9 m s−2

Exam tip
Notice the addition of the height to 
the radius of the Earth. Watch the units.

Exam tip
For this type of problem write the formula for g and 
then replace mass and radius in terms of those for Earth.
It is a common mistake to forget to square the factor of 
20 in the denominator.

Orbital motion
Figure 6.13 shows a particle of mass m orbiting a larger body of mass M 
in a circular orbit of radius r. To maintain a constant orbit there must be 
no frictional forces, so the only force on the particle is the force of 

gravitation, F = 
GMm

r  2  . This force provides the centripetal force on the 

particle. Therefore:

mv2

r 
 = 

GMm
r  2

Cancelling the mass m and a factor of r, this leads to:

v =     
GM

r

m

M

r

Figure 6.13 A particle of mass m orbiting 
a larger body of mass M in a circular orbit of 
radius r. 
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This gives the speed in a circular orbit of radius r. But we know that 

v = 
2πr
T . Squaring v = 

2πr
T  and equating the two expressions for v 2, 

we deduce that:

 
4π  2

T 2
 = 

GM
r

 

⇒ T 2 = 
4π  2r3

GM 

This shows that the period of planets going around the Sun is 
proportional to the 32 power of the orbit radius. Newton knew this from 
Kepler’s calculations, so he knew that his choice of distance squared in the 
law of gravitation was reasonable.

The same calculations apply to objects orbiting the Earth, such as 
communications and weather satellites or the International Space Station 
(Figure 6.14).

Nature of science 
Predictions versus understanding
Combining the laws of mechanics with the law of gravitation enables 
scientists to predict with great accuracy the orbits of spacecraft, planets 
and comets. But to what degree do they enable an understanding of why 
planets, for example, move the way they do? In ancient times, Ptolemy 
was also able to predict the motion of planets with exceptional precision. 
In what sense is the Newtonian approach ‘better’? Ptolemy’s approach 
was specifi c to planets and could not be generalised to other examples of 
motion, whereas the Newtonian approach can. Ptolemy’s method gives 
no explanation of the observed motions whereas Newton ‘explains’ the 
motion in terms of one single universal concept, that of a gravitational 
force that depends in a specifi c way on mass and separation. In this sense 
the Newtonian approach is superior and represents progress in science. 
But there are limits to the degree to which one demands ‘understanding’: 
the obvious question for Newton would be, ‘Why is there a force between 
two masses?’. Newton could not answer this question – and no-one 
has been able to since. There is more in Option A on relativity about 
Einstein’s attempt to answer this question.

Figure 6.14 The International Space Station 
orbits the Earth in a circular orbit.
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a Determine the gravitational force the mass m 
experiences.

b Determine the gravitational force m exerts 
on M.

  A second mass m is now placed a distance of 2r 
from the centre of the shell, as shown in 
diagram b. 
c Determine the gravitational force the mass 

inside the shell experiences.
d Suggest what gravitational force is 

experienced by the mass outside the shell.
 17 Stars A and B have the same mass and the radius 

of star A is nine times larger than the radius of 
star B. Calculate the ratio of the gravitational 
fi eld strength on star A to that on star B.

 18 Planet A has a mass that is twice as large as the 
mass of planet B and a radius that is twice as 
large as the radius of planet B. Calculate the ratio 
of the gravitational fi eld strength on planet A to 
that on planet B.

 19 Stars A and B have the same density and star A 
is 27 times more massive than star B. Calculate 
the ratio of the gravitational fi eld strength on star 
A to that on star B.

 20 A star explodes and loses half its mass. Its radius 
becomes half as large. Determine the new 
gravitational fi eld strength on the surface of the 
star in terms of the original one.

 21 The mass of the Moon is about 81 times less 
than that of the Earth. Estimate the fraction of 
the distance from the Earth to the Moon where 
the gravitational fi eld strength is zero. (Take into 
account the Earth and the Moon only.)

 22 The diagram shows point P is halfway between 
the centres of two equal spherical masses that are 
separated by a distance of 2 × 109 m. Calculate 
the gravitational fi eld strength at point P and 
state the direction of the gravitational fi eld 
strength at point Q.

 23 A satellite orbits the Earth above the equator 
with a period equal to 24 hours. 
a Determine the height of the satellite above 

the Earth’s surface.
b Suggest an advantage of such a satellite.

 24 The Hubble Space Telescope is in orbit around 
the Earth at a height of 560 km above the Earth’s 
surface. Take the radius and mass of the Earth to 
be 6.4 × 106 m and 6.0 × 1024 kg, respectively. 
a Calculate Hubble’s speed.
b In a servicing mission, a Space Shuttle spotted 

the Hubble telescope a distance of 10 km 
ahead. Estimate how long it took the Shuttle 
to catch up with Hubble, assuming that the 
Shuttle was moving in a circular orbit just 
500 m below Hubble’s orbit.

 25 Assume that the force of gravity between two 

  point masses is given by F = 
Gm1m2

r n
 where n is 

a constant.
a Derive the law relating period to orbit radius 

for this force.
b Deduce the value of n if this law is to be 

identical with Kepler’s third law.

? Test yourself

m

M

r

a

m 2r

M

r

b

2 × 109 m

109 m3 × 1022 kg 3 × 1022 kg

P

Q

 15 Calculate the gravitational force between:
a the Earth and the Moon
b the Sun and Jupiter
c a proton and an electron separated by 10−10 m.

 16 A mass m is placed at the centre of a thin, hollow, 
spherical shell of mass M and radius r, shown in 
diagram a.



6  CIRCULAR MOTION AND GRAVITATION 265

Exam-style questions

1 A child is sitting at the edge of a merry-go-round. The arrow shows the velocity of the child. At the instant shown, 
he releases a ball onto the ground. 

child

A B C D

 Which is the path of the ball according to a stationary observer on the ground?

2 In which of the following examples of circular motion is the centripetal acceleration experienced by the particle 
the largest? In each case the arrows represent speed.

A B

C D

3 A horizontal disc rotates about a vertical axis through the centre of the disc. 
Two particles X and Y are placed on the disc.

 The particles do not move relative to the disc. Which is correct about the 
angular speed ω and the linear speed v of X and Y?

ω v

A same same
B same diff erent
C diff erent same
D diff erent diff erent

YX
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 4 In the diagram for question 3 the ratio of distances of  Y to X is 2. What is the ratio of the acceleration of  Y to 
that of X?

A 1
4 B 1

2 C 2 D 4

 5 A particle of mass m moves with speed v along a hill that may be assumed to be part of a circle of radius r.

v

 What is the reaction force on the particle at the highest point on the hill?

A mg B mg + mv 2

r  C mg − mv 2

r  D mv 2

r  − mg

 6 A particle moves with speed v in a circular orbit of radius r around a planet. The particle is now moved to another 
circular orbit of radius 2r. The new orbital speed is:

A 
v 
2 B 

v 
√2

 C v √2 D 2v

 7 The mass of a landing module on the Moon is 2000 kg. The gravitational fi eld strength on the Moon is one-sixth 
that on Earth. What is the weight of the landing module on Earth?

A 330 N B 2000 N C 12 000 N D 20 000 N

 8 A planet has double the mass of Earth and half its radius. What is the gravitational fi eld strength on the surface of 
this planet?

A 10 N kg−1 B 20 N kg−1 C 40 N kg−1 D 80 N kg−1

 9 A satellite orbits the Earth in a circular orbit. The only force on the satellite is the gravitational force from the 
Earth. Which of the following is correct about the acceleration of the satellite?

A It is zero.
B It is constant in magnitude and direction.
C It is constant in magnitude but not in direction.
D It is not constant in magnitude or direction.

10 The two spherical bodies in the diagram have the same radius but the left mass has twice the mass of the other. 
At which point could the net gravitational fi eld of the two masses have the greatest magnitude?

A  B C D

2M M
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m

m

11 A horizontal disc of radius 45 cm rotates about a vertical axis through its centre. The disc makes one full 
revolution in 1.40 s. A particle of mass 0.054 kg is placed at a distance of 22 cm from the centre of the disc. 
The particle does not move relative to the disc.

a On a copy of the diagram draw arrows to represent the velocity and acceleration of the particle.  [2]
b Calculate the angular speed and the linear speed of the particle.  [2]
c The coeffi  cient of static friction between the disc and the particle is 0.82. Determine the largest distance 

from the centre of the disc where the particle can be placed and still not move relative to the disc. [3]
d The particle is to remain at its original distance of 22 cm from the centre of the disc.
  i  Determine the maximum angular speed of the disc so that the particle does not move relative to 

the disc.  [2]
  ii  The disc now begins to rotate at an angular speed that is greater than the answer in d i. Describe 

qualitatively what happens to the particle. [2]

12 A block of mass of 5.0 kg is attached to a string of length 2.0 m which is initially horizontal. The mass is then 
released and swings as a pendulum. The diagram shows the mass falling to the position where the string is in the 
vertical position.

a Calculate the speed of the block when the string is in the vertical position.  [2]
b Deduce the acceleration of the block.  [1]
c On a copy of the diagram, draw arrows to represent the forces on the block. [2]
d For when the string is in the vertical position:
  i state and explain whether the block is in equilibrium [2]
  ii calculate the tension in the string.  [2]
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13 A particle of mass m is attached to a string of length L whose other end is attached to the ceiling, as shown in the 
diagram. The particle moves in a horizontal circle making an angle of θ with the vertical. Air resistance may be 
neglected.

m

θ

a On a copy of the diagram draw arrows to represent the forces on the particle.  [2]
b State and explain whether the particle is in equilibrium.  [2]
c The linear speed of the particle is v and its angular speed is ω. Show that:

  i v =     
gL sin2 θ

cos θ   [2]

  ii ω =     
g

L cos θ  [2]

d The length of the string is 45 cm and θ = 60°. Use the answer in c to evaluate:
  i the linear speed [1]
  ii the angular speed of the particle. [1]
Air resistance may no longer be neglected.
e Suggest the eff ect of air resistance on:
  i the linear speed of the particle [1]
  ii the angle the string makes with the vertical  [1]
  iii the angular speed of the particle. [1]

14 A marble rolls from the top of a big sphere, as shown in the diagram.

θ

a Show that when the marble has moved so that the line joining it to the centre of the sphere is θ, its speed 
is given by v =   2gR(1 − cos θ). (Assume a very small speed at the top.)  [3]

b Deduce that at that instant, the normal reaction force on the marble from the sphere is given by 
N = mg(3 cos θ − 2). [3]

c Hence determine the angle θ at which the marble loses contact with the sphere.  [1]

√
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15 Consider two spherical bodies of mass 16M and M as in the diagram. 

d

16M M

 There is a point P somewhere on the line joining the masses where the gravitational fi eld strength is zero. 
a Determine the distance of point P from the centre of the bigger mass in terms of d, the centre-to-centre 

distance separating the two bodies. [3]
b Draw a graph to show the variation of the gravitational fi eld strength g due to the two masses with the 

distance x from the centre of the larger mass. [2]
c A small point mass m is placed at P. 

  i State the force on m.  [1]
  ii  The small mass m is slightly displaced to the left of P. State and explain whether the net force on the 

point mass will be directed to the left or to the right. [2]
d Describe qualitatively the motion of the point mass after it has been displaced to the left of P. [2]

16 A satellite is in a circular orbit around a planet of mass M, as shown in the diagram. 

a  i On a copy of the diagram draw arrows to represent the velocity and acceleration of the satellite. [2]
  ii Explain why the satellite has acceleration even though its speed is constant. [2]
b Show that the angular speed ω is related to the orbit radius r by r3ω2 = GM. [3]
c Because of friction with the upper atmosphere, the satellite slowly moves into another circular orbit with 

a smaller radius than the answer in b. Suggest the eff ect of this on the satellite’s:
  i angular speed  [1]
  ii linear speed. [1]
d Titan and Enceladus are two of Saturn’s moons. Data about these moons are given in the table.

Moon Orbit radius / m Angular speed / rad s−1

Titan 1.22 × 109 

Enceladus 2.38 × 108 5.31 × 10−5 

  i Determine the mass of Saturn. [2]
  ii Determine the period of revolution of Titan in days. [3]
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7.1 Discrete energy and radioactivity
The energy of electrons inside atoms or the energy of protons and 
neutrons inside nuclei is energy on a microscopic scale. The main idea of 
this section is that energy on this microscopic scale is discrete. Discrete 
energy means that the energy of a system cannot take on any arbitrary 
value. This is very diff erent from macroscopic physics, where energy is a 
continuous property.

Discrete energy
If you expose a container of gas at low pressure to a strong electric fi eld, 
light is emitted from the gas. This emitted light can be analysed by passing it 
through a prism or diff raction grating. The result is a series of bands of light 
at diff erent wavelengths. Figure 7.1 shows the wavelengths that are present 
in the light emitted by hydrogen, helium and mercury vapour. The set of 
possible wavelengths that can be emitted is called an emission spectrum.

7  Atomic, nuclear and particle physics
Learning objectives

• Describe and explain gas spectra 
in terms of energy levels.

• Solve problems with atomic 
transitions.

• Describe the fundamental forces 
between particles.

• Describe radioactive decay, 
including background radiation, 
and work with radioactive decay 
equations.

• Describe the properties of alpha, 
beta and gamma particles.

• Understand isotopes.

Figure 7.1 The emission spectra of hydrogen, helium and mercury vapour.
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7  Atomic, nuclear and particle physics Energy/eV

0
–0.85 n = 4

n = 3
n = 2

n = 1

–1.51
–3.40

–13.6

Such data have shown us that no two elements have the same 
wavelengths in their spectrum. The wavelengths are like fi ngerprints – 
they can be used to identify the element. 

How can these spectra be understood? Niels Bohr (1885–1962) 
provided the fi rst radical explanation in 1913. He argued that the energy 
of an atom was discrete, i.e. it could have one out of a specifi c set 
of values. He represented the possible energies with an energy level 
diagram. Each horizontal level represents a possible energy of the atom. 
By ‘energy of the atom’ we mean the kinetic energy of the electrons 
plus the electrical potential energy of the electrons and the nucleus. The 
diagram for hydrogen is shown in Figure 7.2 and that for mercury in 
Figure 7.3.

We see that a hydrogen atom can have an energy of −13.6 eV, −3.40 eV, 
−1.51 eV, −0.87 eV and so on. No other value is possible. Energy in the 
atomic world is discrete.

How does this energy level structure help explain emission spectra? 
Bohr suggested that an atom can make a transition from a state of higher 
energy to a state of lower energy by emitting a photon, the particle 
of light. The energy of the emitted photon is the diff erence in energy 
between the two levels. Think of the photon as a ‘tiny fl ash of light’. There 
would be one photon for each transition. With very many transitions from 
very many atoms the ‘tiny fl ashes of light’ in each transition add up to the 
observable light we see in the emission spectrum. The photon had been 
introduced earlier into physics by Einstein, who suggested that its energy 
is given by:

E = hf or E = 
hc
λ

where f and λ are the frequency and wavelength of the light (the photon), 
c is the speed of light and h is Planck’s constant, with value 6.63 × 10−34 J s.

Let us assume that a hydrogen atom makes a transition from the level 
n = 3 (whose energy is −1.51 eV) to the level n = 2 (whose energy is 
−3.40 eV). The diff erence in energy between these two levels is 1.89 eV 
and this is the energy that will be carried by the photon emitted in this 
transition. Therefore:

 
hc
λ  = 1.89 eV = 1.89 × 1.6 × 10−19 = 3.024 × 10−19 J

 λ = 
6.63 × 10−34 × 3.0 × 108

3.024 × 10−19

 λ = 6.58 × 10−7 m

Figure 7.2 The energy level diagram for 
hydrogen according to Bohr’s calculations.

Energy/eV

0

–3.74

–4.98
–5.55
–5.77

–10.44

Figure 7.3 The energy level diagram for 
mercury.

Exam tip
Remember to convert eV into 
joules!
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This is in excellent agreement with the wavelength of the red line in the 
hydrogen spectrum, shown in Figure 7.1! In hydrogen, all transitions from 
higher levels to the level n = 2 emit photons of visible light. 

When undisturbed, the electron in each hydrogen atom will occupy 
the lowest energy state, i.e. the one with n = 1 and energy −13.6 eV.  The 
lowest energy state is called the ground state. If energy is supplied to the 
atom, the electron may move to a higher energy level (an excited state) 
by absorbing exactly the right amount of energy needed to move up. For 
example, to move from n = 1 to the state with n = 3 the energy needed 
is exactly 13.6 − 1.51 = 12.09 eV. Suppose that precisely this amount of 
energy is supplied to an electron in the ground state. The electron will 
absorb this energy and make a transition to the level n = 3. At this point 
both the electron and the atom are said to be excited.

From the excited state, the electron will immediately (within 
nanoseconds) make a transition down to one of the available lower energy 
states. This process is called relaxation. From n = 3 the electron can either 
go directly to n = 1 (emitting a photon of energy 12.1 eV) or it can fi rst 
make a transition to n = 2 (emitting a photon of energy 1.89 eV) and 
then a transition from n = 2 to n = 1 (emitting another photon of energy 
10.2 eV). These two possibilities are shown in Figure 7.4.

Exam tip
Consider an atom that fi nds 
itself in some energy level L. If 
energy is supplied to this atom 
by incoming photons, the 
atom will absorb the energy 
only if it corresponds to the 
diff erence in energy between 
the energy in level L and the 
energy of a higher level. 

However, if the energy 
is supplied by incoming 
electrons, then the atom 
will absorb the exact energy 
needed to jump to a higher 
energy level, leaving the 
electrons with the diff erence.

n = 3

n = 2

n = 1

n = 3

n = 1

n = 2

Figure 7.4 Transitions from n = 3 in hydrogen.

Whether the electron will choose to make the direct or the indirect 
transition is an issue of chance: there is a probability for the one option 
and another probability for the other. (Theory can predict these 
probabilities.)

In a transition from a high to lower energy state, such that the 
diff erence in energy between the two states is E, the photon 
emitted has a wavelength given by:

hc
λ  = E

That is:

λ =  hcE
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So the emission spectra of elements can be understood if we accept that 
electrons in atoms exist in energy levels with discrete energy.

Protons and neutrons in nuclei also show an energy level structure 
similar to that of electrons in atoms. The protons and neutrons exist in 
nuclear energy levels. This will be discussed in Topic 12. Exam tip

The electrons that absorb 
photons will move to an 
excited state, but once there, 
they will make a down 
transition, emitting the 
photons they absorbed. So 
why are the photons missing? 
This is because the photons 
are emitted in all directions 
and not necessarily along 
the direction the observer is 
looking. You must be able to 
explain this in an exam.

Figure 7.5 The absorption spectrum of hydrogen (top) and the emission spectrum 
(bottom). The emission lines and the absorption lines are at the same wavelength.

Worked example
7.1 Calculate the wavelength of the photon emitted in the transition from the fi rst excited level to the ground 

state of mercury.

From Figure 7.3 the energy diff erence is:

−5.77 − (−10.44) = 4.67 eV

So the wavelength is found from:

hc
λ  = 4.67 eV = 4.67 × 1.6 × 10−19 J

λ = 
6.63 × 10−34 × 3.0 × 108

7.472 × 10−19

λ = 2.7 × 10−7 m

This is an ultraviolet wavelength and so does not show up in the emission spectrum in Figure 7.1.

Now imagine sending a beam of white light through a gas. The 
majority of the atoms in the gas are in their ground state. Electrons in the 
atoms may absorb photons in the beam and move to an excited state. This 
will happen only if the photon that is to be absorbed has exactly the right 
energy that corresponds to the diff erence in energy between the ground 
state and an excited state. This means that the light that is transmitted 
through the gas will be missing the photons that have been absorbed. This 
gives rise to absorption spectra (Figure 7.5). The dark lines correspond 
to the wavelengths of the absorbed photons. They are at the same 
wavelengths as the emission spectra.
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Nuclear structure
We now move deep into the atom in order to describe the structure of 
its nucleus. (The discovery of the nucleus will be discussed in Subtopic 
7.3.) Atomic nuclei are made up of smaller particles, called protons and 
neutrons. The word nucleon is used to denote a proton or a neutron.

The number of protons in a nucleus is denoted by Z, and is called 
the atomic (or proton) number.

The total number of nucleons (protons + neutrons) is called the 
mass (or nucleon) number, and is denoted by A. 

The number of neutrons in a nucleus is denoted by N with 
N = A − Z.

The electric charge of the nucleus is Ze, where e = +1.6 × 10−19 C is the 
charge of a proton. We use the atomic and mass numbers to denote a 
nucleus in the following way: the symbol AZX stands for the nucleus of 
element X, whose atomic number is Z and mass number is A. For example:

 1
1H is a hydrogen nucleus with 1 proton and no neutrons

 4
2He is a helium nucleus with 2 protons and 2 neutrons

 40
20Ca is a calcium nucleus with 20 protons and 20 neutrons

 56
26Fe is an iron nucleus with 26 protons and 30 neutrons

 210
82Pb is a lead nucleus with 82 protons and 128 neutrons

 238
92U is a uranium nucleus with 92 protons and 136 neutrons.

A nucleus with a specifi c number of protons and neutrons is also called 
a nuclide.

We can apply this notation to the nucleons themselves. For example, 
the proton (symbol p) can be written as 11p and the neutron (symbol n) 
as 10n. If we notice that the atomic number is not only the number of 
protons in the nucleus but also its electric charge in units of e, then we 
can extend this notation to electrons as well. The charge of the electron in 
units of e is −1 and so we represent the electron by −1

0e. The mass number 
of the electron is zero – as it is neither a proton nor a neutron, and the 
mass number is defi ned as the total number of neutrons plus protons. 

The photon (the particle of light) can also be represented in this way: 
the photon has the Greek letter gamma as its symbol. Since it has zero 
electric charge and is neither a proton nor a neutron, it is represented 
by 00γ . The neutrino (we will learn more about this in a later section) 
is neutral and is represented by 00ν. Table 7.1 gives a summary of these 
particles and their symbols. We will meet more particles in Subtopic 7.3.

Particle Symbol

proton 1
1p

neutron 0
1n

electron −1
0e

positron +1
0e

photon 0
0γ or just γ

alpha particle 4
2He or 42α

neutrino 0
0ν or just ν

anti-neutrino 0
0ν– or just ν– 

Table 7.1 Particles and their symbols
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Isotopes
Nuclei that have the same number of protons but diff erent number of 
neutrons are called isotopes of each other. Isotopes therefore have the 
same atomic number Z but diff erent neutron number N and mass number 
A. For example, 11H, 21H and 31H are three isotopes of hydrogen, and 235

92U, 
236
92U and 238

92U are just three (of many) isotopes of uranium. Since isotopes 
have the same number of protons, their atoms have the same number 
of electrons as well. This means that isotopes have identical chemical 
properties but diff erent physical properties. The existence of isotopes is 
evidence for the existence of neutrons inside atomic nuclei.

Radioactive decay
At the end of the 19th century and in the early part of the 20th century, it 
was discovered that most nuclides are unstable. This discovery was mainly 
due to the work of Henri Becquerel (1852–1908), Marie Sklodowska-
Curie (1867–1934) and Pierre Curie (1859–1906). An unstable nucleus is 
one that randomly and spontaneously emits particles that carry energy 
away from the nucleus. Figure 7.6 shows that stable nuclides (points in 
black) have equal numbers of neutrons and protons for small values of Z 
but as Z increases stable nuclei have more neutrons than protons. We will 
understand this when we learn about the strong nuclear force. The graph 
also shows that most nuclides are unstable; they decay in various ways that 
will be discussed in the next sections.

The emission of particles and energy from a nucleus is called 
radioactivity. It was soon realised that three distinct emissions take place. 
The emissions are called alpha particles, beta particles and gamma 
rays. They have diff erent ionising power (ability to knock electrons off  
atoms) and penetrating power (distance travelled through matter before 
they are stopped).

Alpha particles and alpha decay
In alpha decay an alpha particle is emitted from the nucleus and the 
decaying nucleus turns into a diff erent nucleus. An example is uranium 
decaying into thorium:

238
92U → 234

90Th + 42α

The alpha particles were shown to be identical to nuclei of helium in an 
experiment by E. Rutherford (1871–1937) and T. Royds (1884–1955) in 
1909. They collected the gas that the alpha particles produced when they 
came in contact with electrons and then investigated its spectrum. The 
spectrum was found to be identical to that of helium gas. Alpha particles 
have a mass that is about four times the mass of the hydrogen atom and an 
electric charge equal to +2e.
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Figure 7.6 A plot of neutron number versus 
atomic number for nuclides. The stable 
nuclides are shown in black. Most nuclides 
are unstable.
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Note that in the reaction equation representing this decay, the total 
atomic number on the right-hand side of the arrow balances the atomic 
number to the left of the arrow. This is because charge is a conserved 
quantity. The same holds also for the mass number. Two other examples of 
alpha decay are:

224
88Ra → 220

86Rn + 42α

212
84Po → 208

82Pb + 42α

Beta particles and beta decay
In beta minus decay, a neutron in the decaying nucleus turns into a 
proton, emitting an electron and an anti-neutrino. An example is the 
nucleus of thorium decaying into a nucleus of protactinium:

234
90Th → 234

91Pa + −1
0e + 00ν–e

The ‘beta minus particle’ is just the electron. It was called beta minus 
before experiments showed it was identical to the electron. Note again 
how the atomic and mass numbers balance in the reaction equation. 

Also note that unlike alpha decay, where two particles are produced, here 
we have three. The third is called the ‘electron anti-neutrino’, 00ν–e, or just ν–e. 
The bar over the symbol indicates that this is an anti-particle. This should 
not concern us too much here – more on anti-particles in Subtopic 7.3.

Two other examples of beta minus decay are:

214
82Pb → 214

83Bi + −1
0e + 00ν–e

40
19K → 40

20Ca + −1
0e + 00ν–e

Another type of beta decay is beta plus decay. Instead of emitting 
an electron the nucleus emits its anti-particle, the positron, which is 
positively charged. The third particle is the neutrino. Two examples of beta 
plus decay are:

22
11Na → 22

10Ne + +1
0e + 00νe

13
7N → 13

6C + +1
0e + 00νe

Beta decay is complicated and we will understand it a bit better in 
Subtopic 7.3.

Gamma rays and gamma decay
In gamma decay a nucleus emits a gamma ray, in other words a photon 
of high-frequency electromagnetic radiation:

238
92U → 238

92U + 00γ
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Unlike alpha and beta decay, in gamma decay the nucleus does not 
change identity. It just moves from a higher to a lower nuclear energy 
level. The wavelength of the photon emitted is given by:

λ = 
hc
E

just as with atomic transitions. Here E is the energy of the emitted 
photon. In contrast to the photons in atomic transitions, which can 
correspond to visible light, these photons have very small wavelength 
(smaller than 10−12 m) and they are called gamma rays. 

Other examples of gamma decay are:

60
28Ni → 60

28Ni + 00γ

24
12Mg → 24

12Mg + 00γ

The identifi cation of gamma rays with photons was made possible 
through diff raction experiments in which gamma rays from decaying 
nuclei were directed at crystals. The wavelengths were measured from the 
resulting diff raction patterns. 

Properties of alpha, beta and gamma radiations
Table 7.2 summarises the properties of alpha, beta and gamma radiations. 
Notice that the alpha particles are the most ionising and the gamma rays 
the most penetrating. The beta plus particle is the positron, the anti-
particle of the electron – see Subtopic 7.3.

Characteristic Alpha particle Beta minus particle Gamma ray

nature helium nucleus (fast) electron photon

charge +2e −e 0

mass 6.64 × 10−27 kg 9.1 × 10−31 kg 0

penetrative power a few cm of air a few mm of metal many cm of lead

ions per mm of air 
for 2 MeV particles

10 000 100 1

detection • aff ects photographic fi lm
• is aff ected by electric and 

magnetic fi elds

• aff ects photographic fi lm
• is aff ected by electric and 

magnetic fi elds

• aff ects photographic fi lm
• is not aff ected by electric and 

magnetic fi elds

Table 7.2 Properties of alpha, beta and gamma radiations.

Decay series
The changes in the atomic and mass numbers of a nucleus when it 
undergoes radioactive decay can be represented in a diagram of mass 
number against atomic number. A radioactive nucleus such as thorium 
(Z = 90) decays fi rst by alpha decay into the nucleus of radium (Z = 88). 
Radium, which is also radioactive, decays into actinium (Z = 89) by beta 
decay. Further decays take place until the resulting nucleus is stable. The 
set of decays that takes place until a given nucleus ends up as a stable 
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nucleus is called the decay series of the nucleus. Figure 7.7 shows the 
decay series for thorium. Successive decays starting with thorium end 
with the stable nucleus of lead.

Worked example
7.2 A nucleus AZX decays by alpha decay followed by two successive beta minus decays. Find the atomic and mass 

numbers of the resulting nucleus.

The decay equation for alpha decay is:

A
ZX → A−4

Z−2Y + 42α

Then the nucleus decays twice by beta decay. So we have:

A−4
Z−2Y → A−4

ZY + 2−1
0e + 20

0ν–e

The mass number doesn’t change in beta minus decay, but the proton number increases by one for each decay 
(since in beta minus decay a neutron turns into a proton). 

So the atomic number of the resulting nucleus is Z and the mass number is A − 4.

The law of radioactive decay
Radioactive decay is random and spontaneous. By random we mean that 
we cannot predict which unstable nucleus in a sample will decay or when 
there will be a decay. It is spontaneous because we cannot aff ect the rate 
of decay of a given sample in any way. Although we cannot predict or 
infl uence when a particular nucleus will decay, we know that the number 
of nuclei that will decay per second is proportional to the number of 
nuclei in the sample that have not yet decayed. 

87868483828180 929190898885
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Figure 7.7 The decay series of thorium (Z = 90, A = 232). One alpha decay reduces the 
mass number by 4 and the atomic number by 2. One beta minus decay increases the 
atomic number by one and leaves the mass number unchanged. The end result is the 
nucleus of lead (Z = 82, A = 208).
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The law of radioactive decay states that the rate of decay is 
proportional to the number of nuclei that have not yet decayed:

ΔN
Δt  ∝ N

A consequence of this law is that the number of radioactive nuclei 
decreases exponentially. 

Consider the beta minus decay of thallium (called the parent nucleus) 
into lead (the daughter nucleus):

208
81Tl → 208

82Pb + −1
0e + 00ν–

The isotope of lead is stable and does not decay. Figure 7.8a shows how 
the number of thallium nuclei decreases with time. Initially (at t = 0) there 
are 1.6 × 1022 nuclei of thallium. This corresponds to a mass of about 6 g of 
thallium. After 3 min the number of thallium nuclei left is half of the initial 
number (0.8 × 1022 ). After another 3 min, the number is one-quarter of the 
initial number (0.4 × 1022 ). After yet another 3 min the number of thallium 
nuclei is one-eighth of the initial number (0.2 × 1022 ). The time of 3.0 min 
is called the half-life of thallium. It is the time after which the number of 
the radioactive nuclei is reduced by a factor of 2. The blue curve in Figure 
7.8b shows how the number of lead nuclei increases with time.

A concept that is useful in experimental work is that of decay rate or 
activity A: this is the number of decays per second. We cannot easily 
measure how many unstable nuclei are present in a sample, but we can 
detect the decays. The unit of activity is the becquerel (Bq): 1 Bq is equal 
to one decay per second.
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Figure 7.8 a The number of thallium nuclei decreases exponentially. b As thallium decays (red curve) lead is produced 
and so the number of lead nuclei increases (blue curve).
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Activity obeys the same exponential decay law as the number of nuclei. 
In a time equal to the half-life the activity is reduced by a factor of 2. This 
is shown in Figure 7.9. 
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Figure 7.9 The activity of thallium decreases exponentially with time. You can also 
use this graph to determine half-life.

Figure 7.10 a An activity curve that includes a background rate of 40 Bq. This curve cannot be used to 
measure half-life as it is. The background needs to be subtracted as shown in b.

It is best to defi ne the half-life in terms of activity:

Half-life is the interval of time after which the activity of a 
radioactive sample is reduced by a factor of 2.

Provided the half-life is not too long, a graph of activity against time can 
be used to determine the half-life. In Figure 7.9 the activity approaches 
zero as the time increases. In practice, however, this is not the case. The 
detector that measures activity from the radioactive sample under study 
also measures the activity from natural sources. As a result, the activity 
does not approach zero; it approaches the activity due to all other sources 
of background radiation. These background sources include cosmic 
rays from the Sun, radioactive material in rocks and the ground, radiation 
from nuclear weapons testing grounds, and so on. 

The eff ect of background radiation can be seen in the activity curve 
of Figure 7.10a. This shows a background rate of 40 Bq. By subtracting 
this value from all data points we get the graph in Figure 7.10b. Using 
the corrected graph we get a half-life of 6.0 min. Using Figure 7.10a 
without correcting for the background gives a half-life of 6.9 min, which 
is inaccurate by 15%.
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Worked examples
7.3 An isotope has a half-life of 20 min. Initially there are 1024 g of this isotope. Determine the time after which 

128 g are left.

Find the fraction remaining: 
128
1024 = 

1
8

This corresponds to three half-lives, as: 
1
2 × 

1
2 × 

1
2 = 

1
8

Since the half-life is 20 min, three half-lives is:

3 × 20 = 60 min

After 60 min, 128 g are left.

7.4 The activity of a sample is initially 80 decays per minute. It becomes fi ve decays per minute after 4 h. Calculate 
the half-life.

5
80 = 

1
16 = 

1
24

The activity is reduced from 80 to fi ve decays in four half-lives. 

Four half-lives is 4 h, so the half-life is 1 h.

7.5 The activity of a sample is 15 decays per minute. The half-life is 30 min. Predict the time when the activity was 
60 decays per minute.

One half-life before the sample was given to us the activity was 30 decays per minute, and one half-life before that 
it was 60 decays per minute. 

So the activity was 60 decays per minute two half-lives earlier, which is 60 minutes earlier.

Half-life and probability
The meaning of a half-life can also be understood in terms of probability. 
Any given nucleus has a 50% chance of decaying within a time interval 
equal to the half-life. If a half-life goes by and the nucleus has not decayed, 
the chance that it will decay in the next half-life is still 50%. This is shown 
as a tree diagram in Figure 7.11 (overleaf ). 

The probability that a nucleus will have decayed by the second 
half-life is the sum of the probability that it decays in the fi rst half-life 
and the probability that it decays during the second half-life:

1
2 +   

1
2 × 

1
2  = 

3
4 = 0.75 or 75%
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Fundamental forces and their properties
According to the standard model of particles (to be discussed in some 
more detail in Subtopic 7.3), there are four fundamental interactions or 
forces in nature. These are:
1 the electromagnetic interaction: this acts on any particle that has 

electric charge. The force is given by Coulomb’s law. It has infi nite 
range. 

2 the weak nuclear interaction: it acts on protons, neutrons, electrons 
and neutrinos in order to bring about beta decay. It has very short 
range (10−18 m).

3 the strong nuclear interaction: this (mainly attractive) force acts on 
protons and neutrons to keep them bound to each other inside nuclei. 
It has short range (10−15 m).

4 the gravitational interaction: this is the force of attraction between 
masses. The small mass of atomic particles makes this force irrelevant 
for atomic and nuclear physics. This force has infi nite range.

It is known that the electromagnetic interaction and the weak interaction 
are in fact two sides of one force, the electroweak interaction. The 
properties listed above are what we need for this section. They will be 
refi ned when we get to Subtopic 7.3. 

The fact that the strong force has a short range helps to explain why 
stable large nuclei have more neutrons than protons. As more protons are 
added to a nucleus the tendency for the nucleus to break apart increases 
because all the protons repel each other through the electromagnetic 
force. The electric force has infi nite range. But the strong force has a short 
range so any one proton only attracts its very immediate neighbours. To 
keep the nucleus together we need more neutrons that will contribute to 
nuclear binding through the strong force, but which will not add to the 
repulsive forces. 
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Figure 7.11 Tree diagram for nuclear decay.
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The belief in unifi cation
In the early 19th century there were three known 

forces: gravitational, electric and magnetic. Through the work 
of James Clerk Maxwell (1831–1879) physicists realised that 
electric and magnetic forces were two sides of the same force, the 
electromagnetic force. Thus began the notion (for some a belief, 
for others a prejudice) that all interactions, as more were being 
discovered, were part of the same ‘unifi ed’ force. In the 20th century 
two new forces were discovered: the weak nuclear force and the 
strong nuclear force. In the late 1960s the electromagnetic and the 
weak nuclear force were unifi ed in the standard model of particles. 
All eff orts to unify this electroweak force with the strong nuclear 
force in a grand unifi ed force have failed. All attempts to unify 
any of these forces with gravity have also failed. Yet, the dream of 
unifi cation remains.

Nature of science
Accidental discovery
The discovery of radioactivity is an example of an accidental discovery. 
Henri Becquerel, working in Paris in 1896, believed that minerals made 
phosphorescent (emitting light) by visible light might give off  X-rays. 
His idea was to wrap a photographic plate in black paper, and place on 
it a phosphorescent uranium mineral that had been exposed to bright 
sunlight. But the sun did not shine, and he stopped the experiment, 
placing the wrapped plate and the mineral in a drawer. A few days later 
he developed the photographic plate, expecting to see only a very weak 
image. To his surprise, there was a very strong image. Becquerel concluded 
that this image was formed by a new kind of radiation that had nothing 
to do with light. The radiation came from the uranium mineral. Becquerel 
conducted further experiments and showed that uranium minerals were 
the only phosphorescent minerals that had this eff ect.

? Test yourself
1 a  Discuss what is meant by the statement that the 

energy of atoms is discrete. 
 b Outline the evidence for this discreteness.
2 Explain why the dark lines of an absorption 

spectrum have the same wavelengths as the 
bright lines of an emission spectrum for the same 
element.

3 Calculate the wavelength of the photon emitted in 
a transition from n = 4 to n = 2 in hydrogen. (Use 
Figure 7.2.)

4 Refer to Figure 7.1. Explain why the distance 
between the emission lines of hydrogen decreases 
as we move to the right.
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 5 A hydrogen atom is in its ground state. 
  a Explain the term ground state. 
  b Photons of energy 10.4 eV are directed at 

hydrogen gas in its ground state. Suggest what, 
if anything, will happen to the hydrogen 
atoms.

  c In another experiment, a beam of electrons of 
energy 10.4 eV are directed at hydrogen gas 
atoms in their ground state. Suggest what, if 
anything, will happen to the hydrogen atoms 
and the electrons in the beam.

 6 State the electric charge of the nucleus 32He.
 7 a State what is meant by the term isotope. 
  b  State two ways in which the nuclei of the 

isotopes 16
8O and 18

8O diff er from each other 
(other than they have diff erent neutrons).

 8 Bismuth (210
83Bi) decays by beta minus decay, 

followed by gamma emission. State the equation 
for the reaction and the atomic and mass number 
of the nucleus produced.

 9 Plutonium (239
94Pu) decays by alpha decay. State 

the equation for this reaction and name the 
nucleus plutonium decays into.

 10 A radioactive source has a half-life of 3.0 min. 
At the start of an experiment 32.0 mg of the 
radioactive material is present. Determine how 
much will be left after 18.0 min.

 11 The graph shows the variation with time of the 
activity of a radioactive sample.

 a State what is meant by activity. 
 b  Use the graph to estimate the half-life of the 

sample.

 c  On a copy of the graph, extend the curve to 
show the variation of the activity for a time 
up to 12 minutes.

 d  The sample contains a radioactive element X 
that decays in to a stable element Y. At t = 0 no 
atoms of element Y are present in the sample. 
Determine the time after which the ratio of  
Y atoms to X atoms is 7. 

 12 In a study of the intensity of gamma rays from a 
radioactive source it is suspected that the counter 
rate C at a distance d from the source behaves as 

  C ∝    
1

d + d0

2 where d0 is an unknown constant. 

  A set of data for C and d is given. Outline how 
the data must be plotted in order to get a straight 
line.

 13 The intensity of gamma rays of a specifi c energy 
(monochromatic rays) decreases exponentially 
with the thickness x of the absorbing material 
according to the equation:

   I = I0 e−µx

  where I0 is the intensity at the face of the 
absorber and µ a constant depending on the 
material.

  Discuss how the intensity I and thickness x 
should be plotted in order to allow an accurate 
determination of the constant µ.

 14 State the name of the dominant force between 
two protons separated by a distance of:

  a 1.0 × 10−15 m
  b 1.0 × 10−14 m.
 15 Large stable nuclei have more neutrons than 

protons. Explain this observation by reference to 
the properties of the strong nuclear force.
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7.2 Nuclear reactions
This section is an introduction to the physics of atomic nuclei. We will see 
that the sum of the masses of the constituents of a nucleus is not the same 
as the mass of the nucleus itself, which implies that mass and energy are 
converted into each other. Methods used to calculate energy released in 
nuclear reactions are presented.

The unifi ed atomic mass unit
In atomic and nuclear physics, it is convenient to use a smaller unit of 
mass than the kilogram. We already defi ned the atomic mass unit in 
Topic 3 to be 1

12 of the mass of an atom of carbon-12, 12
6C. The symbol for 

the unifi ed atomic mass unit is u.

1 u = 1.660 5402 × 10−27 kg

Worked example
7.6 Determine to six decimal places, in units of u, the masses of the proton, neutron and electron. Use 

mp = 1.6726231 × 10−27 kg, mn = 1.6749286 × 10−27 kg, and me = 9.1093897 × 10−31 kg.

Using the relationship between u and kg, we fi nd:

mp = 
1.6726231 × 10−27

1.660 5402 × 10−27 = 1.007276 u

Similarly:

mn = 1.008665 u

me = 0.0005486 u

(This shows that, very approximately, mp ≈ mn ≈ 1 u.)

The mass defect and binding energy
Protons and neutrons are very tightly bound to each other in a nucleus. To 
separate them, energy must be supplied to the nucleus. Conversely, energy 
is released when a nucleus is assembled from its constituent nucleons. 

From Einstein’s theory of relativity, energy E is equivalent to mass m 
according to the equation:

E = mc2

where c is the speed of light. Since energy is released when nucleons are 
brought together to form a nucleus, this is equivalent to a loss of mass. 
So the mass of the constituent nucleons when far part is greater than the 
mass of the nucleus. 

Learning objectives

• Solve problems with mass defect 
and binding energy.

• Calculate the energy released in 
nuclear reactions.

• Describe the variation with 
nucleon number of the average 
binding energy per nucleon.
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Take the nucleus of helium, 42He, as an example. The mass of an atom 
of helium is 4.0026 u. This includes the mass of two electrons. So the 
nuclear mass is: 

Mnucleus = 4.0026 − 2 × 0.0005486

Mnucleus = 4.0015 u

The helium nucleus is made up of two protons and two neutrons. Adding 
these masses we fi nd:

2mp + 2mn = 4.0319 u

This is larger than the mass of the nucleus by 0.0304 u, which is as 
expected. This leads to the concept of mass defect.

The mass of the protons plus the mass of the neutrons is larger 
than the mass of the nucleus. The diff erence is known as the mass 
defect δ:

δ = total mass of nucleons − mass of nucleus

This can also be written as:

δ = Zmp + (A − Z )mn − Mnucleus

Remember that A − Z is the number of neutrons in the nucleus. 

Worked example
7.7 Find the mass defect of the nucleus of gold, 197

79Au. The nuclear mass is 196.924 u.

We have been given the nuclear mass directly so we do not have to subtract any electron masses. 

The nucleus has 79 protons and 118 neutrons, so:

δ = (79 × 1.007276 u) + (118 × 1.008665 u) − 196.924 u = 1.67 u

The energy equivalent to the mass defect is called binding energy.

The binding energy of a nucleus is the work (energy) required to 
completely separate the nucleons of that nucleus.

binding energy = δc 2

The work required to remove one nucleon from the nucleus is very 
roughly the binding energy divided by the total number of nucleons.

At a more practical level, the binding energy per nucleon is a measure 
of how stable the nucleus is – the higher the binding energy per nucleon, 
the more stable the nucleus.
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It is convenient to fi nd out how much energy corresponds to a mass 
of 1 u. Then, given a nuclear mass in u, we can easily fi nd the energy that 
corresponds to it. The energy corresponding to 1 u is:

1 u × c 2 = 1.6605402 × 10−27 × (2.9979 × 108)2 J

 = 1.4923946316 × 10−10 J

Changing this to eV, using 1 eV = 1.602177 × 10−19 J, gives an energy 
equivalent to a mass of 1 u of:

1.4923946316 × 10−10 J
1.602177 × 10−19 J eV−1  = 931.5 × 106 eV = 931.5 MeV

So:

1 u × c 2 = 931.5 MeV or 1 u = 931.5 MeV c−2

This last version is convenient for converting mass to energy, as shown in 
Worked example 7.8.

Worked examples
7.8 Determine the energy equivalent to the mass of the proton, the neutron and the electron.

The masses in terms of u are mp = 1.0073 u, mn = 1.0087 u and me = 0.0005486 u. 

For the proton, the energy is mpc 2:

1.0073 u × c 2 = 1.0073 × 931.55 MeV c−2 × c2 = 938.3 MeV

In other words, we multiply the mass in u by 931.5 to get the energy in MeV.

For the neutron, the energy equivalent is:

1.0087 × 931.55 = 939.6 MeV

For the electron, the energy equivalent is:

0.0005486 × 931.55 = 0.511 MeV

7.9 Determine the binding energy per nucleon of the nucleus of carbon-12.

The nuclear mass is the mass of the atom minus the mass of the six electrons:

12.00000 u − (6 × 0.0005486 u) = 11.99671 u

The nucleus has 6 protons and 6 neutrons, so the mass defect is:

(6 × 1.007276 u) + (6 × 1.008665 u) − 11.99671 u = 0.09894 u

Hence the binding energy is:

0.09894 × 931.5 MeV = 92.2 MeV

The binding energy per nucleon is then:

92.2
12  = 7.68 MeV



288

The binding energy curve
Figure 7.12 shows the variation with nucleon (mass) number A of the 

binding energy (B.E.) per nucleon, 
B.E.
A . 

The main features of the graph are:
• The binding energy per nucleon for hydrogen, 11H, is zero because 

there is only one particle in the nucleus.
• The curve rises sharply for low values of A.
• The curve has a maximum for A = 62 corresponding to nickel, which 

makes this nucleus particularly stable.
• There are peaks at the position of the nuclei 42He, 12

6C and 16
8O, which 

makes these nuclei unusually stable compared to their immediate 
neighbours.

• The curve drops gently from the peak at A = 62 and onwards.
• Most nuclei have a binding energy per nucleon between 7 and 9 MeV.
The short range of the force implies that a given nucleon can interact 
with its immediate neighbours only and not with all of the nucleons in 
the nucleus. So for large nuclei (i.e. roughly A > 20) any one nucleon 
is surrounded by the same number of immediate neighbours and so the 
energy needed to remove that nucleon from the nucleus is the same. Thus, 
the short range nature of the nuclear force explains why the binding 
energy per nucleon is roughly constant above a certain value of A.
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Figure 7.12 The binding energy per nucleon is almost constant for nuclei with A > 20.



7  ATOMIC, NUCLEAR AND PARTICLE PHYSICS 289

Energy released in a decay
To decide whether energy is released in a decay, or any other reaction, we 
have to calculate the mass diff erence Δm:

Δm = total mass of reactants – total mass of products 

If Δm is positive then energy will be released and the decay will occur. If 
Δm is negative the reactants will not react and the reaction can only take 
place if energy is supplied to the reactants. 

We can see how this works by looking at the alpha decay of radium:

226
88Ra → 222

86Rn + 42α

The mass diff erence is:

Δm = 226.0254 – (222.0176 + 4.0026)

Δm = 226.0254 – 226.0202

Δm = 0.0052 u

This is positive, so energy will be released. The quantity of energy Q 
released is given by:

Q = 0.0052 × 931.5 MeV = 4.84 MeV

This energy is released in the form of kinetic energy, which is shared by 
the alpha particle and the radon nucleus. The alpha, being much lighter 
than radon, has greater speed and so greater kinetic energy.

Worked example
7.10 Calculate the ratio of the kinetic energies of the alpha particle to that of the radon nucleus in the decay 

of radium (226
88Ra) to radon (222

86Rn). Assume that the radium nucleus decays at rest. Determine how much 
energy the alpha particle carries.

The radium nucleus is at rest, so the initial momentum is zero. By conservation of momentum, after the decay the 
momenta of the products are opposite in direction and equal in magnitude. Thus pα = pRn. 

From Topic 2, kinetic energy is related to momentum by EK = 
p2

m
, so:

Eα

ERn
 = 

pa
2/2Mα

p
Rn

2/2MRn

Eα

ERn
 = 

MRn

Mα

Eα

ERn
 ≈ 

222
4  ≈ 55

This means that the energy carried by the alpha particle is 
55
56 × 4.84 ≈ 4.75 MeV.

Exam tip
Momentum conservation applies to nuclear physics as well, so use it!
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Consider the reaction in which an alpha particle collides with a nucleus of 
nitrogen:

14
7N + 42α → 17

8O + 11p

mN = 14.003074 u; mO = 16.999131 u

Notice how the sum of the atomic and mass numbers on both sides of the 
reaction are equal. This is a famous reaction called the transmutation of 
nitrogen; it was studied by Rutherford in 1909. In this reaction the mass 
diff erence is negative:

Δm = 18.005677 − 18.006956

Δm = −0.00128 u 

This reaction will only take place if the alpha particle has enough kinetic 
energy to make up for the diff erence. The minimum kinetic energy 
needed is 0.00128 × 931.5 = 1.2 MeV.

Nuclear fi ssion
Nuclear fi ssion is the process in which a heavy nucleus splits up into 
lighter nuclei. When a neutron is absorbed by a nucleus of uranium-235, 
uranium momentarily turns into uranium-236. It then splits into lighter 
nuclei plus neutrons. One possibility is:

1
0n + 235

92U → 236
92U → 144

56Ba + 89
36Kr + 30

1n

This is a fi ssion reaction.
The production of neutrons is a feature of fi ssion reactions. In a 

reactor, the neutrons released can be used to collide with other nuclei of 
uranium-235, producing more fi ssion, energy and neutrons. The reaction 
is thus self-sustaining – it is called a chain reaction. For the chain 
reaction to get going a certain minimum mass of uranium-235 must be 
present, otherwise the neutrons escape without causing further reactions – 
this is called the critical mass.

The energy released can be calculated as follows:

Δm = 236.0526 u − (143.92292 + 88.91781 + 3 × 1.008665) u 

 = 0.185875 u 

Thus for this reaction:

Q = Δmc2 = 0.185875 × 931.5 ≈ 173 MeV

This energy appears as kinetic energy of the products. The energy can be 
released in a controlled way, as in a fi ssion reactor (to be discussed in 
Topic 8), or in a very short time, as in a nuclear explosion (Figure 7.13).

Note that the fi ssion process is an induced process and begins when 
a neutron collides with a nucleus of uranium-235. Spontaneous fi ssion, 
i.e. a nucleus splitting into two roughly equal nuclei without neutron 
absorption, is possible for some heavy elements but is rare.
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Worked example
7.11 One fi ssion reaction of uranium-235 releases 173 MeV for each decay. Estimate the energy released by 1 kg 

of uranium-235.

A quantity of 1 kg of uranium-235 is 
1000
235  mol of uranium.

The number of nuclei is therefore:

number of nuclei = 
1000
235  × 6 × 1023

Each nucleus produces about 173 MeV of energy, so:

total energy = 
1000
235  × 6 × 1023 × 173 MeV

This is 4.4 × 1026 MeV or about 7 × 1013 J.

Nuclear fusion
Nuclear fusion is the joining of two light nuclei into a heavier one with 
the associated production of energy. An example of a fusion reaction is:

2
1H + 21H → 32He + 10n 

In this reaction two deuterium nuclei (isotopes of hydrogen) produce 
helium-3 (an isotope of helium) and a neutron. From the mass diff erence 
for the reaction, we can work out the energy released:

Δm = 2 × 2.014102 – (3.016029 + 1.008665) u

Δm = 0.0035 u

Therefore:

Q = Δmc2 = 0.0035 × 931.5 = 3.26 MeV

Figure 7.13 a Vast amounts of energy are released in the detonation of a nuclear weapon. 
b The results are catastrophic, as this photograph of Hiroshima shows.

a b
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A kilogram of deuterium would release energy of about 1013 J, which 
is comparable to the energy produced by a kilogram of uranium in the 
fi ssion process. This fusion reaction is a possible source of energy for 
electricity generation, which is being explored (Figure 7.14). But there 
are still serious obstacles in the commercial production of energy by 
nuclear fusion.

Worked example
7.12 This fusion reaction takes place in the interior of stars:

  41
1H → 42He + 20

1e + 2νe + 00γ 

 Four hydrogen nuclei fuse into a helium nucleus plus two positrons, two electron neutrinos and a photon. 

 Calculate the energy released in this reaction. Use MHe = 4.002600 u.

We must fi nd the masses before and after the reaction.

mass of four protons (hydrogen nuclei) = 4 × 1.007276 u = 4.029104 u

mass on right-hand side = (4.0026 − 2 × 0.0005486) u + 2 × 0.0005486 u = 4.002600 u

mass diff erence = 4.029104 u − 4.002600 u = 0.026504 u

This gives an energy of:

931.5 × 0.026504 = 24.7 MeV

(Actually, the two positrons annihilate into energy by colliding with two electrons giving an additional 2 MeV 
(= 4 × 0.511 MeV), for a total of 26.7 MeV.)

Figure 7.14 The hot plasma in nuclear fusion can be confi ned in a tokamak. Here the 
hot plasma moves around magnetic fi eld lines, never touching the container walls. 

Exam tip
The two deuterium nuclei 
will fuse when their distance 
apart is of order 10−15 m. 
The electrostatic potential 
energy at this separation is of 
order 10−13 J. To overcome 
the electrostatic repulsion, 
kinetic energy of this order of 
magnitude is required. Using 
E = 32kT, the temperature at 
which the average kinetic 
energy is suffi  cient is of order 
109 K. In stars deuterium 
fusion reactions take place at 
temperatures of order 106 K, 
which shows that at this much 
lower temperature, some 
deuterium nuclei must have 
energies way above average.
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Fission or fusion?
We have already seen that fi ssion occurs when heavy nuclei split up and 
fusion when light nuclei fuse together. This becomes easier to understand 
when we look at the curve of binding energy per nucleon against nucleon 
number. The dashed vertical line at nickel-62 in Figure 7.15 is at the peak 
of the curve – this is the most energetically stable nucleus. To the left, 
nuclei can become more stable by fusion, while to the right they become 
more stable by fi ssion. 

Ethics and morals
This section has shown how Einstein’s famous formula E = mc2 applies 
to nuclear reactions. This formula describes the conversion of mass 
into energy – something that violates the law of conservation of mass 
as described by chemists. At the same time this formula made possible 
nuclear weapons that exploit the fi ssion and fusion processes. Is this 
dangerous knowledge? J.R. Oppenheimer (Figure 7.16), who led the 
American eff ort to make the atomic bomb during World War II, said, 
quoting from the Hindu holy book The Bhagavad Gita: ‘I am become 
Death, the Destroyer of Worlds’. If some knowledge is dangerous can it 
ever be prevented from becoming widely available? If so, by whom?

Nature of science
The graphs of proton number against neutron number (Figure 7.6) 
and binding energy per nucleon (Figure 7.12) show very clear trends 
and patterns. Scientists can use these graphs to make predictions of the 
characteristics of the diff erent isotopes, such as whether an isotope will 
decay by beta plus or beta minus decay.
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Figure 7.15 When a heavy nucleus splits up, energy is released because the produced 
nuclei have a higher binding energy than the original nucleus. When two light nuclei 
fuse, energy is produced because the products again have a higher binding energy. 

Figure 7.16 J.R. Oppenheimer (1904–1967).
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? Test yourself
 16  Find the binding energy and binding energy per 

nucleon of the nucleus 62
28Ni. The atomic mass of 

nickel is 61.928348 u.
 17 How much energy is required to remove one 

proton from the nucleus of 16
8O? A rough answer 

to this question is obtained by giving the binding 
energy per nucleon. A better answer is obtained 
when we write a reaction that removes a proton 
from the nucleus. In this case 16

8O → 11p + 15
7N. 

Calculate the energy required for this reaction 
to take place, known as the proton separation 
energy. Compare the two energy values. (The 
atomic mass of oxygen is 15.994 u; that of 
nitrogen is 15.000 u.)

 18 The fi rst excited state of the nucleus of 
uranium−235 is 0.051 MeV above the ground 
state.

 a What is the wavelength of the photon emitted 
when the nucleus makes a transition to the 
ground state?

 b What part of the spectrum does this photon 
belong to?

 19 Assume uranium-236 splits into two nuclei 
of palladium-117 (Pd). (The atomic mass of 
uranium is 236.0455561 u; that of palladium is 
116.9178 u.)

 a Write down the reaction.
 b What other particles must be produced?
 c What is the energy released?

 20 A fi ssion reaction involving uranium is:

   235
92U + 10n → 98

40Zr + 135
52Te + 31

0n

  Calculate the energy released. (Atomic 
masses: U = 235.043922 u; Zr = 97.91276 u; 
Te = 134.9165 u.)

 21 Calculate the energy released in the fusion 
reaction:

   2
1H + 31H → 42He + 10n

  (Atomic masses: 21H = 2.014102 u; 
3
1H = 3.016049 u; 42He = 4.002603 u.) 

 22 In the fi rst nuclear reaction in a particle accelerator, 
hydrogen nuclei were accelerated and then allowed 
to hit nuclei of lithium according to the reaction:

   1
1H + 73Li → 42He + 42He

  Calculate the energy released. (The atomic mass 
of lithium is 7.016 u.)

 23 Show that an alternative formula for the mass 
defect is δ = ZMH + (A − Z)mn − Matom where 
MH is the mass of a hydrogen atom and mn is the 
mass of a neutron.

 24 Consider the nuclear fusion reaction involving 
the deuterium (21D) and tritium (31T) isotopes of 
hydrogen:

   2
1D + 31T → 42He + 10n

  The energy released, Q1, may be calculated in 
the usual way, using the masses of the particles 
involved, from the expression:

   Q1 = (MD + MT − MHe − mn)c2

  Similarly, in the fi ssion reaction of uranium:

   235
92U + 10n → 98

40Zr + 135
52Te + 30n

  the energy released, Q2, may be calculated from:

   Q2 = (MU − MZr − MTe − 2mn)c 2

 a Show that the expression for Q1 can be 
rewritten as:

    Q1 = EHe − (ED + ET)

  where EHe, ED and ET are the binding energies 
of helium, deuterium and tritium, respectively.

 b Show that the expression for Q2 can be 
rewritten as:

    Q2 = (EZr + ETe) − EU

  where EZr, ETe and EU are the binding 
energies of zirconium, tellurium and uranium, 
respectively.

 c Results similar to the results obtained in a and 
b apply to all energy-releasing fusion and fi ssion 
reactions. Use this fact and the binding energy 
curve in Figure 7.12 to explain carefully why 
energy is released in fusion and fi ssion reactions.
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7.3 The structure of matter
Particle physics is the branch of physics that tries to answer two basic 
questions: What are the fundamental building blocks of matter? What are 
the interactions between these building blocks? The history of physics 
has shown that, as we probe matter at increasingly smaller scales, we fi nd 
structures within structures: molecules contain atoms; atoms are made of 
nuclei and electrons; nuclei are made of nucleons (protons and neutrons); 
and the nucleons are made out of quarks. Will this pattern continue 
forever, or are there fi nal, elementary building blocks? And if there are 
elementary building blocks, are these particles or are they ‘strings’ as 
many recent theories claim? These are the central questions of the part of 
physics called particle physics.

Probing matter
In 1911, Ernest Rutherford (1871–1937) and his assistants Hans Geiger 
(1882–1945) and Ernest Marsden (1889–1970) performed a series of 
experiments that marked the beginning of modern particle physics, the 
quest to unravel the mysteries of the structure of matter. At that time it 
was believed that an atom was a sphere of positive charge of diameter 
about 10−10 m with the electrons moving inside the sphere. This picture 
is the Thomson model of the atom. This is the picture of the atom that 
the Rutherford experiment challenged. 

In the Rutherford experiment, alpha particles were directed at a thin 
gold foil in an evacuated chamber. The numbers of particles defl ected by 
diff erent angles were recorded.

• The great majority of the alpha particles went straight through 
the foil with little or very small deviation. Most were detected 
at very small scattering angles, such as at positions A, B and C 
in Figure 7.17.

• To their great surprise, Rutherford, Geiger and Marsden found 
that, very occasionally, alpha particles were detected at very 
large scattering angles. 

Learning objectives

• Describe the Rutherford, Geiger 
and Marsden experiment and 
how it led to the discovery of 
the nucleus.

• Describe matter in terms of 
quarks and leptons.

• Describe the fundamental 
interactions in terms of 
exchange particles and Feynman 
diagrams.

• Apply conservation laws to 
particle reactions.

Learning objectivesLearning objectives

vacuum

gold foil

spark
of light

microscope

source of
alpha particles

thin gold foil

alpha particles
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C
L

large-angle scattering small-angle scattering

ba
Figure 7.17 a The majority of alpha particles are slightly defl ected by the gold foil. Very occasionally, large-angle 
scatterings take place. b The alpha particles are detected by the sparks of light they create when they hit a zinc sulfi de 
screen in the microscope.
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The small defl ections could be understood within the Thomson model: it 
was due to the electric force of repulsion between the positive charge of 
the gold atoms and the positive charge of the alpha particles. Note that an 
alpha particle is about 8000 times more massive than the electron, so the 
eff ect of the electrons of the gold atoms on the path of the alpha particles 
is negligible.

The large-angle scattering events could not be understood in terms 
of the prevailing model of the time that held that atoms were spheres of 
radius of the order of 10−10 m. Rutherford later said that ‘it was as if you 
fi red a15-inch shell at tissue paper and it came back and hit you’.

Consequences of the Rutherford experiment
The very large defl ection showed there was an enormous force of repulsion 
between the alpha particle and the positive charge of the atom. Since the 

electric force is given by F = 
kq1q2

r 2
 to get a large force implies that the 

separation r must be very small. Such a large force could not be produced if 
the positive charge was distributed over the entire atomic volume. 

How can we get a large force in the Thomson model? Figure 7.18 shows 
two possible ideas for the interaction of the alpha particle with the gold 
atom in the Thomson model. Suppose the alpha particle approaches along 
the top path. The closest distance to the positive charge is r and r is of order 
10−10 m. But the resulting force is 1010 times too small, so this does not 
work. What if the alpha penetrates the atom, as in the second diagram? 
Then, the distance r can become as small as we like. But this does not work 
either. In this case, only the charge within the smaller sphere would produce 
a force on the alpha particle and the result is again a very small force. The 
only way out is to imagine that the positive charge on the atom is within a 
sphere that is much smaller than the sphere that Thomson had imagined.

Rutherford calculated theoretically the number of alpha particles expected 
at particular scattering angles based on Coulomb’s force law. He found 
agreement with his experiments if the positive atomic charge was confi ned 
to a region of linear size approximately equal to 10−15 m. This and subsequent 
experiments confi rmed the existence of a nucleus inside the atom – a small, 
massive object carrying the positive charge of the atom and most of its mass. 

r

r

alpha particle
grazes the atom 

alpha particle
penetrates the atom  

positive charge
spread evenly
through the atom
volume   

gold atom

Figure 7.18 All attempts to get a large force out of the Thomson model fail.

Exam tip
You must be prepared to 
explain why the old model 
can account for the small 
defl ections but not the large 
defl ections, and why the 
proposed new model by 
Rutherford explains both 
the small as well as the large 
defl ections.
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Worked example
7.13 A sphere of charge Q has radius 10−15 m. Another sphere has the same charge and a radius of 10−10 m. 

Calculate the ratio of the electric fi elds at the surface of the two spheres.

Applying the formula for the electric fi eld E = 
kQ
r 2

 we fi nd the ratio of the fi elds E1 and E2 for the two spheres as:

E1
E2

 = 

kQ
(10−15)2

Q
(10−10)2

E1
E2

 = 1010

This is why the defl ecting forces in Rutherford’s model are so large compared with what one might expect from 
Thomson’s model.

Particles galore!
The electron was discovered in 1897, the nucleus in 1911, the proton in 
1920 and the neutron in 1932. So by the 1930s we had all the ingredients 
of matter. Matter is the stuff  that everything around us is made out of – 
the chair on which you sit, the air that you breathe and the molecules 
of your own body. All matter can be understood in terms of just these 
particles. In addition, the photon had been known since 1905. The 
neutrino, which features in beta decay, was hypothesised to exist in 1930 
and was discovered in 1956. 

This very simple and neat picture did not last very long because by 
the 1950s hundreds of other particles were discovered in cosmic ray 
experiments. Also, in particle accelerators around the world, collisions 
between high-energy electrons or protons produced hundreds of new, 
unknown particles. In a device known as the bubble chamber charged 
particles left a trace of their path that could be photographed and analysed 
(Figure 7.19). The reason these particles are not found in ordinary matter 
is that they are very unstable and decay very quickly. A few of these are 
the pions (π+, π−, π0), the kaons (K+, K−, K0), the etas (η, ηʹ), the hyperons 
(Σ+, Σ−, Σ0), the Ω− and hundreds of others. These particles decay with 
half-lives ranging from 10−10 s to 10−24 s. Making sense out of all these 
particles was the main problem of particle physics in the 1960s.

Figure 7.19 Tracks of particles in a bubble 
chamber.
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Elementary particles
More than half a century of painstaking experimental and theoretical 
work has resulted in what is believed today to be the complete list of the 
elementary particles of nature. 

A particle is called elementary if it is not made out of any 
smaller component particles.

There are three classes of elementary particles: the quarks, the leptons 
and the exchange particles.

Quarks 
Quarks were fi rst proposed by two physicists working independently: Murray 
Gell-Mann (born 1929 – Figure 7.20) and Georg Zweig (born 1937). There 
are six diff erent types or fl avours of quarks. The six fl avours are the up (u), 
charm (c) and top (t) quarks with electric charge 23e and the down (d), 
strange (s) and bottom (b) quarks with electric charge −1

3e. Figure 7.21 
shows a representation of the proton and neutron in terms of quarks. 

Figure 7.20 Murray Gell-Mann (born 1929).

Top and bottom quarks are alternatively called truth and beauty. 

proton, p

u u

d

u d

d

neutron, n

Figure 7.21 The quark structures of the 
proton and the neutron.

There is solid experimental evidence for the existence of all six fl avours 
of quarks. In addition we have the anti-particles of each of these. These 
have the same mass but all other properties are opposite, for example 
electric charge. Anti-particles are denoted with a bar on top of the symbol 
for the name. We have already met two anti-particles: the anti-neutrino in 
beta minus decay and the positron in beta plus decay.

Quarks combine in just two ways to form other particles called hadrons.

A hadron is a particle made out of quarks.

• When three quarks combine they form a baryon. (When three anti-
quarks combine they form an anti-baryon.)

• When a quark combines with an anti-quark they form a meson.
The proton is a baryon made out of two u quarks and one d quark, uud. 
The neutron is another baryon made out of two d quarks and one u 
quark, ddu.

The electric charge of the proton is thus predicted to be:

Qp = +2
3e + 23e − 13e = e

and that of the neutron is predicted to be:

Qn = −1
3e −

1
3e + 23e = 0

These are, of course, the correct values.
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Pions are examples of mesons. The positively charged pion (π+ meson) 
is made up as follows:

π+ = (ud
–
)

The bar over the ‘d’ shows this is an anti-particle. Thus, the positive pion 
is made out of a u quark and the anti-particle of the d quark (the d anti-
quark).

Apart from electric charge, quarks have another property called baryon 
number, B. Each quark is assigned a baryon number of +1

3 and each anti-
quark a baryon number of −1

3. To fi nd the baryon number of the hadron 
that is formed by quarks, just add the baryon numbers of the quarks in the 
hadron. For example:

uct baryon number = +1
3 +

1
3 +

1
3 = +1 (a baryon)

ud
–
 baryon number = +1

3 −
1
3 = 0 (a meson)

Since all baryons are made from three quarks, all baryons have baryon 
number +1. All anti-baryons have baryon number −1 and all mesons have 
baryon number 0. (Note that all other particles not made from quarks also 
have a baryon number of 0.) 

Quarks interact with the strong nuclear interaction, the weak nuclear 
interaction and the electromagnetic interaction.

In all reactions electric charge and baryon number are conserved, 
i.e. they have the same value before and after the reaction. 

Consider the decays:

Δ0 → p + π−

Λ0 → p + π−

where Δ0 (udd) and Λ0 = (uds) are two diff erent baryons. They both decay 
to form a proton and a pion.

In both decays the electric charge on the left is zero. On the right-hand 
side of the equation, the charge is also zero since the proton has charge 
+e and the pion has charge –e. Similarly, the baryon number before each 
decay is B = +1 (one baryon); after the decay it is B = +1 for the proton 
(a baryon) and B = 0 for the pion (a meson), giving a total of +1. 

The decays look very similar, but there is a huge diff erence in the time 
it takes for the decays to take place. The fi rst takes about 10−25 s and the 
second 10−10 s. 

Diff erent lifetimes in decays is indicative of a diff erent interaction 
being responsible. Short lifetimes (10−25 s) imply the strong interaction. 
Long lifetimes (10−10 s) imply the weak interaction. The second decay is 
diff erent in that the left-hand side contains a strange quark but the right-
hand side does not. It was thought to assign a new property to strange 
quarks only, a property called strangeness, S. For every strange quark 
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the hadron would get −1 unit of strangeness (and so S = + 1 for every 
anti-strange quark). Strangeness would then be conserved in strong and 
electromagnetic interactions but could be violated in weak interactions. 
This would explain the vast diff erences in lifetimes.

The properties of the diff erent quarks are listed in Table 7.3.

Quark fl avour Charge, Q Baryon number, B Strangeness, S

u  +2e
3 +1

3 0

d  −e
3 +1

3 0

s  −e
3 +1

3 −1

c  +2e
3 +1

3 0

b  −e
3 +1

3 0

t  +2e
3 +1

3 0

Table 7.3 Properties of quarks.

Worked examples
7.14 Determine the charge of the hyperon (Σ), whose quark content is dds. State whether this hadron is a baryon 

or a meson.

From the data booklet the charge is simply QΣ = −1
3e −

1
3e −

1
3e = −e or just −1. It is made of three quarks so it is a 

baryon.

7.15 State the quark content of the anti-particle of the π+ meson.

The anti-particle of the π+ meson (positive pion) is found by replacing every particle in π+ by its anti-particle. 
The anti-particle is therefore the π− meson (negative pion), made up as π− = (

–
ud).

7.16 State the baryon number, strangeness and electric charge of the hadron s–
 
s–
 
s–.

The hadron consists of three anti-quarks so its baryon number is B = −1
3 − 13 − 13 = −1

Its strangeness is S = +1 + 1 + 1 = +3

The electric charge is Q = +1
3e + 13e + 13e = +e

Exam tip
The anti-particle of some 
particle P has the same mass as 
particle P but is opposite in all 
other properties. Some particles 
have anti-particles that are 
identical to the particle itself. 
This implies that these particles 
are neutral. The photon is one 
such example. But the neutron, 
while neutral, is not identical 
to its anti-particle. The neutron 
has baryon number +1 while 
the anti-neutron has baryon 
number −1 and so is diff erent.
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7.17 The reactions below do not occur; if they did, a conservation law would be violated. Identify the law in each case.
a p + p– → π0 + π0 + n
b K0 → π+ + π− + e− 

a For this reaction the baryon number on the left side is 0 and on the right it is +1. So baryon number is not 
conserved. 

b For this reaction electric charge is not conserved. On the left-hand side the charge is zero because the K0 is 
neutral. On the right-hand side the total charge is +e + (– e) + (– e), which is not zero.

7.18 State and explain whether the decay Σ− → n + π− takes place though the electromagnetic, the weak or the 
strong interaction. (Σ− = (dds); π− = u–d.)

Strangeness is violated (the strangeness of Σ− is −1, and the strangeness of n + π− is 0), so the decay takes place 
through the weak interaction. 

Exam tip
Leptons are a diff erent class of 
particle from quarks. Leptons 
do not consist of quarks. Note 
that since leptons are not 
baryons, they have a baryon 
number of 0. Particles that 
are not leptons have a lepton 
number of 0.

Leptons
There are six types of lepton. These are the electron and its neutrino, the 
muon and its neutrino, and the tau and its neutrino. They are denoted by 
e−, νe, µ−, νµ, and τ−, ντ. The muon is heavier than the electron, and the tau 
is heavier than the muon. There is now conclusive evidence that neutrinos 
have a very small non-zero mass. There is solid experimental evidence for 
the existence of all six leptons. In addition we have the anti-particles of 
these. The properties of leptons are given in Table 7.4.

All leptons interact with the weak nuclear interaction. Those that have 
electric charge (e−, µ− and τ−) also interact with the electromagnetic 
interaction.

Leptons (and only leptons) are assigned a new quantum number called 
family lepton number. There is an electron, muon and tau lepton 
number. The various lepton numbers are given in Table 7.4. The family 
lepton number is conserved in all interactions.

Lepton Charge, Q Le Lμ Lг

e− −e +1 0 0

νe 0 +1 0 0

μ− −e 0 +1 0

νμ 0 0 +1 0

τ− −e 0 0 +1

ντ 0 0 0 +1

Table 7.4 Properties of leptons.

Exam tip
Table 7.4 assigns three types of lepton number: electron, muon 
and tau lepton number. In a simpler picture, we may think of just 
one type of lepton number: L = +1 to all leptons and L = −1 to all 
anti-leptons.
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Worked example
7.19 Investigate the reaction µ+ → e+ + νe + ν–µ from the point of view of lepton number conservation.

The lepton number on the left-hand side is −1 because it involves the anti-muon. On the right-hand side it is 
similarly −1 + 1 − 1 = −1 so lepton number is conserved.

Investigating the individual lepton numbers we see that the left-hand side has muon lepton number equal to −1. 
The right-hand side has muon lepton number similarly −1. The electron muon number on the left-hand side is 0 
and on the right-hand side it is −1 + 1 = 0.

Exchange particles
Why does an electron exert an electric force of repulsion on another 
electron? The classical answer we gave in Topic 6 is that the one 
electron creates an electric fi eld to which the other electron responds 
by experiencing a force. Particle physics gives a very diff erent answer 
to this question. Particle physics interprets an interaction between two 
particles as the exchange of a particle between them. In the case of 
the electromagnetic interaction the particle exchanged is a photon. 
One electron emits the photon and the other absorbs it. The emitted 
photon carries momentum and so the electron that emits it changes its 
momentum, i.e. experiences a force. Similarly, the particle that absorbs 
the photon changes its momentum thus also experiencing a force. This is 
shown schematically in Figure 7.22.

As we will see later, the other interactions are also described in terms of 
exchange particles. 

electron

electron
electron

electron

photon

Figure 7.22 Two electrons interacting by 
exchanging a photon. Both electrons change 
direction.

What is a force?
Why should two positive charged particles repel each 

other? And why should they do so with Coulomb’s force which is 
an inverse square law? Why do quarks attract each other with a force 
that binds them tightly, for example within a proton, and why do 
protons and neutrons attract each other strongly when they are close 
to each other within a nucleus?

These ‘why’ questions are diffi  cult questions. The answers to ‘why’ 
questions often lead to other ‘why’ questions, and so the question is 
always whether one has made any progress. 
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Feynman diagrams
In the 1950s the American physicist Richard P. Feynman (Figure 7.23) 
introduced a pictorial representation of particle interactions. These 
representations are now called Feynman diagrams. The diagrams clearly 
express the idea that interactions between particles involve the exchange 
of particles.

Let us concentrate on the electromagnetic interaction. Feynman 
realised that every process involving electromagnetic interactions can be 
built up from just one basic interaction vertex. It has fi ve diff erent parts 
but all fi ve consist of just one wavy line and two lines with arrows on 
them. All fi ve diagrams are essentially the same if you look at them from 
the ‘right’ angle. Think of time increasing as we move to the right. 
A wavy line will represent a photon. A line with an arrow in the direction 
of time represents a particle (an electron). A line with an arrow against 
the direction of time represents an anti-particle (a positron), as shown in 
Figure 7.24. In this way the fi ve diagrams of Figure 7.25 represent fi ve 
diff erent physical processes: 
a shows a photon coming in, which is absorbed by an electron. So this 

represents photon absorption by an electron.
b shows a photon coming in, which is absorbed by a positron. 
c shows an electron emitting a photon.
d shows a photon that materialises into an electron and a positron, pair 

production.
e shows electron–positron annihilation into a photon.

Figure 7.23 Richard P. Feynman (1918–1988).

d  A photon materializes into an
    electron–positron pair 

e  An electron and a positron collide,
    annihilate each other and produce a photon 

γ
γ

e–

e–

e+

e+

a  An electron absorbs a photon b  A positron absorbs a photon c  An electron emits a photon

γ γ

e–
e– e–

e–e+
e+

γ

Figure 7.25 Some examples of interaction vertices. Here γ is a photon, e– is an electron and e+ is a positron.

photon

electron

positron

Figure 7.24 The ingredients of the 
interaction vertex. Electrons have arrows in 
the direction of time. Positrons have arrows 
against the direction of time.

Exam tip
There is one process missing in Figure 7.25, namely a photon 
scattering off  a positron. Can you supply the diagram for this?
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The power of a diagram
The diagrams Feynman introduced to represent physical 

processes and are now called ‘Feynman diagrams’ are not just 
pictorial representations of processes. Each diagram corresponds to 
a precise mathematical expression that contributes to the probability 
of the process occurring. Precise rules allow for the calculation 
of this probability from each diagram. This has revolutionised 
calculations in particle physics. A famous example is the Klein–
Nishina formula, which gives the details of the scattering of a 
photon off  an electron. It took Klein and Nishina 6 months to do 
the calculation. With Feynman diagrams it can be done in under 
2 hours. Julian Schwinger, who shared the 1965 Nobel Prize in 
Physics with Feynman and Sin-Itiro Tomonoga, said that Feynman 
diagrams ‘gave calculating power to the masses.’

electron

positron antiparticle

particle

Figure 7.26 An electron and a positron 
annihilate into a photon and the photon in 
turn materialises into a new particle–anti-
particle pair! 

It is quite extraordinary how so many diff erent processes can be 
described by a single interaction vertex!

The idea is then to put together interaction vertices to represent 
interesting processes. For example, let us see how one electron can scatter 
off  another electron. Go back to Figure 7.22. It is made up of two 
interaction vertices. Another possibility of great use in particle accelerators 
is the process represented by the Feynman diagram in Figure 7.26. 

The idea can be extended to other interactions as well. There are three 
exchange particles for the weak interaction. These are called W± and Z0. 
Unlike the photon, they have mass. This implies that there are very many 
interaction vertices for the weak interaction. Figure 7.27 shows two 
common vertices involving the W− and the Z0. Figure 7.28 shows specifi c 
examples of these two vertices.

Z0 bosonW− boson

f1 f2 f f

Z0 bosonW− boson

f1 f2 f f

Figure 7.27 Two weak interaction vertices. 
In the fi rst, f1 and f2 stand for quarks or 
leptons. This vertex allows quark fl avour to 
change. In the second the incoming and 
outgoing particles are the same, and f stands 
for a quark or a lepton.

W− boson W− boson W− boson

d quark u quark e–

e– e–

νe µ–

Z0 boson

vµ

Figure 7.28 Weak interaction vertices.
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W–

boson

d

d

u

u

d

u

e–

neutron proton

v–e

Figure 7.29 In beta minus decay a d quark 
turns into a u quark by emitting a W−. The 
W− then materialises into an electron and an 
anti-neutrino. The end result is that a neutron 
has turned into a proton.

The interaction vertices can help explain beta decay. This is shown in 
Figure 7.29.

The strong interaction also has very many interaction vertices. The 
most common is similar to the electromagnetic interaction vertex, 
but now we have quarks in place of electrons and gluons in place of 
photons. Gluons are the exchange particles of the strong interaction. (The 
exchange of gluons can sometimes appear as an exchange of mesons.)

Table 7.5 is a summary of the properties of the fundamental interactions. 

Interaction Interaction acts 
on

Exchange 
particle(s)

Relative 
strength*

Range**

electromagnetic particles with 
electric charge

photon 1
137

∞

weak quarks and 
leptons only
responsible for 
beta decay

W+, W− and Z0 10−6 10−18 m

strong quarks and 
by extension 
particles made 
out of quarks, i.e. 
hadrons

gluons/mesons 1 10−15 m

gravitational particles with 
mass

graviton 10−41 ∞

Table 7.5 The fundamental interactions and the exchange particles that participate in 
them.

*Relative strength depends on energy so the values given here are approximate.
**The range of the strong interaction is fi nite even though the gluon is massless.

Worked example
7.20 In Worked example 7.18 we saw that the decay the decay Σ− → n + π− takes place though the weak 

interaction. (Σ− = dds, π− = u–d.) Draw a Feynman diagram for this decay.

The diagram must use a weak interaction vertex; the s quark changes into a u quark and the W− turns into a d and 
u anti-quark to create the pion.

d
d
s

d
d
u

W–

d
ū

π –

n

Figure 7.30



306

Confi nement
Quarks only exist within hadrons. This has led to an important principle, 
that of quark confi nement:

It is not possible to observe isolated quarks.

Suppose that one attempts to remove a quark from inside a meson. 
The force between the quark and the anti-quark is constant no matter 
what their separation is (Figure 7.31). Therefore, the total energy 
needed to separate the quark from the anti-quark gets larger and larger 
as the separation increases. To free the quark completely would require 
an infi nite amount of energy, and so is impossible. If one insisted on 
providing more and more energy in the hope of isolating the quark, all 
that would happen would be the production of a meson–anti-meson pair 
and not free quarks.

The Higgs particle
The theory of quarks, leptons and exchange particles defi nes what is now 
called the Standard Model of particles and interactions. All aspects of 
this model except one have been verifi ed experimentally long ago. The 
missing link was the existence of the Higgs particle: a neutral particle 
required to exist by the theory of the standard model. The Higgs particle 
is closely linked to the mystery of mass. What exactly is mass and how do 
elementary particles acquire mass? In particular, why do the elementary 
particles have the mass that they have? The mathematical theory describing 
the electroweak interaction is one of symmetry. Among many other things, 
this symmetry forbids the photon and the W and Z particles from having 
mass. The photon is indeed massless, so this is fi ne. But the W and the Z 
are massive. For years physicists searched for a way both to preserve the 
mathematical symmetry of the theory and at the same time to allow the W 
and the Z to have mass. This is what the Higgs particle achieves. 

The Higgs particle is responsible, through its interactions, for 
the mass of the particles of the standard model, in particular the 
masses of the W and the Z.

The Higgs particle is the quantum of the Higgs fi eld just as the photon is 
the quantum of the electromagnetic fi eld. 

The idea of mass being acquired as a result of an interaction has a 
counterpart in classical mechanics: a ball of mass m that is being dragged 
through a fl uid by a pulling force F will have an acceleration that is a bit 

less than 
F
m. This is because turbulence is created in the fl uid and results 

in a small force opposing the motion and hence a smaller acceleration 
than expected. This has the same eff ect as saying that, as a result of the 
interaction of the body with the fl uid, the body increased its mass a bit. 
This is very roughly how the Higgs works.

a  strong (colour) force

b  electric force

quark anti-quark

positron electron

Figure 7.31 The lines of force between a 
quark and an anti-quark are very diff erent 
from those between a positive and a 
negative electric charge, leading to quark 
confi nement.
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The Higgs went undetected for about 40 years since its existence was 
proposed on theoretical grounds. In July 2012 physicists at CERN’s Large 
Hadron Collider announced evidence that fi nally the Higgs had been 
discovered. Its mass is about 125 GeV c−2. 

Nature of science
At the time Gell-Mann proposed quarks, many hundreds of hadrons were 
known. Gell-Mann managed to explain the existence of each and every 
one of these by postulating the existence of just the three lightest quarks 
(the u, the d and the s). This was a purely mathematical explanation, as 
no quarks had been observed. Gell-Mann predicted the existence of a 
‘strangeness −3’ baryon and used his quark model to predict its mass 
as well. In 1964 researchers at Brookhaven discovered the Ω− with 
properties exactly as predicted. The bubble chamber photograph in Figure 
7.32a shows the creation and subsequent decay of the Ω−. Analysing 
these complex photographs and extracting relevant information is an 
enormously complicated task. Large-scale international collaboration later 
showed the existence of the other quarks and led to the Standard Model 
used today. Work on particles continues at CERN in Geneva (Figures 
7.32b and 7.32c) and many other laboratories.

Figure 7.32 a A bubble chamber photograph of the creation and decay of the Ω−. b The huge CMS detector at the Large Hadron Collider 
at CERN illustrates the complexity of the electronics required in particle physics. c Computer images of particle tracks after a collision 
illustrate the complexity of the analysis required.

a b c

28 State the baryon number of the hadron with 
quark content c–c–c–.

29 Determine whether the following reactions 
conserve or violate baryon number:
a p+ → e+ + γ
b p+ + p− → π+ + π−

c p+ + p− → π+ + π− + n + n–

d Λ0 → π+ + π− (The Λ particle has quark 
content uds.)

? Test yourself
25 In the gold foil experiment explain why:

a the foil was very thin
b the experiment was done in an evacuated 

container.
26 Write down the quark structure of a the anti-

neutron and b the anti-proton. Verify that the 
charges come out correctly.

27 Write down the quark structure of the anti-
particle of the meson K+ = (us–).
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30 Suggest the reason that led to the introduction of 
the quantum number called strangeness.

31 The quark content of a certain meson is (ds–).
a Write down its charge and its strangeness.
b Determine whether it can be its own anti-

particle.
32 A charmed D meson is made out of D = cd

–
.

a Write down its charge.
b Write down its strangeness.

33 Determine whether the following reactions 
conserve or violate strangeness: (use π0 = dd

–
, 

K+ = us–, Λ0 = uds, K0 = ds–, Σ− = dds)
a π− + p+ → K0 + Λ0

b p0 + n → K+ + Σ−

c K0 → π− + π+

d π− + p+ → π− + Σ+

34 In the reactions listed below, various neutrinos 
appear (denoted ν). In each case, identify the 
correct neutrino (νe, νµ, ντ or the anti-particles 
of these).
a π+ → p0 + e+ + ν
b π+ → p0 + μ+ + ν
c τ+ → π− + π+ + ν
d p+ + ν → n + e+

e τ− → e− + ν + ν
35 The reactions listed below are all impossible 

because they violate one or more conservation 
laws. In each case, identify the law that is violated.
a K+ → μ− + ν–μ + e+ + e+

b μ− → e+ + γ
c τ+ → γ + ν–τ 
d p + n → p + p0

e e+ → µ+ + ν–μ + ν–e

f p → π+ + π−

36 Explain whether the electric force acts:
a on quarks
b on neutrinos.

37 The neutron is electrically neutral. Could it 
possibly have electromagnetic interactions?

38 The neutral meson ηc = (cc–) is its own anti-
particle, but the neutral K0 = (ds–) is not. 
Explain why.

39 a  Outline what is meant by the term 
confi nement in the context of quarks.

b The Feynman diagram shows the decay of a 
quark–anti-quark pair in a meson into two 
gluons. With reference to your answer in a, 
suggest what might happen to the gluons 
produced in this decay.

40 a  The rest mass of the proton is 938 MeV c−2 
and that of the neutron is 940 MeV c−2. Using 
the known quark contents of the proton and 
the neutron, calculate the masses of the u and 
d quarks.

b Using the values you calculated in a, predict 
the mass of the meson π+ (which is made out 
of a u quark and an d anti-quark).

c The actual value of the rest mass of the 
π+ is about 140 MeV c−2. Suggest how this 
enormous disagreement is resolved.

41 Describe the signifi cance of the Higgs particle in 
the standard model of quarks and leptons.

42 Use the electromagnetic vertex to draw a 
Feynman diagram for the scattering of a photon 
off  a positron.

43 Beta-minus decay involves the decay of a 
neutron into a proton according to the reaction 
n → p+ + e− + ν–e.
a Describe this decay in terms of quarks.
b Draw a Feynman diagram for the process.

44 Using the basic weak interaction vertex 
involving a W boson and two quarks or leptons 
given in Figure 7.28, draw Feynman diagrams to 
represent the following processes:
a µ− → e− + ν–e + νµ
b e− + ν–e → µ− + ν–µ
c π+ → µ+ + νµ (quark structure of positive pion 

is ud
–
)

d K− → µ− + ν–µ (quark structure of negative 
kaon is su–).

quark

anti-quark

gluons
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45 Using the basic weak interaction vertex 
involving a W boson and two quarks and leptons 
given in Figure 7.30, state three possible ways in 
which the W boson can decay.

46 Using the basic weak interaction vertex 
involving a Z boson and two quarks and leptons 
given in Figure 7.30, draw Feynman diagrams to 
represent the following processes:
a e− + e+ → ν–µ + νµ
b e− + νµ → e− + νµ
c e− + e+ → e− + e+

Exam-style questions

1 How would the decay of a nucleus of  60
27Co into a nucleus of  60

28Ni be described?

A alpha decay B beta minus decay C beta plus decay D gamma decay

2 What are the number of neutrons and the number of electrons in the neutral atom of  195
78Pt?

Number of neutrons Number of electrons

A 117 195
B 117 78
C 195 78
D 195 117

3 The activity of a sample containing a radioactive element is 6400 Bq. After 36 minutes the activity is 800 Bq. What 
is the half-life of the sample?

A 4.0 minutes B 8.0 minutes C 12 minutes D 18 minutes

4 A sample contains a small quantity of a radioactive element with a very long half-life. The activity is constant and 
equal to A. The temperature of the sample is increased. What are the eff ects if any, on the half-life and activity of 
the sample?

Eff ect on half-life Eff ect on activity

A none none
B none increase
C increase none
D increase increase

5 What is the common characteristic of most nuclei with mass number greater than about 20?

A binding energy per nucleon
B binding energy
C decay pattern
D half-life
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 6 The binding energy per nucleon for 11
5B is about 7 MeV. What is the minimum energy needed to separate the 

nucleons of  11
5B ?

A 7 MeV B 35 MeV C 42 MeV D 77 MeV

 7 The reaction p + n → p + π0 is impossible. Which conservation law would be violated if the reaction occurred? 

A charge B lepton number C baryon number D strangeness

 8 Which is the neutral exchange particle of the weak interaction?

A photon B gluon C W D Z

 9 What are the charge Q and strangeness S of the baryon Λ = (uds)?

Q S

A 0 +1
B +1 +1
C 0 −1
D +1 −1

10 What process does this Feynman diagram represent?

A electron emitting photon
B electron absorbing photon
C positron emitting photon
D positron absorbing photon

11 a  Explain how the emission lines in the spectrum of a gas are evidence for discrete energy levels 
within atoms. [3]

 The diagram shows three energy levels of a vapour. 

Energy

time

 Transitions between these three levels give rise to photons of three diff erent wavelengths. Two of these 
wavelengths are 486 nm and 656 nm.
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b On a copy of the diagram draw arrows to identify the transitions that give rise to the wavelengths 
of 656 nm and 486 nm. [2]

c Calculate the wavelength of the photon that corresponds to the third transition. [3]

d White light containing wavelengths that vary from 400 nm to 700 nm is transmitted through the vapour. 
On a copy of the diagram below, draw lines to show the absorption lines in the transmitted light. [2]

increasing wavelength

12 a Explain why in their experiment Geiger and Marsden used:
  i an evacuated enclosure [1]
  ii a gold foil that was very thin [1]
  iii a beam of alpha particles that was very narrow. [1]

b State the name of the force responsible for the defl ection of the alpha particles. [1]

c  i Describe the defl ections of the alpha particles by the gold foil. [2]
  ii Outline how the results of this experiment led to the Rutherford model of the atom. [3]

d The diagram shows a partially completed path of an alpha particle that left point P as it scatters past a 
nucleus of gold.

 On a copy of the diagram:
  i complete the path [1]
  ii draw lines to clearly show the angle of defl ection of this alpha particle [2]
  iii  draw an arrow to indicate the direction of the force on the alpha particle at the point of 

closest approach. [1]

e  i  A second alpha particle is shot at the nucleus from position Q with identical kinetic energy, in a 
direction parallel to that of the alpha particle at P. On your diagram, draw the path of this particle. [2]

  ii  Discuss how, if at all, the answer to e i would change if the nucleus of gold were replaced by a 
nucleus of another, heavier, isotope of gold. [2]

.
Q

P.
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13 a Radioactive decay is random and spontaneous. State what you understand by this statement. [4]

b The graph shows how activity of a sample containing a radioactive isotope of thorium 225
90Th varies 

with time.

  i State what is meant by an isotope. [1]
  ii Determine the half-life of thorium. [2]
  iii State one assumption made in obtaining the answer to ii. [1]
  iv Draw on a copy of the graph to show the variation of the activity with time to 30 minutes. [2]

c  i Thorium undergoes alpha decay. Complete the reaction equation:

  225
90Th → ??Ra + ??a [2]

  ii  Calculate the energy released, in MeV. (Atomic masses: thorium 226.024903 u, radium 221.013917 u, 
helium 4.0026603 u.) [2]

d The nuclei of thorium are at rest when they decay. Determine the fraction of the energy released that is 
carried by the alpha particle. [3]

14 A possible fi ssion reaction is given by the equation:

  1
0n + 235

92U → 90
38Sr +143

54Xe + x1
0n

a  i Calculate the number x of neutrons produced. [1]
  ii Use the binding energy per nucleon curve in Figure 7.12 to estimate the energy released in 

  this reaction. [3]

b Suggest why most nuclei with A > 20 have roughly the same binding energy per nucleon. [3]

c Use the diagram in Figure 7.12 to explain why energy is released in nuclear fusion. [2]

A/Bq

2000

0

4000

6000

8000

t/min
25 3020151050
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15 a Explain, in terms of quarks, the diff erence between a baryon and a meson. [2]

b In a copy of the table below, put a check mark (✓) to identify the interaction(s) that apply to hadrons 
and to leptons. [2]

strong weak

hadrons

leptons

c Copy and complete the Feynman diagram to represent the beta minus decay of a neutron, making sure 
that you label all particles involved. [5]

muon

time

W–

d For this part of the question it is given that K− = su–, π+ = ud
–
 and that Σ− has strangeness −1.

  i  Using the fact that the reaction K− + p → π+ + Σ− occurs, determine whether Σ− would be classifi ed 
as a baryon or as a meson. [2]

  ii  Using the fact that the reaction K− → µ− +  ν– occurs, determine whether the reaction takes place 
through the strong, the weak or the electromagnetic interaction. [2]

  iii  State and explain whether the anti-neutrino in d ii is an electron, muon or tau anti-neutrino. [2]

16 A student suggest that the muon decays according to the reaction equation µ− → e− + γ.

a  i State one similarity and one diff erence between the electron and the muon. [2]
  ii Explain why the reaction equation proposed by the student is incorrect. [2]

b In fact, the muon decays according to µ− → e− +  ν–e + νµ. A Feynman diagram for this decay is shown.

  i Identify the three unlabelled particles in this diagram. [3]
  ii  Using the diagram above to construct a new Feynman diagram representing the scattering of an 

electron anti-neutrino off  a muon. [2]
  iii  Write down the reaction equation representing the decay µ+, which is the anti-particle of the µ−. [2]

c The interaction responsible for the decay of the muon has very short range. State the property of the 
exchange particle that is responsible for the short range. [1]
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8.1 Energy sources
This section discusses energy sources and ways to produce power.

Primary and secondary energy
Primary energy is energy found in nature that has not yet been 
subject to processing of any kind. Examples include the energy stored 
in fuels such as crude oil, coal and natural gas, as well as solar energy, 
wind energy and so on. When primary energy is processed or exploited, 
secondary energy is produced. Secondary energy must be suitable 
for use in machines which perform mechanical work; it could also be 
a very versatile form of energy such as electricity. To give one example, 
the kinetic energy of particles of air in wind is primary energy. A simple 
windmill can extract some of this kinetic energy and perform mechanical 
work as it raises water from a well; or, the kinetic energy of the wind can 
be used to turn a generator producing electricity. In both cases we have 
primary energy being transformed to secondary energy.

How much energy can be extracted from a fuel defi nes the fuel’s 
specifi c energy and energy density. Specifi c energy, ES, is the amount 
of energy that can be extracted from a unit mass of fuel; it is measured 
in J kg–1. Energy density, ED, is the amount of energy that be extracted 
from a unit volume of fuel; it is measured in J m–3. Table 8.1 gives the 
values for ES and ED for some common fuels.

Worked example
8.1 a Show that ED = ρES where ρ is the density of the fuel. 
 b Use Table 8.1 to estimate the density of uranium-235. 

a ED is the amount of energy that be extracted from a unit volume of fuel, so:

  ED = 
Q
V

 where Q is the energy released from volume V. 

 Using the defi nition of density ρ as mass per unit volume, a volume V has mass m given by:

  m = Vρ 

 ⇒ V = 
m
ρ

 Then, ED = 
Q

m/ρ = 
Q
m  × ρ = ρES

8  Energy production
Learning objectives

• Solve problems with specifi c 
energy and energy density.

• Distinguish between primary 
and secondary energy sources 
and renewable and non-
renewable energy sources.

• Describe fossil fuel power 
stations, nuclear power stations, 
wind generators, pumped 
storage hydroelectric systems, 
solar power cells and solar 
panels.

• Solve problems involving energy 
transformations in the systems 
above.
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b Table 8.1 gives values for ED and ES for uranium-235. Hence:

  ρ = 
ED

ES
 = 

1.3 × 1018

70 × 1012  ≈ 2 × 104 kg m−3.

8  Energy production

Fuel Specifi c energy ES / J kg–1 Energy density ED / J m–3

uranium-235 7.0 × 1013 1.3 × 1018

hydrogen 1.4 × 108 1.0 × 107

natural gas 5.4 × 107 3.6 × 107

gasoline 4.6 × 107 3.4 × 1010

kerosene 4.3 × 107 3.3 × 1010

diesel 4.6 × 107 3.7 × 1010

coal 3.2 × 107 7.2 × 1010

Table 8.1 Specifi c energy or energy density of fossil fuels.

Specifi c energy or energy density are major considerations in the choice 
of a fuel. Obviously, all other factors being equal, the higher the specifi c 
energy or energy density, the more desirable the fuel.

We may classify energy sources into two large classes, non-renewable 
and renewable.

Non-renewable sources of energy are fi nite sources, which are being 
depleted much faster than they can be produced and so will run out. 
They include fossil fuels (e.g. oil, natural gas and coal) and nuclear fuels 
(e.g. uranium). 

Renewable sources include solar energy (and the other forms indirectly 
dependent on solar energy, such as wind energy and wave energy) and 
tidal energy. In principle, they will be available as long as the Sun shines 
and that means billions of years.

The main sources of energy, and the percentage of the total energy 
produced of each, is given in Table 8.2. The fi gures are world averages for 
2011 and are approximate.

Fuel Percentage of total energy 
production / %

Carbon dioxide 
emission / g MJ–1

oil 32 70

natural gas 21 50

coal 27 90

nuclear 6 –

hydroelectric 2 –

biofuels 10 –

others <2 –

Table 8.2 Energy sources and the percentage of the total energy production for each. 
The third column gives the mass of carbon dioxide emitted per unit of energy produced 
from a particular fuel. Fossil fuels account for about 80% of the total energy production.
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Fossil fuels
Fossil fuels (oil, coal and natural gas) have been created over millions of 
years. They are produced by the decomposition of buried animal and plant 
matter under the combined action of the high pressure of the material on 
top and bacteria.

Burning coal and oil have been the traditional ways of producing 
electricity. A typical fossil fuel power plant is shown in Figure 8.1. 

transformer

generatorwater

condenser cooling water condenser

river

coal

boiler
(furnace)

steam turbine

power lines

35

5

generator/turbine

40

condenser

20

boiler

100

Burning coal produces energy that turns water into steam in boilers. 
The pressurised steam forces a turbine to turn. The turbine makes the 
coils of a generator rotate in a magnetic fi eld, creating electricity by 
electromagnetic induction (see Subtopic 11.2). Cold water (usually from 
a nearby river) condenses the steam into liquid water that can again be 
heated in the boilers. Figure 8.2 shows a Sankey diagram for this plant. 

Figure 8.1 A coal-burning power plant.

Figure 8.2 A Sankey diagram for a coal-burning power plant.
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A Sankey diagram is an arrow block diagram representing energy 
fl ows. The width of the arrow is proportional to the amount of energy 
being transferred. Here, 100 units of energy created by the burning 
of coal enter the system. Twenty units are lost though the boilers, and 
an additional 40 units are lost as steam condenses into water. Of the 
remaining 40 units, about fi ve are lost because of friction in the turning 
turbine and generator. In the end, only 35 units of energy have been 
produced as electricity. The effi  ciency, e, is defi ned by:

e = 
useful power
input power

The effi  ciency of this power plant is:

e = 
35
100 = 0.35  or  35%

Although reasonably effi  cient, fossil fuel power plants are primarily 
responsible for atmospheric pollution and contribute greenhouse gases to 
the atmosphere (Figure 8.3). (Greenhouse gases and the greenhouse eff ect 
are discussed in Subtopic 8.2.)

Natural gas power plants have higher effi  ciencies, reaching almost 60%, 
and have much smaller greenhouse gas emissions.

Worked example
8.2 A power plant produces electricity by burning coal. The thermal energy produced is used as input to a steam 

engine, which makes a turbine turn, producing electricity. The plant has a power output of 400 MW and 
operates at an overall effi  ciency of 35%.
a Calculate the rate at which thermal energy is provided by the burning coal.
b Calculate the rate at which coal is burned (use a coal specifi c energy of 30 MJ kg−1).
c  The thermal energy discarded by the power plant is removed by water (Figure 8.4). The temperature of the 

water must not increase by more than 5 °C. Calculate the rate at which the water must fl ow.

Figure 8.4

a The effi  ciency is the ratio of useful power output to power input. So:

  0.35 = 
power output
power input  = 

400 MW
Pinput

 ⇒ Pinput = 
400
0.35 = 1.14 × 103 ≈ 1.1 × 103 MW

Figure 8.3 Fossil fuels produce pollution 
and greenhouse gases.

Power is energy per unit time, i.e. 

power = 
energy
time

warmcold
water flow

thermal
energy
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b Each kilogram of coal provides 30 MJ, which is 30 × 106 J . The power input is 1.14 × 103 MW, which is 
1.14 × 109 J s−1

. 

 So the mass of coal that must be burned per second, 
∆m
∆t , is found from:

  
∆m
∆t  × 30 × 106 = 1.14 × 109

 ⇒ ∆m
∆t  = 38 kg s−1

 This is equivalent to:

  38 × 60 × 60 × 24 × 365 = 1.2 × 109 kg yr−1

c The thermal energy discarded is the diff erence between the energy produced by burning the coal and the useful 
energy output. So:

 rate at which thermal energy is discarded = rate at which energy enters the water   
∆Q
∆t

  = 1140 − 400 = 740 MW

 This thermal energy warms up the water according to:

  Q = (∆m)c∆T

 where m is the mass of water into which the thermal energy goes, c is the specifi c heat capacity of water 
(4200 J kg−1 K−1) and ∆T is the temperature increase of the water (5 °C). 

 Rearranging, the rate at which thermal energy 
enters the water is then:

 
∆Q
∆t  = 

∆m
∆t  × c∆T = 740 MW

 Therefore:

 
∆m
∆t  = 

740 × 106

c∆T  = 
740 × 106

4200 × 5

 ∆m
∆t  = 35 × 103 kg s−1

The water must fl ow at a rate of 35 × 103 kg s−1.

Exam tip: Fossil fuels
Advantages 
• Relatively cheap (while they last)
• High power output (high energy density)
• Variety of engines and devices use them 

directly and easily
• Extensive distribution network is in place
Disadvantages 
• Will run out
• Pollute the environment
• Contribute to greenhouse eff ect by releasing 

greenhouse gases into atmosphere

In the overall considerations over choice of fuel, it is necessary to take 
into account the cost of transporting the fuel from its place of production 
to the place of distribution. Fossil fuels have generally high costs because 
the mass and volume of the fuel tend to be large. Similarly, extensive 
storage facilities are needed. Fossil fuels, especially oil, pose serious 
environmental problems due to leakages at various points along the 
production–distribution line.



8  ENERGY PRODUCTION 319

Nuclear power
A nuclear reactor is a machine in which nuclear fi ssion reactions take 

place, producing energy. Fission reactions were discussed in Subtopic 7.2. 
Schematic diagrams of the cores of two types of nuclear reactor are 

shown in Figure 8.5.
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b gas-cooled reactora pressurised water reactor (PWR)

pump

The fuel of a nuclear reactor is typically uranium-235. In induced 
fi ssion neutrons initiate the reaction. One possible fi ssion reaction is:

1
0n + 235

92U → 140
54Xe + 94

38Sr + 21
0n

The neutrons produced can be used to collide with other nuclei of 
uranium-235 in the reactor, producing more fi ssion, more energy and 
more neutrons. The reaction is thus self-sustaining; it is called a chain 
reaction. For the chain reaction to get going, a certain minimum mass 
of uranium-235 must be present, otherwise the neutrons escape without 
causing further reactions. This minimum mass is called the critical mass 
(for pure uranium-235, this is about 15 kg and rises to 130 kg for fuels 
containing 10% uranium-235). Uranium-235 will only capture neutrons 
if the neutrons are not too fast. The neutrons produced in the fi ssion 
reactions are much too fast, and so must be slowed down before they can 
initiate further reactions.

The slowing down of neutrons is achieved through collisions of the 
neutrons with atoms of the moderator, the material surrounding the 
fuel rods (the tubes containing uranium). The moderator material 
can be graphite or water, for example. As the neutrons collide with 
moderator atoms, they transfer energy to the moderator, increasing its 
temperature. A heat exchanger is therefore needed to extract the heat 
from the moderator. This can be done using cold water that circulates in 
pipes throughout the moderator. The water is turned into steam at high 
temperature and pressure. The steam is then used to turn the turbines of a 
generator, fi nally producing electricity. 

The rate of the reactions is determined by the number of neutrons 
available to be captured by uranium-235. Too few neutrons would result 

Figure 8.5 Schematic diagrams of two types of fi ssion reactor.
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in the reaction stopping, while too many neutrons would lead to an 
uncontrollably large release of energy. Thus control rods are introduced 
into the moderator. These absorb neutrons when too many neutrons are 
present thus decreasing the rate of reactions. If the rate of reactions needs 
to be increased, the control rods are removed. 

Worked example
8.3 As discussed in Subtopic 7.2, one kilogram of uranium-235 releases a quantity of energy equal to 70 × 1012 J. 

Natural uranium (mainly uranium-238) contains about 0.7% of uranium-235 (by mass). Calculate the specifi c 
energy of natural uranium.

One kilogram of natural uranium contains 0.7% of uranium-235 and so the specifi c energy ES of natural uranium 
as a nuclear fuel is:

ES = 
0.7
100 × 70 × 1012 = 4.9 × 1011 J kg−1

ES = 490 GJ kg−1

This value is substantially higher than for fossil fuels.

Risks with nuclear power
The fast neutrons produced in a fi ssion reaction may be used to bombard 
uranium-238 and produce plutonium-239. The reactions leading to 
plutonium production are:

1
0n + 238

92U → 239
92U

239
92U → 239

93Np + −1
0e + ν–

239
93Np → 239

94Pu+ −1
0e + ν–

The importance of these reactions is that non-fi ssionable material 
(uranium-238) is being converted to fi ssionable material (plutonium-239) 
as the reactor operates. The plutonium-239 produced can then be used as 
the nuclear fuel in other reactors. It can also be used in the production of 
nuclear weapons, which therefore raises serious concerns.

The spent fuel in a nuclear reactor, together with the products of the 
reactions, are all highly radioactive with long half-lives. Properly disposing 
of this material is a serious problem of the fi ssion process. At present, this 
material is buried deep underground in containers that are supposed to 
avoid leakage to the outside. In addition, there is always the possibility of 
an accident due to uncontrolled heating of the moderator, which might 
start a fi re or explosion. This would be a conventional explosion – the 
reactor cannot explode in the way a nuclear weapon does. In the event 
of an explosion, radioactive material would leak from the sealed core of 
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a reactor, dispersing radioactive material into the environment. Both the 
explosions shown in Figure 8.6 resulted in widespread contamination. 
Even worse, we may have the meltdown of the entire core, as in the 1986 
accident at Chernobyl.

These are serious concerns with nuclear fi ssion as a source of 
commercial power. On the positive side, nuclear power does not produce 
greenhouse gases.

Worked example
8.4 A nuclear power plant produces 800 MW of electrical power with an overall effi  ciency of 35%. The energy 

released in the fi ssion of one nucleus of uranium-235 is 170 MeV. Estimate the mass of uranium used per year.

Let P be the power produced from nuclear fi ssion. Since the effi  ciency is 35%, then:

0.35 = 
800
P

⇒ P = 2286 MW

The energy produced in one year is:

2286 × 106 × 365 × 24 × 3600 = 7.21 × 1016 J

The energy produced in the fi ssion of one nucleus is:

170 × 106 × 1.6 × 10–19 = 2.72×10–11 J

and so the number of fi ssion reactions in a year is:

7.21 × 1016

2.72 × 10−11 = 2.65 × 1027

The mass of uranium-235 used up in a year is therefore 2.65 × 1027 × 235 × 1.66 × 10–27, which is about 1000 kg. 

Figure 8.6 The eff ects of two of the world’s worst nuclear accidents. a The nearby 
devastation after the explosion at the Fukushima nuclear plant in Japan on 11 March 
2011. b Reactor number 4 in the Chernobyl nuclear power plant after the explosion on 
26 April 1986.

Exam tip: Nuclear power
Advantages 
• High power output
• Large reserves of nuclear fuels
• Nuclear power stations do 

not produce greenhouse 
gases

Disadvantages 
• Radioactive waste products 

diffi  cult to dispose of
• Major public health hazard 

should ‘something go wrong’
• Problems associated with 

uranium mining
• Possibility of producing 

materials for nuclear 
weapons

a b
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Solar power
The nuclear fusion reactions in the Sun send out an incredible, and 
practically inexhaustible, amount of energy, at a rate of about 3.9 × 1026 W. 
The Earth receives about 1400 W m−2 at the outer atmosphere. About 
1000 W m−2 (1 kW m−2 ) reaches the surface of the Earth. This amount 
assumes direct sunlight on a clear day and thus is the maximum that can 
be received at any one time. This is high-quality, free and inexhaustible 
energy that can be put to various uses.

Solar panels
An early application of solar energy has been in what are called ‘active 
solar devices’. In these, sunlight is used directly to heat water or air for 
heating in a house, for example. The collecting surface is usually fl at 
and covered by glass for protection; the glass should be coated to reduce 
refl ection. A blackened surface below the glass collects sunlight, and 
water circulating in pipes underneath is heated. This hot water can then 
be used to heat water for use in the house (the heated water is kept in 
well-insulated containers). The general setup is shown in Figure 8.7a. An 
additional boiler is available to heat the water in days with little sunlight.

These simple collectors are cheap and are usually put on the roof of a 
house (Figure 8.7b). Their disadvantage is that they tend to be bulky and 
cover too much space.

Photovoltaic cells
A promising method for producing electricity from sunlight is that 
provided by photovoltaic cells (Figure 8.8). The photovoltaic cell was 
developed in 1954 at Bell Laboratories and was used extensively in the 
space programme. A photovoltaic cell converts sunlight directly into direct 
current (dc) at an effi  ciency approaching 30%. Sunlight incident on the 
cell releases electrons and establishes a potential diff erence across the cell. 

These systems can usefully be used to power small remote villages, 
pump water in agriculture, power warning lights, etc. Their environmental 
ill-eff ects are practically zero, with the exception of chemical pollution at 
the place of their manufacture. 

sunlight

a

cold
water inlet

solar heating panel

to taps

tank

pump

boiler

Figure 8.7 a A solar heating panel to 
provide warm water to a house. b Solar 
heating panels on roofs of apartment 
buildings.

Figure 8.8 To produce appreciable amounts 
of electrical power very many photovoltaic 
cells are needed.

Exam tip: Solar power
Advantages 
• ‘Free’
• Inexhaustible
• Clean
Disadvantages 
• Works during the day only
• Aff ected by cloudy weather
• Low power output
• Requires large areas
• Initial costs high

a

b
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Worked example
8.5 The average intensity of solar radiation incident on the Earth surface is 245 W m–2. In an array of photovoltaic 

cells, solar energy is converted into electrical energy with an effi  ciency of 20%. Estimate the area of 
photovoltaic cells needed to provide 2.5 kW of electrical power.

The power incident on an area A m2 is 245 × A .

As the cells are 20% effi  cient, the electrical power P provided by area A of cells is:

P  = 0.20 × 245 × A 

The power required is 2500 W.

2500 = 0.20 × 245 × A 

⇒ A = 51 m2

The area of photovoltaic cells needed to provide 2.5 kW of electrical power is 51 m2.

Hydroelectric power
Hydroelectric power, the power derived from moving water masses, 
is one of the oldest and most established of all renewable energy sources 
(Figure 8.9). 

Hydroelectric power stations are associated with massive changes in the 
ecology of the area surrounding the plants. To create a reservoir behind a 
newly constructed dam, a vast area of land must be fl ooded.

The principle behind hydropower is simple. Consider a mass m of water 
that falls down a vertical height h (Figure 8.10). The potential energy of 

Figure 8.9 The Three Gorges Dam spanning the Yangtze River in Hubei province in 
China. 
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the mass is mgh, and this is converted into kinetic energy when the mass 
descends the vertical distance h. The mass of the water is given by ρ∆V, 
where ρ is the density of water (1000 kg  m−3) and ∆V is the volume it 
occupies.

The rate of change of this potential energy, i.e. the power P, is given by 
the change in potential energy divided by the time taken for that change. So:

P mgh
t

V gh
t

V
t gh= =( ) =ρ ρ∆

∆
∆

∆
∆

The quantity Q = 
∆V
∆t  is known as the volume fl ow rate (volume per 

second) and so:

P = ρQgh

This is the power available for generating electricity (or to convert into 
some other mechanical form) and it is thus clear that hydropower requires 
large volume fl ow rates, Q, and large heights, h.

h

m

Figure 8.10 Water falling from a vertical 
height h has its potential energy converted 
into kinetic energy, which can be used to 
drive turbines.

Exam tip: Hydroelectric 
power
Advantages 
• ‘Free’
• Inexhaustible
• Clean
Disadvantages 
• Very dependent on location
• Requires drastic changes to 

environment
• Initial costs high
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Worked example
8.6 Find the power developed when water in a stream with a fl ow rate 50 × 10−3 m3 s−1 falls from a height of 15 m.

Applying the power formula, we fi nd:

P = ρQgh

P = 1000 × (50 × 10−3) × 9.8 × 15

P = 7.4 kW

In a pumped storage system, the water that fl ows to lower heights is 
pumped back to its original height by using the generators of the plant as 
motors to pump the water (Figure 8.11). 

Figure 8.11 During off -peak hours water is pumped up to the higher reservoir. To do 
this the plant consumes electricity instead of producing it.
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Obviously, to do this requires energy (more energy, in fact, than can be 
regained when the water is again allowed to fl ow to lower heights). This 
energy has to be supplied from other sources of electrical energy at 
off -peak times when the cost of electricity is low. This is the only way to 
store energy on a large scale for use when demand, and hence price, is 
high. In other words, cheap excess electricity from somewhere else can be 
provided to the plant to raise the water so that energy can be produced 
later when it is needed. 

Wind power
This ancient method for exploiting the kinetic energy of wind is 
particularly useful for isolated small houses and agricultural use. Small 
wind turbines have vanes no larger than about 1 m long. Modern large 
wind turbines, with vanes larger than 30 m, are capable of producing up to 
a few megawatts of power (Figure 8.12).

Wind generators produce low-frequency sound that aff ects some 
people’s sleeping habits and many people fi nd the sight of very many of 
them in wind parks unattractive. The blades are susceptible to stresses in 
high winds and damage due to metal fatigue frequently occurs. Serious 
power production from wind occurs at wind speeds from 6 to 14 m s−1. 
But the design must also take into account gale-force winds, which 
may be very rare for a particular site, but would result in damage to an 
inadequately designed system. About 30% of the power carried by the 
wind can be converted into electricity (Figure 8.13).

Let us consider the mass of air that can pass through a tube of cross-
sectional area A with velocity v in time ∆t (Figure 8.14). Let ρ be the 
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100
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Figure 8.12 An array of sea-based horizontal 
axis wind turbines.

Figure 8.13 A Sankey diagram for wind energy extraction. The main loss comes from 
the fact the wind cannot just stop past the generator.
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density of air. Then the mass enclosed in a tube of length v∆t is ρAv∆t. 
This is the mass that will exit the right end of the tube within a time 
interval equal to ∆t. The kinetic energy of this mass of air is thus:

1
2(ρAv∆t)v2 = 12 ρA∆tv3

The kinetic energy per unit time is the power, and so dividing by ∆t we 
fi nd:

P = 12 ρAv3

This shows that the power carried by the wind is proportional to the cube 
of the wind speed and proportional to the area spanned by the blades.

Assuming a wind speed of 8.0 m s−1, an air density of 1.2 kg m−3 and 
a blade radius of 1.5 m (so area 7.1 m2 ) we fi nd a theoretical maximum 
power of:

P = 12 ρAv3

P = 12 × 1.2 × 7.1 × 8.03

P ≈ 2.2 kW

Doubling the wind turbine area doubles the power extracted, but 
doubling the wind speed increases the power (in theory) by a factor of 
eight. In practice, frictional and other losses (mainly turbulence) result in 
a smaller power increase. The calculations above also assume that all the 
wind is actually stopped by the wind turbine, extracting all of the wind’s 
kinetic energy. In practice this is not the case (Figure 8.15).

A

v∆t

v ρ

Figure 8.14 The mass of air within this 
cylinder will exit the right end within a time 
of ∆t.

Exam tip: Wind power
Advantages 
• ‘Free’
• Inexhaustible
• Clean
Disadvantages 
• Dependent on local wind 

conditions
• Aesthetic problems
• Noise problems

Figure 8.15 The ‘wake’ eff ect created by wind as it goes past one generator aff ects other 
generators down the line, decreasing the expected power output of the windmill ‘farm’. 

Nature of science
Society demands action
Society’s demand for ever-increasing amounts of energy raises ethical 
debates. How can present and future energy needs be best met, without 
compromising the future of the planet? There are many aspects to the 
energy debate, and all energy sources have associated risks, benefi ts and 
costs. Although not all governments and people support the development 
of renewable energy sources, scientists across the globe continue to 
collaborate to develop new technologies that can reduce our dependence 
on non-renewable energy sources.
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 8 a  Calculate the energy released in the fi ssion 
reaction:

   1
0n + 235

92U → 236
92U → 140

54Xe + 94
38Sr + 21

0n

    (Mass data: uranium-235, 235
92U = 235.043 923 u; 

xenon-140, 140
54Xe = 139.921 636 u; 

strontium-94, 94
38Sr = 93.915 360 u; neutron, 

1
0n = 1.008 665 u.)

  b  The power output is 200 MW. Estimate the 
number of fi ssion reactions per second. 

 9 The energy released in a typical fi ssion reaction 
involving uranium-235 is 200 MeV.

  a  Calculate the specifi c energy of uranium-235.
  b  Estimate how much coal (specifi c energy 

30 MJ kg−1) must be burned in order to give 
the same energy as that released in nuclear 
fi ssion with 1 kg of uranium-235.

 10 a  A 500 MW nuclear power plant converts 
the energy released in nuclear reactions into 
electrical energy with an effi  ciency of 40%. 
Calculate how many fi ssions of uranium-235 
are required per second. Take the energy 
released per reaction to be 200 MeV.

  b  What mass of uranium-235 is required to 
fi ssion per second?

 11 a  Draw a diagram of a fi ssion reactor, explaining 
the role of i fuel rods, ii control rods and iii 
moderator.

  b  In what form is the energy released in a fi ssion 
reactor?

 12 Distinguish between a solar panel and a 
photovoltaic cell.

 13 Sunlight of intensity 700 W m−2 is captured 
with 70% effi  ciency by a solar panel, which then 
sends the captured energy into a house with 50% 
effi  ciency.

  a  The house loses thermal energy through bad 
insulation at a rate of 3.0 kW. Find the area of 
the solar panel needed in order to keep the 
temperature of the house constant.

  b  Draw a Sankey diagram for the energy fl ow 
from the panel to the house.

? Test yourself
1 a  Distinguish between specifi c energy and energy 

density of a fuel.
 b  Estimate the energy density of water that falls 

from a waterfall of height 75 m and is used to 
drive a turbine.

2 A power plant produces 500 MW of power.
 a  Determine the energy produced in one second. 

Express your answer in joules.
 b  Determine the energy (in joules) produced in 

one year.
3 A power plant operates in four stages. The 

effi  ciency in each stage is 80%, 40%, 12% and 65%.
 a Find the overall effi  ciency of the plant.
 b  Sketch a Sankey diagram for the energy fl ow in 

this plant.
4 A coal power plant with 30% effi  ciency burns 

10 million kilograms of coal a day. (Take the 
specifi c energy of coal to be 30 MJ kg−1.)

 a Calculate the power output of the plant.
 b  Estimate the rate at which thermal energy is 

being discarded by this plant.
 c  The discarded thermal energy is carried away 

by water whose temperature is not allowed to 
increase by more than 5 °C. Calculate the rate at 
which water must fl ow away from the plant.

5 One litre of gasoline releases 34 MJ of energy 
when burned. The effi  ciency of a car operating 
on this gasoline is 40%. The speed of the car is 
9.0 m s−1 when the power developed by the engine 
is 20 kW. Calculate how many kilometres the car 
can go with one litre of gasoline when driven at 
this speed.

6 A coal-burning power plant produces 1.0 GW 
of electricity. The overall effi  ciency of the power 
plant is 40%. Taking the specifi c energy of coal to 
be 30 MJ kg−1, calculate the amount of coal that 
must be burned in one day.

7 In the context of nuclear fi ssion reactors, state 
what is meant by:

 a uranium enrichment
 b moderator
 c critical mass.
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 14 A solar heater is to heat 300 kg of water initially 
at 15 °C to a temperature of 50 °C in a time of 12 
hours. The amount of solar radiation falling on the 
collecting surface of the solar panel is 240 W m−2 
and is collected at an effi  ciency of 65%. Calculate 
the area of the collecting panel that is required.

 15 A solar heater is to warm 150 kg of water 
by 30 K. The intensity of solar radiation 
is 600 W m−2 and the area of the panels is 
4.0 m−2. The specifi c heat capacity of water is 
4.2 × 103 J kg−1 K−1. Estimate the time this will 
take, assuming a solar panel effi  ciency of 60%.

 16 The graph shows the variation with incident 
solar intensity I of the temperature of a solar 
panel used to heat water. Thermal energy is 
extracted from the water at a rate of 320 W. The 
area of the panel is 2.0 m2. Calculate, for a solar 
intensity of 400 W m−2:

  a the temperature of the water
  b the power incident on the panel
  c the effi  ciency of the panel.
 17 The graph shows the power curve of a wind 

turbine as a function of the wind speed. For 
a wind speed of 10 m s−1, calculate the energy 
produced in the course of one year, assuming 
that the wind blows at this speed for 1000 hours 
in the year.

 18 a  State the expected increase in the power 
extracted from a wind turbine when:

  i the length of the blades is doubled
  ii the wind speed is doubled
  iii  both the length of the blades and the wind 

speed are doubled.
  b  Outline reasons why the actual increase in the 

extracted power will be less than your answers.
 19 Wind of speed v is incident on the blades of a 

wind turbine. The blades present the wind with 
an area A. The maximum theoretical power that 
can be extracted is given by:

  P = 12 ρAv3

  State the assumptions made in deriving this 
equation.

 20 Air of density 1.2 kg m−3 and speed 8.0 m s−1 is 
incident on the blades of a wind turbine. The radius 
of the blades is 1.5 m. Immediately after passing 
through the blades, the wind speed is reduced 
to 3.0 m s−1 and the density of air is 1.8 kg m−3. 
Estimate the power extracted from the wind.

 21 Calculate the blade radius of a wind turbine 
that must extract 25 kW of power out of wind 
of speed 9.0 s−1. The density of air is 1.2 kg m−3. 
State any assumptions made in this calculation.

 22 Find the power developed when water in a 
waterfall with a fl ow rate of 500 kg s−1 falls from a 
height of 40 m.

 23 Water falls from a vertical height h at a fl ow 
rate (volume per second) Q. Deduce that the 
maximum theoretical power that can be extracted 
is given by P = ρQgh.

 24 A student explaining pumped storage systems says 
that the water that is stored at a high elevation is 
allowed to move lower, thus producing electricity. 
Some of this electricity is used to raise the water 
back to its original height, and the process is then 
repeated. What is wrong with this statement? 

 25 Make an annotated energy fl ow diagram showing 
the energy changes that are taking place in each 
of the following:

  a  a conventional electricity-producing power 
station using coal

  b a hydroelectric power plant
  c an electricity-producing wind turbine
  d an electricity-producing nuclear power station.
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8.2 Thermal energy transfer
This section deals with the methods of heat transfer and the role of the 
greenhouse eff ect in the physical mechanisms that control the energy 
balance of the Earth. The important phenomenon of black-body radiation 
is introduced along with the associated Stefan–Boltzmann and Wien laws. 

Conduction, convection and thermal radiation
Heat can be transferred from place to place by three distinct methods: 
conduction, convection and radiation. 

Imagine a solid with one end kept at a high temperature, as shown 
in Figure 8.16. The electrons at the hot end of the solid have a high 
average kinetic energy. This means they move a lot. The moving electrons 
collide with neighbouring molecules, transferring energy to them and so 
increasing their average kinetic energy. This means that energy is being 
transferred from the hot to the cold side of the solid; this is conduction. 

Collisions between electrons and molecules is the dominant way in 
which heat is transferred by conduction, but if there are strong bonds 
between molecules there is another way. Molecules on the hot side of 
the solid vibrate about their equilibrium positions, stretching the bonds 
with neighbouring molecules. This stretching forces the neighbours to 
also begin to vibrate, and so the average kinetic energy of the neighbours 
increases. Energy is again transferred.

For a solid of cross-sectional area A, length L and temperature 
diff erence between its ends ΔT, experiments show that the rate at which 
energy is being transferred is:

ΔQ
Δt  = kA

ΔT
L

where k is called the conductivity and depends on the nature of the 
substance.

Convection is a method of energy transfer that applies mainly to 
fl uids, i.e. gases and liquids. If you put a pan of water on a stove, the water 
at the bottom of the pan is heated. As it gets hotter the water expands, it 
gets less dense and so rises to the top. In this way heat from the bottom of 
the pan is transferred to the top. Similarly, air over a hot radiator in a room 
is heated, expands and rises, transferring warm air to the rest of the room. 
Colder air takes the place of the air that rose and the process repeats, 
creating convection currents.

Both conduction and convection require a material medium through 
which heat is to be transferred. The third method of heat transfer, 
radiation, does not. Energy from the Sun has been warming the Earth 
for billions of years. This energy arrives at Earth as radiation having 
travelled through the vacuum of space at the speed of light. Radiation is 
such an important part of climate and the energy balance of the Earth that 
we treat it in a separate section.

Learning objectives

• Understand the ways in which 
heat may be transferred.

• Sketch and interpret black-body 
curves.

• Solve problems using the 
Stefan–Boltzmann and Wien 
laws.

• Describe the greenhouse eff ect.
• Apply the Stefan–Boltzmann 

law to solve energy balance 
problems for the Earth.

Learning objectivesLearning objectives

Figure 8.16 Conduction of heat through a 
solid as a result of a temperature diff erence.

Exam tip
You will not be examined on 
this equation.

area A

TC
cold

Q

L

Q

TH
hot
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Black-body radiation
One of the great advances in physics in the 19th century was the 

discovery that all bodies that are kept at some absolute (kelvin) temperature 
T radiate energy in the form of electromagnetic waves. This is radiation 
created by oscillating electric charges in the atoms of the body. The power 
radiated by a body is governed by the Stefan–Boltzmann law.

The amount of energy per second (i.e. the power) radiated by a body 
depends on its surface area A and the absolute temperature of the surface T:

P = eσAT 4

This is known as the Stefan–Boltzmann law. The constant σ is known as 
the Stefan–Boltzmann constant and equals σ = 5.67 × 10–8 W m–2 K–4.

The constant e is known as the emissivity of the surface. Its value 
is between 0 and 1; it measures how eff ectively a body radiates. When 
e = 1 we call the body a black body. This is a theoretical body; it is a 
perfect radiator as well as a perfect absorber. A black body will absorb all 
the radiation falling upon it, refl ecting none. This does sound somewhat 
strange, but a black body at low temperature radiates very little and 
absorbs all the radiation falling on it so it looks black. At high temperature 
it radiates a lot and looks very bright. A very good example of this is a 
piece of charcoal. A real body is a good approximation to the theoretical 
black body if its surface is black and dull.

Consider a body of emissivity e and surface temperature T whose 
surroundings have a temperature Ts and may be assumed to be a black 
body. The body radiates at a rate eσAT 4 and absorbs at a rate eσATs

4. The 
net rate at which energy leaves the body is therefore:

 Pnet = eσAT 4 − eσATs
4

 Pnet = eσA(T 4 − Ts
4)

At equilibrium no net power leaves the body and so T = Ts, as we 
might expect. Table 8.3 gives values for the emissivity of various surfaces.

The energy radiated by a body is electromagnetic radiation and is 
distributed over an infi nite range of wavelengths. However, most of the 
energy is radiated at a specifi c wavelength λmax that is determined by the 
temperature of the body:

λmaxT = 2.90 × 10–3 K m

This is known as Wien’s displacement law.

Surface Emissivity

black body 1

ocean water 0.8

ice 0.1

dry land 0.7

land with vegetation 0.6

Table 8.3 Emissivity of various surfaces.

Worked example
8.7 A human body has temperature 37 °C, the average Earth surface temperature is 288 K and the temperature of 

the Sun is 5800 K. In each case, calculate the peak wavelength of the emitted radiation.
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We just have to apply Wien’s law, λmaxT = 2.90 × 10–3 K m, and make sure we use kelvins in each case. So:

human body: λmax = 
2.90 × 10−3

273 + 37  ≈ 9 × 10−6 m, an infrared wavelength. 

Earth surface: λmax = 
2.90 × 10−3

288  ≈ 1 × 10−5 m, an infrared wavelength.

Sun: λmax = 
2.90 × 10−3

5800  ≈ 5 × 10−7 m, visible light that determines the colour of the Sun.

Figure 8.17 shows how the intensity of radiation emitted from the same 
surface changes as the temperature of the surface is varied (T = 350 K, 
300 K and 273 K). We see that, with increasing temperature, the peak of the 
curve occurs at lower wavelengths and the height of the peak increases. 

Figure 8.18 shows the intensity distribution of radiation from various 
diff erent surfaces kept at the same temperature (300 K). The diff erence in 
the curves is due to the diff erent emissivities (e = 1.0, 0.8 and 0.2). The 
curves are identical apart from an overall factor that shrinks the height of 
the curve as the emissivity decreases.

0

0.2

0
0.5 1.0 1.5 2.0 2.5 3.0

0.4

0.6

0.8

350 K

300 K

273 K

1.0I

λ / × 10–5 m

0
0 0.5 1.0 1.5 2.0 2.5 3.0

λ / × 10–5 m

0.1

0.2

0.3

0.4

0.5I

0.8

1.0

0.2

Figure 8.17 Black-body spectra for a body at the three temperatures 
shown. The units on the vertical axis are arbitrary. (The curves appear to 
start from a fi nite value of wavelength. This is not the case. The curves 
start at zero wavelength but are too small to appear on the graphs.)

Figure 8.18 The spectra of three bodies with diff erent 
emissivities at the same temperature (300 K). The units on the 
vertical axis are arbitrary.

Worked examples
8.8 By what factor does the power emitted by a body increase when the temperature is increased from 100 °C 

to 200 °C?

The temperature in kelvin increases from 373 K to 473 K. Since the emitted power is proportional to the fourth 
power of the temperature, power will increase by a factor:

   
473
373

4
 = 2.59
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8.9 The emissivity of the naked human body may be taken to be e = 0.90. Assuming a body temperature of 37 °C 
and a body surface area of 1.60 m2, calculate the total amount of energy lost by the body when exposed to a 
temperature of 0.0 °C for 30 minutes.

The net power lost is the diff erence between the power emitted by the body and the power received. Let the body 
temperature be T1 and the temperature of the surroundings be T2. Then:

Pnet = eσA(T1
4 − T2

4)

Substituting the values from the question:

Pnet = 0.90 × 5.67 × 10−8 × 1.60 × (3104 − 2734)

Pnet = 301 W

So the energy lost in time t seconds is:

E = Pnett

E = 301 × 30 × 60

E = 5.4 × 105 J

(What does this mean for the human body? For the purposes of an estimate, assume that the body has mass 60 kg 
and is made out of water, with specifi c heat capacity c = 4200 J kg–1 K–1. This energy loss would result in a drop in 

body temperature of ∆T = 
5.4 × 105

60 × 4200  = 2.1 K. This would be serious! However, it ignores the fact that respiration 

provides a source of energy.)

Exam tip
Make sure the temperature is in kelvin.

The solar constant
The Sun may be considered to radiate as a perfect emitter (i.e. as a black 
body). The Sun emits a total power of about P = 3.9 × 1026 W. The average 
Earth–Sun distance is d = 1.50 × 1011 m. Imagine a sphere of this radius 
centred at the Sun. The power of the Sun is distributed over the area of 
this sphere and so the power per unit area, i.e. the intensity, received by 
Earth is:

I = 
P

4πd 2

Intensity is the power of radiation received per unit area.

Substituting the numerical values gives:

I = 
3.9 × 1026

4π(1.50 × 1011)2
 ≈ 1400 W m−2

This is the intensity of the solar radiation at the top of the Earth’s 
atmosphere. It is called the solar constant and is denoted by S.
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If we know that radiation of intensity I is incident on a surface of area 
A, we can calculate the power delivered to that area from:

P = IA

Albedo
The albedo (from the Latin for ‘white’), α, of a body is defi ned as the 
ratio of the power of radiation scattered from the body to the total power 
incident on the body:

α = 
total scattered power
total incident power

The albedo is a dimensionless number. Snow has a high albedo (0.85), 
indicating that snow refl ects most of the radiation incident on it, whereas 
charcoal has an albedo of only 0.04, meaning that it refl ects very little of 
the light incident on it. The Earth as a whole has an average global albedo 
that is about 0.3. The albedo of the Earth varies. The variations depend on 
the time of the year (many or few clouds), latitude (a lot of snow and ice 
or very little), on whether one is over desert land (high albedo, 0.3–0.4), 
forests (low albedo, 0.1) or water (low albedo, 0.1), etc.

The calculation of the solar constant as S = 1400 W m–2 is the value 
at the upper atmosphere. The radiation that reaches the Earth has to go 
through the area of a disc of radius R. The power through this disc is 
therefore:

P = SπR2

where R is the radius of the Earth (Figure 8.19). The albedo of the Earth 
is α, and so a fraction αSπR2 of the incident power is refl ected, leaving 
(1 – α)SπR2 to reach Earth. Clearly, the Earth’s surface receives radiation 
during the day, when it faces the Sun. But if we want to defi ne a night 
and day average of the incident intensity Iav we must divide the power 
through the disc by the total surface area of the Earth to get:

Iav = 
(1 – α)SπR2

4πR2

Iav = 
(1 – α)S

4

This average intensity amounts to 
0.7 × 1400

4  = 245 W m−2.

In other words, at any moment of the day or night, anywhere on Earth, 
one square metre of the surface may be thought to receive 245 J of energy 
every second.

Exam tip
The solar constant S is 
intensity. Intensity is power per 
unit area so:

P = SA

Figure 8.19 The radiation reaching the 
Earth must fi rst go through a disc of area π R2, 
where R is the radius of the Earth.

disc of
area πR2solar

radiation

radiation

R

sphere of
surface
area 4πR2
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Energy balance
We are interested in the average temperature of the Earth. If this 
temperature is constant then the energy input to the Earth must equal 
(balance) the energy output by the Earth (Figure 8.20).

Earth’s surfacereceived by Earth = (1 – α) I

radiated back into
space = (1 – α)I

reflected 
= α I

incoming intensity I

Figure 8.20 Energy diagram showing energy transfers in a model without an 
atmosphere. Note that the energy in equals the energy out.

The next worked example introduces a fi rst glimpse of an energy 
balance equation.

Worked example
8.10 Assume that the Earth surface has a fi xed temperature T and that it radiates as a black body. The average 

 incoming solar radiation reaching the surface has intensity Iav = 
(1 – α)S

4  = 245 W m−2. Ignore the eff ect of the 

 atmosphere (other than the fact that is has refl ected 30% of the incoming radiation back into space!).
a Write down an equation expressing the fact that the power received by the Earth equals the power 

radiated by the Earth into space (an energy balance equation).
b Solve the equation to calculate the constant Earth temperature.
c Comment on your answer.

a The average intensity reaching the surface is:

Iav = 
(1 – α)S

4  = 245 W m−2

 The Earth radiates power from the entire surface area of its spherical shape, and so the power radiated, Pout (by 
the Stefan–Boltzmann law), is:

  Pout = σAT 4

 (Here we are assuming that the Earth is a black body, so e = 1 and the surrounding space is taken to have a 
temperature of 0 K.) So the intensity radiated by the Earth, Iout, is:

  Iout = 
Pout
A  = σT 4

 Equating the incident and outgoing intensities we get:

  
(1 – α)S

4  = σT 4
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b Solving the equation, we fi nd:

 =
(1- )

4
4T

Sα
σ

 This evaluates to:

 =
245

5.67 10
= 256K84T

× −

 This temperature is –17 °C.

c It is perhaps surprising that this extremely simple model has given an answer that is not off  by orders of magnitude! 
But a temperature of 256 K is 32 K lower than the Earth’s average temperature of 288 K, and so obviously the 
model is too simplistic. One reason this model is too simple is precisely because we have not taken into account the 
fact that not all the power radiated by the Earth actually escapes. Some of the power is absorbed by the gases in the 
atmosphere and is re-radiated back down to the Earth’s surface, causing further warming that we have neglected to 
take into account. In other words, this model neglects the greenhouse eff ect. This simple model also points to the 
general fact that increasing the albedo (more energy refl ected) results in lower temperatures.

Another drawback of the simple model presented above is that the 
model is essentially a zero-dimensional model. The Earth is treated as 
a point without interactions between the surface and the atmosphere. 
(Latent heat fl ows, thermal energy fl ow in oceans through currents, 
thermal energy transfer between the surface and the atmosphere due 
to temperature diff erences between the two, are all ignored.) Realistic 
models must take all these factors (and many others) into account, and so 
are very complex.

The greenhouse eff ect
The Earth’s surface radiates as all warm bodies do. But the Earth’s surface 
is at an average temperature of 288 K and, using Wien’s law, we saw in 
Worked example 8.7 that the peak wavelength at which this energy is 
radiated is an infrared wavelength. Unlike visible light wavelengths, which 
pass through the atmosphere mainly unobstructed, infrared radiation 
is strongly absorbed by various gases in the atmosphere, the so-called 
greenhouse gases. This radiation is in turn re-radiated by these gases 
in all directions. This means that some of this radiation is received by the 
Earth’s surface again, causing additional warming (Figure 8.21).

Earth’s surface

reflected

incoming intensity radiated back into space

greenhouse effect

received by Earth and atmosphere

absorbed IR
radiation
re-radiated back
to Earth

Figure 8.21 A simplifi ed energy fl ow diagram to illustrate the greenhouse eff ect.
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This is radiation that would be lost in space were it not for the 
greenhouse gases. Without this greenhouse eff ect, the Earth’s 
temperature would be 32 K lower than what it is now. 

The greenhouse eff ect may be described as the warming of the 
Earth caused by infrared radiation, emitted by the Earth’s surface, 
which is absorbed by various gases in the Earth’s atmosphere and 
is then partly re-radiated towards the surface. The gases primarily 
responsible for this absorption (the greenhouse gases) are water 
vapour, carbon dioxide, methane and nitrous oxide.

The greenhouse eff ect is thus a natural consequence of the presence 
of the atmosphere. There is, however, also the enhanced greenhouse 
eff ect, which refers to additional warming due to increased quantities 
of the greenhouse gases in the atmosphere. The increases in the gas 
concentrations are due to human activity.

The main greenhouse gases are water vapour (H2O), carbon dioxide 
(CO2), methane (CH4) and nitrous oxide (N2O). Greenhouse gases in 
the atmosphere have natural as well as man-made (anthropogenic) origins 
(Table 8.4). Along with these sources of the greenhouse gases, we have 
‘sinks’ as well, that is to say, mechanisms that reduce these concentrations. 
For example, carbon dioxide is absorbed by plants during photosynthesis 
and is dissolved in oceans. 

Greenhouse 
gas

Natural sources Anthropogenic sources

H2O evaporation of water from 
oceans, rivers and lakes

irrigation

O2 forest fi res, volcanic 
eruptions, evaporation of 
water from oceans

burning fossil fuels in power 
plants and cars, burning forests

CH4 wetlands, oceans, lakes and 
rivers, termites

fl ooded rice fi elds, farm animals, 
processing of coal, natural gas 
and oil, burning biomass

N2O forests, oceans, soil and 
grasslands

burning fossil fuels, manufacture 
of cement, fertilisers, 
deforestation (reduction of 
nitrogen fi xation in plants)

Table 8.4 Sources of greenhouse gases.
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Mechanism of photon absorption
As for atoms, the energy of molecules is discrete. There are energy levels 
corresponding to the energy of molecules due to their vibrational and 
rotational motion. The diff erence in energy between molecular energy 
levels is approximately the energy of an infrared photon. This means that 
infrared photons travelling through greenhouse gases will be absorbed. 
The gas molecules that have absorbed the photons will now be excited to 
higher energy levels. But the molecules prefer to be in low-energy states, 
and so they immediately make a transition to a lower-energy state by 
emitting the photons they absorbed. But these photons are not all emitted 
outwards into space. Some are emitted back towards the Earth, thereby 
warming the Earth’s surface (Figure 8.22).

greenhouse
gases 

radiation missing
IR photons

IR photons
re-emitted in all

directions

radiation from
Earth’s surface

Figure 8.22 Greenhouse gases absorb 
infrared (IR) photons and re-radiate them in 
all directions.

Worked example
8.11 One consequence of warming of the Earth is that more water will evaporate from the oceans. Predict 

whether this fact alone will tend to increase the temperature of the Earth further or whether it will tend to 
reduce it.

Evaporating means that energy must be supplied to water to turn it into vapour and so this energy will have 
to come from the atmosphere, reducing its temperature. Further, there will be more cloud cover, so more solar 
radiation will be refl ected back into space, further reducing temperatures. This is an example of negative feedback: 
the temperature increases for some reason but the eff ect of this increase is a tendency of the temperature to 
decrease and not increase further. (There is, however, another factor of positive feedback that will tend to 
increase temperatures: evaporating water means that the carbon dioxide that was dissolved in the water will now 
return to the atmosphere!) To decide the overall eff ect, detailed calculations are necessary. (Negative feedback wins 
in this case.)

Nature of science
Simple and complex modelling
In Topic 3 we met the kinetic theory of gases. This simple mathematical 
model can predict the behaviour of real gases to a good approximation. 
By contrast, to reach reliable predictions about climate change and its 
consequences, very complex and time-consuming modelling is required. 
Models for climate behaviour are complex because of the very large 
number of parameters involved, the interdependence of these parameters 
on various kinds of feedback eff ects and the sensitivity of the equations on 
the initial values of the parameters. This makes predictions somewhat less 
certain than we would like. Advances in computing power, the availability 
of more data and further testing and debate on the various models will 
improve our ability to predict climate change more accurately in the future.
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  State and explain whether the following are 
equal or not:

 a the rates of fl ow of energy through X and Y
 b the temperature diff erences across X and Y.

 27 Suggest whether there is any point in using a 
ceiling fan in winter.

 28 Calculate the ratio of the power radiated per unit 
area from two black bodies at temperature 900 K 
and 300 K.

 29 a  State what you understand by the term black 
body.

 b Give an example of a body that is a good 
approximation to a black body.

 c By what factor does the rate of radiation 
from a body increase when the temperature is 
increased from 50 °C to 100 °C?

 30 The graph shows the variation with wavelength 
of the intensity of radiation emitted by two 
bodies of identical shape.

 a Explain why the temperature of the two bodies 
is the same.

 b The upper line corresponds to a black body. 
Calculate the emissivity of the other body.

 31 The total power radiated by a body of area 
5.00 km2 and emissivity 0.800 is 1.35 × 109 W. 
Assume that the body radiates into a vacuum at 
temperature 0 K. Calculate the temperature of 
the body.

 32 Assume that the distance d between the Sun and 
the Earth decreases. Then the Earth’s average 
temperature T will go up. The fraction of the 
power radiated by the Sun that is received on 

  Earth is proportional to 
1
d 2

; the power radiated 

  by the Earth is proportional to T 4.
 a Deduce the dependence of the temperature T 

of the Earth on the distance d.
 b Hence estimate the expected rise in 

temperature if the distance decreases by 1.0%. 
Take the average temperature of the Earth to 
be 288 K.

 33 a  Defi ne the term intensity in the context of 
radiation.

 b Estimate the intensity of radiation emitted by 
a naked human body of surface area 1.60 m2, 
temperature 37 °C and emissivity 0.90, a 
distance of 5.0 m from the body.

 34 A body radiates energy at a rate (power) P.
 a Deduce that the intensity of this radiation at 

distance d from the body is given by:

  I = 
P

4πd 2

 b State one assumption made in deriving this 
result.

 35 The graph shows the variation with wavelength 
of the intensity of the radiation emitted by a 
black body.

  ? Test yourself

X Yhot cold

energy flow

0 0.5 1.0 1.5 2.0
λ / × 10–5 m

0.5

0

1.0

1.5

2.0I / arbitrary
units

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75
λ / × 10–5 m

I / arbitrary
units

1

0

2

3

4

5

6

 26 A cylindrical solid tube is made out of two 
smaller tubes, X and Y, of diff erent material. X 
and Y have the same length and cross-sectional 
area. The tube is used to conduct energy from a 
hot to a cold reservoir.
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 a Determine the temperature of the black body.
 b Copy the diagram and, on the same axes, draw 

a graph to show the variation with wavelength 
of the intensity of radiation emitted by a black 
body of temperature 600 K.

 36 a Defi ne the term albedo.
 b State three factors that the albedo of a surface 

depends on.
 37 a  State what is meant by the greenhouse 

eff ect.
 b State the main greenhouse gases in the Earth’s 

atmosphere, and for each give three natural 
and three man-made sources.

 38 A researcher uses the following data for a 
simple climatic model of an Earth without an 
atmosphere (see Worked example 8.10): incident 
solar radiation = 350 W m–2, absorbed solar 
radiation = 250 W m–2.

 a Make an energy fl ow diagram for these data.
 b Determine the average albedo for the Earth 

that is to be used in the modelling.
 c Determine the intensity of the outgoing long-

wave radiation.
 d Estimate the temperature of the Earth 

according to this model, assuming a constant 
Earth temperature.

 39 The diagram shows a more involved model of 
the greenhouse eff ect. 

  The average incoming radiation intensity is 

  
S
4 = 350 W m–2. The albedo of the atmosphere is 

  0.300. Assume that only a fraction t of the energy 
radiated by the Earth actually escapes the Earth 
and that the surface behaves as a black body. 
The model assumes that part of the radiation 
from the Earth is refl ected back down from the 
atmosphere.

 a The intensity radiated by the Earth is I1, the 
intensity radiated by the atmosphere is I2 and 
the fraction of the intensity escaping the Earth 
is I3 . By examining the energy balance of the 
atmosphere and the surface separately, show 
that:

  I1 = 
2

1 − α + t × 
(1 − α)S

4 , 

  I2 = 
1 − α − t
1 − α + t  × 

(1 − α)S
4  and 

  I3 = 
2t

1 − α + t  × 
(1 − α)S

4

 b Show that as much energy enters the Earth–
atmosphere system as leaves it.

 c Show that a surface temperature of T ≈ 288 K 
implies that t = 0.556.

 d  i  Explain why the emissivity of the 
atmosphere is 1 − t − α.

   ii Calculate the temperature of the atmosphere.
 40 Outline the main ways in which the surface of 

the Earth loses thermal energy to the atmosphere 
and to space.

 41 a  Compare the albedo of a subtropical, warm, 
dry land with that of a tropical ocean.

 b Suggest mechanisms through which the 
subtropical land and the tropical ocean lose 
thermal energy to the atmosphere.

 c If the sea level were to increase, sea water 
would cover dry land. Suggest one change in 
the regional climate that might come about as 
a result.

Exam tip
You will not get anything as complicated 
as this in the exam, but this is excellent 
practice in understanding energy balance 
equations. 

S
4

αS
4

I3

I1αI1

I2

I2
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 42 Evaporation is a method of thermal energy loss. 
Explain whether you would expect this method 
to be more signifi cant for a tropical ocean or an 
arctic ocean.

 43 The diagram shows two energy fl ow diagrams 
for thermal energy transfer to and from specifi c 
areas of the surface of the Earth. R represents the 
net energy incident on the surface in the form of 
radiation, E is the thermal energy lost from the 
Earth due to evaporation, and C is the thermal 
energy conducted to the atmosphere because of 
the temperature diff erence between the surface 
and the atmosphere. 

  Suggest whether the Earth area in each diagram 
is most likely to be dry and cool or moist and 
warm.

 44 It is estimated that a change of albedo by 0.01 
will result in a 1 °C temperature change. A large 
area of the Earth consists of 60% water and 
40% land. Calculate the expected change in 
temperature if melting ice causes a change in the 
proportion of the area covered by water from 
60% to 70%. Take the albedo of dry land to be 
0.30 and that of water to be 0.10.

R E C

R

a

b

E C

Exam-style questions

1 A power plant produces 500 MW of electrical power with an overall effi  ciency of 20%. What is the input power to 
the plant?

A 100 MW B 400 MW C 625 MW D 2500 MW

2 The specifi c energy of a fuel is the:

A energy that can be extracted from a unit volume of the fuel
B energy that can be extracted from a unit mass of the fuel
C energy contained in a unit volume of the fuel
D energy contained in a unit mass of the fuel.
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3 What is the effi  ciency of a system whose Sankey diagram is shown below?

output

input

A 10% B 20% C 30% D 40%

4 Which of the following lists contains one renewable and one non-renewable source of power?

A uranium, coal
B natural gas, biomass
C wind power, wave power
D hydropower, solar power

5 A plastic ruler and a metallic ruler are in the same room. The metallic ruler ‘feels’ colder when touched. What is the 
reason for this?

A Plastic has a lower specifi c heat capacity than metal.
B Plastic has a higher specifi c heat capacity than metal.
C Plastic is a better conductor of heat than metal
D Plastic is a worse conductor of heat than metal.

6 A fi replace warms a room by:

A conduction 
B convection 
C radiation 
D conduction, convection and radiation

7 A star explodes in the vacuum of space. The thermal energy transferred by the star takes place through:

A radiation B conduction C convection D evaporation
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 8 Four diff erent rooms are losing energy to the outside through a wall. The temperature diff erence between the 
inside and the outside of the rooms is the same. Which combination of wall area and wall thickness results in the 
smallest rate of heat loss?

Area Thickness

A S d
B 2S d

2

C S 2d
D 2S 2d

 9 The graph shows the variation with wavelength of the 
intensity from a unit area of a black body. The scale on 
the vertical axis on all graphs in this question is the same.
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 The area and the temperature of the black body are both 
halved. Which graph now shows the correct variation 
with wavelength of the intensity from a unit area of 
the body?
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10 The intensity of solar radiation incident on a planet is S. The diagram represents the energy balance of the planet. 
The atmosphere refl ects an intensity 0.20S and radiates 0.35S. The surface refl ects 0.05S and radiates 0.40S. 

S 0.20S 0.35S

0.05S 0.40S

 What is the albedo of the planet?

A 0.05 B 0.20 C 0.25 D 0.60

11 A nuclear power plant produces 800 MW of electricity with an overall effi  ciency of 0.32. The fi ssion reaction 
taking place in the core of the reactor is:

1
0n + 235

92U → 140
54Xe + 94

38Sr + 21
0n

a  i  Using the masses provided below show that the energy released in one fi ssion reaction is 
about 180 MeV. [2]

    1
0n = 1.009 u, 235

92U = 235.044 u, 140
54Xe = 139.922 u, 94

38Sr = 93.915 u.

  ii Estimate the specifi c energy of uranium-235. [2]
  iii Show that the mass of uranium-235 undergoing fi ssion in one year is about 1500 kg. [3]
b In a nuclear fi ssion reactor, describe the role of:
  i the moderator [2]
  ii the control rods [2]
  iii the heat exchanger. [2]
c Suggest what might happen to a nuclear fi ssion reactor that does not have a moderator. [2]
d State one advantage and one disadvantage of nuclear power. [2]

12 In a pumped storage system, the high reservoir of water has area 4.8 × 104 m2 and an average depth of 38 m. 
When water from this reservoir falls to the lower reservoir the centre of mass of the water is lowered by a 
vertical distance of 225 m. The water fl ows through a turbine connected to a generator at a rate of 350 m3 s–1.

a Calculate the mass of the water in the upper reservoir. [1]
b Determine the loss of gravitational potential energy when the upper reservoir has been completely 

emptied. [2]
c Estimate the power supplied by the falling water. [2]
 The effi  ciency of the plant in converting this energy into electricity is 0.60. The price of electricity sold 

by this power station at peak times is $0.12 per kW h. The plant can buy off -peak electrical power at 
$0.07 per kW h. The effi  ciency at which water can be pumped back up to the high reservoir is 0.64. 

d Estimate the profi t made by the power plant for a single emptying and refi lling of the high reservoir. [3]
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13 a Outline, in the context of a wind turbine, the meaning of primary and secondary energy. [2]
b The power that can be theoretically extracted by a wind turbine of blade radius R in wind of speed v is 

Pmax = 1 
2 πρR2v3

  i State one assumption that has been made in deriving this expression. [1]
  ii Explain one other reason why the actual power derived from the wind turbine will be less than Pmax. [2]
c A wind turbine has an overall effi  ciency of 0.30. The following data are available:
 Density of air entering turbine = 1.2 kg m–3

 Density of air leaving turbine = 1.9 kg m–3

 Speed of air entering turbine = 8.2 m s–1

 Speed of air leaving turbine = 5.3 m s–1

 Blade radius = 12 m
 Estimate the power extracted by this wind turbine. [3] 

14 a On a hot summer day there is usually a breeze from the sea to the shore. Explain this observation. [3]
b Explain why walking on a day when the temperature is 22 °C would be described as very comfortable 

but swimming in water of the same temperature would be described as cool. [2]
 A black body has temperature T. The graph shows the variation with wavelength of the intensity of 

radiation emitted by a unit area of the body. The units on the vertical axis are arbitrary.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

λ /μm

I

c  i Describe what is meant by a black body. [2]
  ii Estimate T. [2]
d On a copy of the axes above sketch a graph to show the variation with wavelength of the intensity of 

radiation emitted by a unit area of:
  i a grey body of emissivity 0.5 and temperature T (label this graph G) [2]

  ii a black body of temperature 
2T
3  (label this graph B). [2]
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15 The diagram shows a black body of temperature T1 emitting radiation towards a grey body of lower temperature 
T2 and emissivity e. No radiation is transmitted through the grey body.

a Using all or some of the symbols T1, T2, e and σ, state expressions for the intensity:
  i radiated by the black body [1]
  ii radiated by the grey body [1]
  iii absorbed by the grey body [1]
  iv refl ected by the grey body. [1]
b The black and the grey bodies in a gain as much energy as they lose. Deduce that their temperatures 

must be the same. [2]

16 The power radiated by the Sun is P and the Earth–Sun distance is d. The albedo of the Earth is α. 

a  i  Deduce that the solar constant (i.e. the intensity of the solar radiation) at the position of the Earth is 

   S = 
P

4πd2 [2]

  ii State what is meant by albedo. [1]
b  i Explain why the average intensity absorbed by the Earth surface is 

S(1 − α)
4  [3]

  ii  P = 3.9 × 1026 W, d = 1.5 × 1011 m and α = 0.30. Assuming the Earth surface behaves as a black body, 
estimate the average equilibrium temperature of the Earth. [2]

c The average Earth temperature is much higher than the answer to b ii. Suggest why this is so. [3]
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9.1 Simple harmonic motion
This section is a quantitative continuation of the discussion of simple 
harmonic motion (SHM) in Topic 4.

The mass–spring system and the simple pendulum
We saw in Topic 4 that simple harmonic oscillations take place whenever 
we have a system that is displaced from its fi xed equilibrium position and:
1 the acceleration is in the opposite direction to the displacement
2 the acceleration is proportional to the displacement.
We can express these two conditions into one equation: 

a = −ω2x

The minus sign shows that the acceleration is in the opposite direction 
to the displacement, so that the force tends to bring the system back 
towards its equilibrium position. The constant ω is known as the angular 
frequency of the motion. Its unit is rad per second.This equation is the 
defi ning equation for SHM. 

The period of the motion T is related to the angular frequency by:

T = 
2π
ω

From this equation, if we know ω we can work out the period of the 
oscillation. To show how we can use this, we look at two standard 
examples of simple harmonic oscillations. We start by looking again at the 
mass at the end of a spring that we examined in Topic 4. 

Figure 9.1 shows a block at the end of a spring. In the fi rst diagram the 
block is in equilibrium. The block is then moved a distance A to the right 
and released. Oscillations take place because the mass is pulled back towards 
the equilibrium position by a restoring force, the tension in the spring. 

Why is the motion SHM? Consider the block when it is in an arbitrary 
position, as in the third diagram in Figure 9.1. At that position, the 
extension of the spring is x. The tension F in the spring is the only force 
acting horizontally on the mass, so by Hooke’s law the total force has 
magnitude F = kx, where k is the spring constant. The tension force is 
directed to the left. Then Newton’s second law states that:

ma = −kx

since the tension force is directed to the left and so is taken as negative. 
This equation can be rewritten as:

a = − 
k
m x

9  Wave phenomena (HL)
Learning objectives

• Solve problems with SHM 
algebraically and graphically.

• Solve problems involving energy 
changes in SHM algebraically 
and graphically.

This relationship is looked at 
in more detail in the section 
‘Consequences of the defi ning 
equation’ on page 349.
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9  Wave phenomena (HL) equilibrium
position

x = A, t = 0

x = 0, t = T/4

x = –A, t = T/2

extension x

F = –kx

displacement

Figure 9.1 The mass–spring system. The net force on the body is proportional to the 
displacement and opposite to it.

Comparing with the defi ning equation for SHM, we see that in this 
example:

ω2 = 
k
m or ω =   

k
m

So we deduce that the period of a block of mass m oscillating at the end 
of a spring with spring constant k is:

T = 
2π
ω  = 

2π

  
k
m

T = 2π    
m
k

Let us now consider another system that shows SHM. This is the simple 
pendulum, shown in Figure 9.2.

A particle (the bob) of mass m is attached to a vertical string of length 
L that hangs from the ceiling. The fi rst diagram in Figure 9.2 shows 
the equilibrium position of the bob. In the second diagram, the bob is 
displaced away from the vertical by an angle θ and then released.

The force pushing the particle back towards the equilibrium position is 
mg sin θ and so we have:

ma = −mg sin θ ⇒ a = −g sin θ

θ

θ mgcosθ

mg

mgsinθ

tension

equilibrium
position 

L

Figure 9.2 The equilibrium position of the 
pendulum, and the forces on the bob when 
the pendulum is displaced.
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The displacement is the length of the arc, x = Lθ, where L and θ are as 
shown in Figure 9.2, and so:

a = −g sin   
x
L

The acceleration is not proportional to the displacement, x. But if x is small 

compared to L, then sin    
x
L  ≈ 

x
L . 

This is called the small angle approximation. You can see that this works 
by using some values. For example, in radians:

sin (0.003 57) = 0.003 569 99 ≈ 0.003 57 

But if the angle is not small:

sin (1.357) = 0.977 23

So, for very small angles, the acceleration of the pendulum is given by:

a ≈ −
g
L  x 

The simple pendulum obeys the defi ning equation of SHM 
approximately and:

a = −ω2x with ω2 = 
g
L

The approximation means that the amplitude of oscillations must be small, 
i.e. the bob must not be pulled to the side by a large amount. 

So for small oscillations the period of the pendulum is then:

T = 
2π
ω  = 

2π

  
g
L

T = 2π   
L
g

So we have studied two examples where SHM takes place. In the case 
of the mass and the spring the oscillations are precisely SHM and in the 
case of the simple pendulum the oscillations are approximately SHM. The 
approximation gets better and better with decreasing amplitude.

Notice that the mass aff ects the period for the spring–mass system but 
does not aff ect the period for the simple pendulum.

Exam tip
The simple pendulum 
oscillations are approximately 
SHM. The amplitude has to be 
very small. In an experiment 
the angle the pendulum is 
displaced from the vertical 
should not exceed 10°.

Worked examples
9.1 a Calculate the length of a pendulum that has a period equal to 1.00 s.
 b  Calculate the percentage increase in the period of a pendulum when the length is increased by 4.00%. 

Determine the new period.
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a The period of the pendulum is given by: T = 2π
L
g

 Rearranging: L = 
T 2g
4π2

 Substituting the values given: L = 
1.002 × 9.81

4π2

  L = 0.248 m

b Using the propagation of errors as in Topic 1, we have: 
ΔT
T

 ≈ 
1
2 

ΔL
L

 

 From this we fi nd: 
ΔT
T

 = 
1
2 × 4.00% = 2.00%

 Hence: ΔT = 
2.00
100  × T = 

2.00
100  × 1.00 = 0.02 s

 The new period is then T = 1.02 s.

 Alternatively, you could calculate the new length L′.

  L′ = 0.248 × 1.04 = 0.2579 m

 Using this new length, the new period T ′ is:

  T ′ = 2π   
0.2579
9.81

  T ′ = 1.0188 ≈ 1.02 s

9.2 Explain how you would use a spring of known spring constant to measure the mass of a body in a spacecraft 
in orbit, for example in the International Space Station.

Objects in a spacecraft in orbit appear weightless and so ordinary scales cannot be used to measure the mass. 
However, if the object is attached to a spring and the spring is stretched and released the object will oscillate with 

period T = 2π    
m
k . So measuring the period and knowing k can give the mass.

Consequences of the defi ning equation
This section is for those who have studied calculus. These mathematical 
details are not required for examination purposes but the reader is strongly 
encouraged to go through this section. (Almost all of this mathematics is 
included in the syllabus for higher or standard level IB mathematics.) 

SHM is defi ned by the equation a = −ω2x. In calculus, acceleration is 

written as a = 
d2x
dt 2

 and so the defi ning equation becomes:

d2x
dt 2

 = −ω2x ⇒ 
d2x
dt 2

 + ω2x = 0

Exam tip
Be prepared to use what you 
have learned in one topic outside 
that topic!
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This is a diff erential equation whose solution is:

x = x0 cos (ωt) or x = x0 sin (ωt)

where x0 is a constant.
To check that x = x0 cos (ωt) is a solution, we calculate:

dx
dt 

 = −x0ω sin (ωt)

and diff erentiate again to get:

d2x
dt 2

 = −x0ω2 cos (ωt)

Substituting back into the second version of the defi ning equation:

d2x
dt 2

 + ω2x = −x0ω2 cos (ωt) + ω2x0 cos (ωt)

 = 0

The working for the other solution, x = x0 sin (ωt), is very similar.
What is the meaning of the constant x0? The maximum value of the 

cosine function or the sine function is 1, so the maximum value of x 
is x0. Thus x0 is the amplitude of the motion, which is the maximum 
displacement. 

Look again at Figure 9.1. If we start the clock at the instant of the 
second diagram, where the displacement is greatest, the solution is:

x = x0 cos (ωt)

So we use the cosine version when at t = 0 the displacement is the 
amplitude.

If the clock is started when the block is at the equilibrium position and 
moving to the right, the solution is:

x = x0 sin (ωt)

So we use the sine version of the solution if at t = 0 the displacement is 
zero and the particle moves towards positive displacements. 

From calculus, we know that velocity is given by v = 
dx
dt 

. So for SHM 
with x = x0 cos (ωt)

we have that:

v = 
dx
dt 

 = −ωx0 sin (ωt)

and if x = x0 sin (ωt), then v = 
dx
dt 

 = ωx0 cos (ωt).

Given that x = x0 cos (ωt), we know from mathematics that this is a 
periodic function with period T given by:

T = 
2π
ω 

The period is the time to complete one full oscillation. 

There are other solutions for other 
initial situations, but we do not 
need these here, for example the 
particle having zero displacement 
at t = 0, but moving to the left.

Exam tip
The use of cosine of sine 
functions for displacement 
depends on what the situation 
is at t = 0. 
• Use the cosine version when 

at t = 0 the displacement is 
the amplitude.

• Use the sine version when 
at t = 0 the displacement 
is zero and the particle 
moves towards positive 
displacements.
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In SHM the period depends only on ω and not on the amplitude 
or the phase.

Using mathematics, we have found that the defi ning equation a = −ω2x 
implies that the displacement x, velocity v and period T of the SHM that 
takes place are given by the following sets of equations, where x0 is the 
amplitude (the maximum displacement):

x = x0 cos (ωt) x = x0 sin (ωt)
v = −ωx0 sin (ωt) v = ωx0 cos (ωt)
a = −ω2x0 cos (ωt) = −ω2x a = −ω2x0 sin (ωt) = −ω2x

T = 
2π
ω  T = 

2π
ω 

It follows that:

• the maximum speed is ωx0.
• the maximum acceleration is ω2x0.

Recall our defi nition in Topic 4 of frequency f: this is defi ned as the 
number of oscillations per second. Frequency is related to period, T, 

through the equation f = 
1
T . It follows from T = 

2π
ω  that:

ω = 
2π
T

ω = 2πf

Worked examples
9.3 The graph shows the variation with displacement x, of the acceleration a of a particle. 
 a Explain why the oscillations are simple harmonic.
 b Determine the period of oscillation.
 c Determine the maximum speed in this motion.

–6 –4 –2

–0.5

0.5

1.0

1.5

–1.0

–1.5

2 4 60

a/m s–2

x/cm

Figure 9.3

Exam tip
Watch the unit conversion.
The amplitude is read from the 
graph as 0.06 m.
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a The oscillations are simple harmonic because the acceleration is proportional to displacement (straight-line 
graph through the origin) and opposite to it (negative gradient). So it fi ts the defi ning equation a = −ω2x.

b The gradient of the line in the graph is −ω2. From the graph the gradient is:

  −ω2 = 
−3.0 m s–2

0.12 m

  ω2 = 25 s−2

  ω = 5.0 rad s−1

 Hence the period is T = 
2π
ω  = 

2π
5.0  ≈ 1.3 s

c The maximum speed is ωx0, i.e. 5.0 × 0.06 = 0.30 m s−1.

9.4 A particle undergoes SHM with an amplitude of 4.0 mm and frequency of 0.32 Hz. At t = 0, the displacement 
is 4.0 mm.

 a Write down the equation giving the displacement and velocity for this motion.
 b State the maximum value of the speed and acceleration in this motion.

a We need to use x = x0 cos (ωt). We have been given frequency f so the angular frequency ω is:

  ω = 2πf = 2π × 0.32 = 2.01 ≈ 2.0 rad s−1

 We also have x0 = 4.0 mm. So the equation for the displacement is:

  x = 4.0 cos (2.0t)

 where t is in seconds and x is in millimetres. 

 The equation for the velocity is:

  v = −x0ω sin (ωt) = −8.0 sin(2.0t)

b From v = −8.0 sin (2.0t) the maximum speed is 8.0 mm s−1.

 The maximum acceleration is ω2x0, i.e. 2.02 × 4.0 = 16 mm s−2.

9.5 The graph in Figure 9.4 shows the displacement of a particle from 
a fi xed equilibrium position.

 a Use the graph to determine:
  i the period of the motion
  ii  the maximum velocity of the particle during an oscillation
  iii the maximum acceleration experienced by the particle.
 b On a copy of the diagram, mark:
  i  a point where the velocity is zero (label this with the 

letter Z)
  ii  a point where the velocity is positive and has the largest 

magnitude (label this with the letter V)
  iii  a point where the acceleration is positive and has the 

largest magnitude (label this with the letter A).

0.1
0

–1

–2

1

2

0.2 0.3 0.4 0.5

x/cm

t/s

Figure 9.4 Graph showing the variation 
with time of the displacement of a particle 
performing SHM.
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a  i The period is read off  the graph as T = 0.20 s. Since T = 
2π
ω  we have that:

    ω = 
2π
T  = 31.4 ≈ 31 rad s−1

  ii The maximum velocity is then:

    vmax = ωx0 = 31.4 × 0.020 = 0.63 m s–1

  iii The maximum acceleration is found from:

    amax = ω2x0= 31.42 × 0.020 = 20 m s–2

b  i The velocity is zero at any point where the displacement is at a maximum or a minimum.
  ii For example at t = 0.15 s.
  iii For example at t = 0.10 s or t = 0.30 s.

9.6 A body of mass m is placed on a horizontal plate that undergoes vertical 
SHM (Figure 9.5). The amplitude of the motion is A and the frequency is f.
a Derive an expression for the reaction force on the particle from the 

plate when the particle is at its highest point.
b Using the expression in a, deduce that the particle will lose contact 

with the plate if the frequency is higher than 

    
g

4π2A

a At the highest point x = A we have a = −ω2A, so:

  R – mg = ma = –mω2A

 Substituting ω = 2πf gives:

  R − mg = −m(2πf )2A

  R − mg = −4π2f 2mA

 ⇒ R = mg − 4π2f 2mA

b The particle will lose contact with the plate when R → 0, i.e. when the frequency is such that: 

  0 = mg − 4π2f 2mA

 Rearranging:

  4π2f 2mA = mg

  f 2 = 
g

4π2A
 

  f =    
g

4π2A

 The particle will lose contact with the plate if the frequency is higher than     
g

4π2A

Figure 9.5 A particle on a horizontal 
plate executing SHM.
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Energy in simple harmonic motion
As we saw in Topic 4, in simple harmonic oscillations we have 
transformations of energy from kinetic to potential and vice versa. When the 
kinetic energy is a maximum (at the equilibrium point) the potential energy 
is zero and when the potential energy is a maximum (at the end points) the 
kinetic energy is zero. The kinetic energy of a particle is given by:

EK = 12mv2

In what follows we assume that x = x0 cos (ωt) so that v = −ωx0 sin (ωt). 
This means:

EK = 12mω2x0
2 sin2 (ωt)

The maximum kinetic energy is therefore EKmax = 12mω2x0
2. 

When the kinetic energy is a maximum the potential energy is zero 
and so the quantity 12mω2x0

2 is also the total energy of the system ET. 
Therefore:

ET = 12mω2x0
2

The total energy is the sum of the potential and kinetic energies at any time:

ET = EK + EP 

Therefore:

EP = 12mω2x0
2 − EK

EP = 12mω2x0
2 − 12mv2

We can use this to fi nd an expression for the potential energy in SHM in 
terms of the displacement. Since v = −ωx0 sin (ωt):

EP = 12mω2x0
2 − 12mω2x0

2 sin2 (ωt)

EP = 12mω2x0
2(1 − sin2 (ωt))

EP = 12mω2x0
2(cos2 (ωt))

EP = 12mω2x2

We can also use v = −ωx0 sin (ωt) to fi nd an expression for the velocity in 
terms of displacement:

v2 = ω2x0
2 sin2 (ωt)

v2 = ω2x0
2(1 − cos2 (ωt))

v2 = ω2x0
2 − ω2x2

v = ± ω  x0
2 − x2

The plus or minus sign is needed because for any given displacement x, 
the particle may be going one way or the opposite way.

Exam tip
Choosing x = x0 sin (ωt) so that 
v = ωx0 cos (ωt) gives similar 
results.

Exam tip
The trick used repeatedly here 
is that sin2 (ωt) + cos2 (ωt) = 1.
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Using this equation, another formula for kinetic energy (this time in 
terms of displacement rather than time) is:

EK = 12mω2(x0
2 − x2 )

The kinetic and potential energies for SHM are shown on the same axes 
in Figure 9.6.

Exam tip
You must be comfortable 
working with energies as 
functions of time as well 
as of displacement. For 
x = x0 cos (ωt) the energies 
are as follows:
• functions of time

 EK = 12mω2x0
2 sin2 (ωt) and 

 EP = 12mω2x0
2 cos2 (ωt)

• functions of displacement

 EK = 12mω2(x0
2 − x2 ) and 

 EP = 12mω2x2

The equation v = ±ω  x0
2 − x2 allows us to see that at the extremes 

of the motion, x = ±x0, and so v = 0 as we expect. At x = ±x0 the system 
has potential energy only, and at x = 0 it has kinetic energy only. At 
intermediate points the system has both forms of energy: potential 
energy and kinetic energy. During an oscillation, we therefore have 
transformations from one form of energy to another.

Worked examples
9.7 The graph in Figure 9.7 shows the variation with the square of the displacement (x2 ) of the potential energy 

EP of a particle of mass 40 g that is executing SHM. Using the graph, determine:
 a the period of oscillation
 b the maximum speed of the particle during an oscillation.

–X0 X00
Displacement, x

kinetic
energy

potential
energy

total energy

Energy

Figure 9.6 The variation with displacement of the potential energy and kinetic 
energy of a mass on a spring. The total energy is a horizontal straight line.

x2/cm2
0

0

20

40

60

80

1 2 3 4

EP/mJ

Figure 9.7 Graph showing the variation with the square of the 
displacement of the potential energy of a particle in SHM.
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a The maximum potential energy is EP = 12mω2x0
2. From the graph the maximum potential energy is 

80.0 mJ (80 × 10–3 J) and the amplitude is   4.0 cm2 = 2.00 cm (2.00 × 10–2 m). The mass of the particle is 0.040 kg. 
Thus:

  80 × 10–3 = 12 × 0.040 × ω2 × x0
2

 Rearranging:

  ω2 = 
2 × 80 × 10−3

0.040 × (2.00 × 10–2 )2

  ω2 = 104 s−2

  ω = 102 rad s−1

 The period is T = 
2π
ω , so:

  T = 
2π
102 = 0.06 s

b The maximum speed is found from:

 vmax = ωx0 = 100 × 2.00 × 10–2 = 2.00 m s–1

9.8 The graph in Figure 9.8 shows the variation with displacement x 
of the kinetic energy of a particle of mass 0.40 kg performing 
SHM. Use the graph to determine:

 a the total energy of the particle
 b the maximum speed of the particle
 c the amplitude of the motion
 d the potential energy when the displacement is 2.0 cm
 e the period of the motion.

a The total energy is equal to the maximum kinetic energy, i.e. 80 mJ.

b The maximum speed is found from:

  1
2mv2

max = EKmax

  v2
max = 

2EKmax

m

  vmax =    
2 × 80 × 10−3

0.40

  vmax = 0.63 m s−1

x/cm
–4 –2 0

20

40

60

2 4

EK/mJ
80

Figure 9.8 The variation with displacement of 
the kinetic energy of a particle.
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c The amplitude is 4.0 cm.

d When x = 2.0 cm, the kinetic energy is 60 mJ and so the potential energy is 20 mJ.

e The maximum potential energy is 80 mJ and equals 12mω2x0
2. Hence:

  1
2mω2x0

2= EPmax

  ω =    
2EPmax

mx0
2

  ω =    
2 × 80 × 10−3

0.40 × (4.0 × 10−2 )2

  ω =15.8 rad s−1

 The period is T = 
2π
ω

  T = 
2π

15.8
 = 0.397 ≈ 0.40 s

9.9 The graph in Figure 9.9 shows the variation with time t of the kinetic energy EK of a particle of mass 0.25 kg 
that is undergoing SHM.

 For this motion, determine:
 a the period
 b the amplitude
 c the kinetic energy when the displacement is 0.080 m. 

a At t = 0 the kinetic energy is zero, meaning that the particle is at one extreme of the oscillation. It is zero again at 
about 0.17 s when it is at the other end. To fi nd the period the particle has to return to its original position and 
that happens at 0.35 s, so T = 0.35 s.

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8EK/J

t /s

Figure 9.9

Exam tip
It is important to understand 
how to fi nd the period from 
this graph.
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b The angular frequency is found from ω = 
2π
T  

:

  ω = 
2π

0.35 = 17.95 rad s–1

 The maximum kinetic energy is given by EKmax = 12mω2x0
2 and so:

  0.80 = 12 × 0.25 × 17.952 × x0
2 

 Rearranging:

  x0
2 =    

2 × 0.80
0.25 × 17.952

  x0 ≈ 0.14 m

c We know the displacement so use a formula that gives kinetic energy in terms of displacement, i.e. 
EK = 12mω2(x0

2 − x2 ). This gives:

  EK = 12 × 0.25 × 17.952(0.142 − 0.0802) 

  EK = 0.53 J.

Exam tip
More signifi cant fi gures are being 
used here. This is all right – this is 
an intermediate calculation.

3 The displacement of a particle executing SHM is 
given by y = 5.0 cos (2t), where y is in millimetres 
and t is in seconds. Calculate:

 a  the initial displacement of the particle
 b the displacement at t = 1.2 s
 c  the time at which the displacement fi rst 

becomes −2.0 mm
 d  the displacement when the velocity of the 

particle is 6.0 mm s–1.
4 a  Write down an equation for the displacement 

of a particle undergoing SHM with an 
amplitude equal to 8.0 cm and a frequency of 
14 Hz, assuming that at t = 0 the displacement is 
8.0 cm and the particle is at rest.

 b  Find the displacement, velocity and acceleration 
of this particle at a time of 0.025 s.

? Test yourself
1 Explain why the oscillations of a pendulum are, in 

general, not simple harmonic. State the condition 
that must be satisfi ed for the oscillations to 
become approximately simple harmonic.

2 It can be shown that the two solutions for 
simple harmonic oscillations, x = x0 cos (ωt) or 
x = x0 sin (ωt) are special cases of the more general 
x = x0 cos (ωt + φ) where the angle φ is known as 
the phase of the motion. 

 a  State the phase of the motion when 
x = x0 sin (ωt).

 b  Show explicitly that, if x = x0 cos(ωt + φ), 
the period of the motion is given by T = 

2π
ω  

independently of x0 and φ.

Nature of science
The complex can be understood in terms of the simple
The equation for SHM can be solved in terms of simple sine and cosine 
functions. These simple solutions help physicists to visualise how an 
oscillator behaves. Although real oscillations are very complex, a powerful 
mathematical machinery called Fourier analysis allows the decomposition 
of complex oscillations, sounds, noise and waves in general, in terms of 
sines and cosines. Energy exchange in oscillating electrical circuits is 
modelled using this type of analysis. Therefore the simple descriptions 
used in this topic can also be used in more complex problems as well. 
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5 A point on a guitar string oscillates in SHM 
with an amplitude of 5.0 mm and a frequency of 
460 Hz. Determine the maximum velocity and 
acceleration of this point.

6 A guitar string, whose two ends are fi xed oscillates 
as shown in the diagram.

 The vertical displacement of a point on the 
string a distance x from the left end is given 
by y = 6.0 cos (1040πt) sin (πx), where y is in 
millimetres, x is in metres and t is in seconds. 
Use this expression to:
a deduce that all points on the string execute 

SHM with a common frequency and common 
phase, and determine the common frequency

b deduce that diff erent points on the string have 
diff erent amplitudes

c determine the maximum amplitude of 
oscillation

d calculate the length L of the string
e calculate the amplitude of oscillation of the 

point on the string where x = 34L.
7 The graph shows the variation with time t of the 

velocity v of a particle executing SHM.

a Using the graph, estimate the area between the 
curve and the time axis from 0.10 s to 0.30 s.

b State what this area represents.
c Hence write down an equation giving the 

displacement of the particle as a function of 
time.

8 The graph shows the variation with time t of the 
displacement x of a particle executing SHM.

 Draw a graph to show the variation with 
displacement x of the acceleration a of the particle 
(put numbers on the axes).

9 The graph shows the variation with displacement 
x of the acceleration a of a body of mass 0.150 kg.

a Use the graph to explain why the motion of 
the body is SHM. 

 Determine the following:
b the period of the motion
c the maximum velocity of the body during an 

oscillation
d the maximum net force exerted on the body
e the total energy of the body.

t /s

4

0.2 0.4 0.6 0.8 1.0

2

0

v/cm s−1

−2

−4

t /s
0.2 0.4 0.6 0.8

10

15

5

0

x /cm

−10

−15

−5

x/cm

a/m s–2

1.5

1.0

0.5

105−10 −5

−0.5

−1.0

−1.5

0



360

 10 A body of mass 0.120 kg is placed on a 
horizontal plate. The plate oscillates vertically in 
SHM making fi ve oscillations per second.

 a Determine the largest possible amplitude of 
oscillations such that the body never loses 
contact with the plate.

 b Calculate the normal reaction force on the 
body at the lowest point of the oscillations 
when the amplitude has the value found in a.

 11 This is a very unrealistic but interesting ‘thought 
experiment’ involving SHM.

  Imagine boring a straight tunnel from one place 
(A) on the surface of the Earth to another place 
(B) diametrically opposite, and then releasing a 
ball of mass m at point A. The ball then moves 
under the infl uence of gravity.

  To answer the following questions, you need 
to know that when the ball is at the position 
shown in the diagram, the gravitational force it 
experiences is the force of gravitation from the 
mass inside the dotted circle only. In addition, 
this mass inside the dotted circle may be 
considered to be concentrated at the centre of 
the Earth. Assume that the density of the Earth is 
uniform.

 a Denoting the mass of the Earth by M and its 
radius by R, derive an expression for the mass 
inside the dotted circle (of radius x).

 b Derive an expression for the gravitational 
force on the ball when at the position shown 
in the diagram, a distance x from the centre of 
the Earth.

 c Hence deduce that the motion of the ball is 
simple harmonic.

 d Determine the period of the motion.
 e Evaluate this period using:
  M = 6.0 × 1024 kg R = 6.4 × 106 m 

and G = 6.67 × 10–11 N kg–2 m2.
 f Compare the period of this motion with the 

period of rotation of a satellite around the 
Earth in a circular orbit of radius R.

 12 A body of mass 2.0 kg is connected to two 
springs, each of spring constant k = 120 N m–1.

 a The springs are connected as in part a of 
the diagram. Calculate the period of the 
oscillations of this mass when it is displaced 
from its equilibrium position and then released.

 b The springs are now connected as in part b 
of the diagram. State and explain whether the 
period changes.

 13 A woman bungee-jumper of mass 60 kg is 
attached to an elastic rope of natural length 15 m. 
The rope behaves like a spring of spring constant 
k = 220 N m–1. The other end of the spring is 
attached to a high bridge. The woman jumps 
from the bridge.

 a Determine how far below the bridge she falls, 
before she instantaneously comes to rest.

 b Calculate her acceleration at the position you 
found in a.

 c Explain why she will perform SHM, and fi nd 
the period of oscillations.

 d The woman will eventually come to rest at a 
specifi c distance below the bridge. Calculate 
this distance.

 e The mechanical energy of the woman after 
she comes to rest is less than the woman’s 
total mechanical energy just before she 
jumped. Explain what happened to the ‘lost’ 
mechanical energy.

B

R

C

r

m

A

a

b



9  WAVE PHENOMENA HL 361

9.2 Single-slit diff raction
This section deals in detail with the problem of single-slit diff raction 
and the eff ect of slit width on the interference pattern produced. An 
interference pattern is produced because light originating from one part 
of the slit interferes with light from diff erent parts of the slit.

Diff raction by a single rectangular slit
As we saw in Topic 4 when a wave of wavelength λ is incident on an 
aperture whose opening size is b, an important wave phenomenon called 
diff raction takes place where the wave spreads out past the aperture. 
The amount of diff raction is appreciable if the wavelength is of the same 
order of magnitude as the opening or bigger, λ ≥ b. However, diff raction is 
negligible if the wavelength is much smaller than the opening size, λ << b.

Figure 9.10 shows a slit of width b through which light passes. Imagine 
the light as a set of plane wavefronts parallel to the slit. When a wavefront 
reaches the slit, the points labelled A1 to A5 and B1 to B5 are all on the 
same wavefront, so they are in phase. Each point on the wavefront acts as 
a source of waves. These waves are also in phase, so they can interfere. We 
see the result of the interference on a screen placed a large distance away. 

In Figure 9.10 we see rays from A1 and B1 travelling at an angle θ to 
the slit. The interference between the waves is seen at point P on the 
screen. The wave from A1 travels a slightly diff erent distance to reach the 
screen than the wave from B1. The interference seen at P depends on this 
path diff erence. From the diagram, the path diff erence for the waves from 
A1 and B1 equals the distance B1C1. Since P is far away, lines A1P and 
B1P are approximately parallel, so triangle A1B1C1 is approximately right 
angled and angle B1A1C1 equals θ. We see that the 

distance A1B1 is equal to 
b
2, so:

path diff erence = B1C1 = 
b
2 sin θ

As we learnt in Topic 4, if the path diff erence is half a wavelength, the two 
waves will destructively interfere when they get to P. But we have only 
considered waves from A1 and B1. What about waves from A2 and B2? 
Figure 9.11 shows that for P a long way from the slit, the rays from A1, 
A2, B1and B2 are all parallel. The points are all equally spaced along the slit 
so A1B1 = A2B2. Triangles A1B1C1 and A2B2C2 are both right-angled and 
angle B1A1C1 = angle B2A2C2. The triangles are therefore congruent, so 
the path diff erence B1C1 is equal to the path diff erence B2C2. 

Since the path diff erence is the same, whatever phase diff erence exists 
at P from A1 and B1 will be the same from A2 and B2. Thus, if we get 
zero wave at P from the fi rst pair of points, we will get the same from 
the second as well. For every point on the upper half of the slit there is a 
corresponding point on the lower half, so we see that all the points on the 
wavefront will result in complete destructive interference if the fi rst pair 
results in destructive interference.

Learning objectives

• Discuss the eff ect of the slit 
width on the diff raction pattern.

• Derive the angle of the fi rst 
diff raction minimum.

• Discuss the eff ect of wavelength 
on the diff raction pattern.

A1

A2

b

to point P on
distant screen

centre line of slitpath
difference

A3

A4

A5

B1

C1

B2

B3

B4

B5

θ

θ

A1 to point P
on distant screen

A2

B1
B2

C1

C2

Figure 9.10 For a narrow slit each point 
on the wavefront entering the slit acts as a 
source of waves. The result of interference 
between waves depends on the path 
diff erence.

Figure 9.11 Triangles A1C1B1 and A2C2B2 are 
congruent.

Learning objectivesLearning objectives
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We learnt in Topic 4 that to get destructive interference, the path 
diff erence must be a half-integral multiple of the wavelength. The path 

diff erence between waves arriving at P from A1 and B1 is 
b
2
 sin θ, so this 

means that we get a minimum at P if:

 
b
2 sin θ = 

λ
2

⇒ b sin θ = λ

By similar arguments we can show that we get additional minima 
whenever:

b sin θ = nλ n = 1, 2, 3, ...

This equation gives the angle θ at which minima are observed on a screen 
behind the aperture of size b on which light of wavelength λ falls. Since 
the angle θ is typically small, we may approximate sin θ ≈ θ (if the angle is 
in radians) and so the fi rst minimum is observed at an angle (in radians) 
given by:

θ = 
λ
b

The maxima of the pattern are approximately half-way between minima. 
The equation for the minima is very important in understanding the 
phenomenon of diff raction, so let us take a closer look.

The fi rst minimum (n = 1) occurs at b sin θ = λ. If the wavelength is 
comparable to or bigger than b, appreciable diff raction will take place, 
as we said earlier. How do we see this from this formula? If λ > b, then 
sin θ > 1 (i.e. θ does not exist). The wave has spread so much around the 
aperture, the central maximum is so wide, that the fi rst minimum does not 
exist. (Remember that diff raction is the spreading of the wave around the 
aperture, not necessarily the existence of interference maxima and minima.)

In the other extreme, if the wavelength is very small compared to b, then 

from θ ≈ 
λ
b it follows that θ is approximately zero. So the wave goes through 

the aperture along a straight line represented by θ = 0. There is no wave at 
any point P on the screen for which θ is not zero. There is no spreading 
of the wave and hence no diff raction, as we expected. For all other 
intermediate cases we have diff raction with secondary maxima and minima.

The intensity of light observed on a screen some distance from the slit 
is shown in Figure 9.12 for the red light with two diff erent slit openings: 
b = 1.4 × 10−5 m and b = 2.8 × 10−5 m. 

We see that as the slit width decreases the pattern becomes wider: the 
angular width of the central maximum becomes larger. The angular width 

for the graph in Figure 9.12a is about 0.010 rad: in general it is given by 2
λ
b.

Exam tip
If there is just one thing to 
know from this Topic it is the 
single-slit intensity graph.
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The graph in Figure 9.13 shows the intensity pattern for a slit width of 
1.4 × 10−5 m but with blue light. The shorter blue wavelength results in a 
narrower pattern compared to red light with the same slit width. Notice 
that the intensity of the fi rst secondary maximum is only about 4.5% of 
the intensity at the central maximum. The units on the vertical axis are 
arbitrary.

Figure 9.14 shows the pattern as seen on a screen for a thin rectangular 
slit and a circular slit.

The discussion above applies to monochromatic light, i.e. light of one 
specifi c wavelength. When white light is incident on a slit there will be a 
separate diff raction pattern observed for each wavelength making up the 
white light. Figure 9.15 shows the combined patterns due to just four 
wavelengths. The central maximum is white since all the colours produce 
maxima there. But as we move away from the centre the fringes appear 
coloured.
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Figure 9.12 The single-slit intensity pattern for red light and slit width a 1.4 × 10−5 m and b 2.8 × 10−5 m.
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Figure 9.15 The single-slit intensity pattern for white light. The central bright spot is 
white but the rest of the pattern is coloured.

Figure 9.14 a Single-slit intensity pattern 
showing the central maximum for thin 
rectangular slit. b Intensity pattern for a 
circular slit.

Figure 9.13 The single-slit intensity pattern 
for blue light and slit width 1.4 × 10−5 m.

a
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Nature of science
The interference patterns seen in diff raction through a single slit provide 
evidence of the wave nature of light. The pattern we see is very diff erent 
from the simple geometrical shadow expected if light consisted of particles. 
In this section, you have seen how summing the diff erent waves leads to the 
pattern observed, and how the width of the slit aff ects the intensity pattern. 
In a similar way, the waves diff racted around objects can be summed. Figure 
9.16 shows the result of diff raction of light around a small circular object. 
There is a bright spot at the centre of the disc, where a particle model of 
light would predict darkness! It was this spot, predicted by Fresnel’s wave 
theory and observed by François Arago, that led to the acceptance of the 
wave theory in the 19th century (the debate between Fresnel and Poisson 
was described in the NOS for Subtopic 4.4). This is an example of how 
theory can be used to predict what should be observed. This can then be 
tested by experiment, to give a result supporting the theory. The bright spot 
in the centre is now called Fresnel’s spot or Arago’s spot. 

In
te

ns
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Distance / mm
302010

b

0

Figure 9.16 a The Fresnel spot. b The intensity of light as a function of horizontal distance showing the peak in the middle of the disc. 
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  (You do not need numbers on the intensity 
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? Test yourself
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14 A single slit of width 1.50 μm is illuminated with 
light of wavelength 500.0 nm. Determine the 
angular width of the central maximum. (Use the 
approximate formula.)

15 In a single-slit diff raction experiment the slit 
width is 0.12 mm and the wavelength of the light 
used is 6.00 × 10−7 m. Calculate the width of the 
central maximum on a screen 2.00 m from the slit.

16 The intensity pattern for single-slit diff raction 
is shown in the diagram. (The vertical units are 
arbitrary.) The wavelength of the light used is λ.
a Find the width of the slit b in terms of λ.
b On a copy of the axes draw a graph to show 

how intensity varies with diff raction angle for 
a slit with:
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9.3 Interference 
This section gives a detailed account of the phenomenon of interference 
from two sources. It also deals with multiple-slit diff raction and the 
diff raction grating.

Young’s double-slit experiment
In Topic 4 we saw that when identical waves are emitted from two sources 
and observed at the same point in space, interference will take place. The 
experiment with light was fi rst performed in 1801 by Thomas Young 
(1773–1829). In Young’s original experiment the source of light was a 
candle; light from the candle was incident on a single slit, where it diff racted 
and then, by passing through a lens, the light turned into plane wavefronts. 

In the modern version of the experiment the light incident on the two 
slits is laser light. Light diff racts at each slit and spreads out. The diff racted 
light arrives at the screen and light from one slit interferes with that 
from the other. The result is a pattern of bright and dark bands, as shown 
in Figure 9.17. The bright bands appear where there is constructive 
interference and the dark bands where there is destructive interference.

In Topic 4 we used the principle of superposition to deduce the following:

If the path diff erence is an integral multiple of the wavelength, 
constructive interference takes place:

path diff erence = nλ, n = 0, ±1, ±2, ±3 …

If the path diff erence is a half-integral multiple of the wavelength, 
destructive interference takes place:

path diff erence = (n + 12)λ, n = 0, ±1, ±2, ±3 …

Learning objectives

• Understand how the single-slit 
diff raction pattern modulates the 
two-slit intensity pattern.

• Describe the changes to the 
interference pattern as the 
number of slits increases.

• Solve problems with the 
diff raction grating equation.

• Describe interference in 
thin fi lms qualitatively and 
quantitatively.

Learning objectivesLearning objectives

λ
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maximum
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D
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Figure 9.17 Interference from two sources. The waves leaving the two slits and 
arriving at a point on the screen travel diff erent distances in getting there and so arrive 
with a path diff erence.
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Figure 9.18a shows slits S1 and S2 separated by a distance d. 
Monochromatic (i.e. light of one wavelength) laser light falls on the two 
slits, which then act as two sources of coherent light – the waves are 
exactly in phase. We shall see why this is important later. The coherent 
waves travel to point P on a screen, which is displaced from the centre line 
of the slits by an angle θ. It is clear that the wave from S2 has further to 
travel than the wave from S1. Point Z is such that the distance S1P equals 
the distance ZP. The path diff erence is therefore S2Z. 

We want to calculate this path diff erence in order to derive the 
conditions for constructive interference at P. Note that, in practice, the 
distance between the slits, d, is only 0.1 mm and the distance to the screen 
is a few metres. This means that, approximately, the lines S1P and ZP are 
parallel and the angles PS1Z and PZS1 are right angles. Thus, the angle 
S2S1Z equals θ, the angle defi ning point P (since these two angles have 
their sides mutually perpendicular).

Using trigonometry, the distance S2Z, which is the path diff erence, 
is equal to d sin θ. This gives the condition necessary for constructive 
interference at P.

For constructive interference: d sin θ = nλ, n = 0, ±1, ±2, ±3 … 

Here, d is the separation of the two slits. Because the d is very small in 
comparison to the distance to the screen, the angle θ is quite small, so 
sin θ is small. This means we can approximate sin θ by tan θ. You can check 
on your calculator that, for small angles θ in radians, it is an excellent 
approximation that sin θ ≈ tan θ ≈ θ. 

The angle θ is zero for the position directly opposite the slits, where we 
fi nd the central maximum. Here n = 0 (Figure 9.17). The angle θ increases 
for each successive maximum moving out from the central maximum. 
Figure 9.18b shows the geometry for the nth maximum in 
the interference pattern. Here tan θ = 

sn
D, where D is the distance of the 

slits from the screen and sn is the distance of the point P from the middle 
point of the screen. Using the small angle approximation, we have:

 tan θ ≈ sin θ = 
sn
D

⇒ sn = D sin θ

The condition for constructive interference is d sin θ = nλ, so sin θ = 
nλ
d . 

Substituting in the equation for sn:

sn = 
nλD

d

The linear separation, s, on a screen of two consecutive maxima is thus:

s = sn+1 − sn = (n + 1)
λD
d  − 

nλD
d  

to P

centre of screen

centre of screen

S1 

S2 
Z 

d

D
d

sn

P 

θθ

θ

a

b

Figure 9.18 The geometry of Young’s 
double-slit experiment. a Using geometry to 
fi nd the path diff erence. b The nth maximum 
at P is a distance sn from the centre of the 
screen.

s = 
λD
d
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This is the formula for the separation of consecutive bright fringes that 
we used without proof in Topic 4. Using this equation, a value for the 
wavelength λ of the wave can be found from an interference experiment 
by measuring the separation s between two successive maxima and the 
distances D and d.

This last formula shows that the maxima of the interference pattern 
are equally separated. Additional work shows that these maxima are also 
equally bright.

Worked example
9.10 In a Young’s two-slit experiment, a source of light of unknown wavelength is used to illuminate two very 

narrow slits a distance of 0.15 mm apart. On a screen at a distance of 1.30 m from the slits, bright spots are 
observed separated by a distance of 4.95 mm. What is the wavelength of light being used?

Use the equation s = 
λD
d . Rearranging to make λ the subject, and substituting the values from the question, we get:

λ = 
sd
D

λ = 4.95 × 10−3 × 
1.5 × 10−4

1.30
λ = 5.71 × 10−7 m

The wavelength of the light is 571 nm.

Phase diff erence and path diff erence
We have derived the conditions for constructive and destructive 
interference based on there being a zero phase diff erence between the two 
sources. If a phase diff erence exists then the conditions are modifi ed to: 

Constructive interference: d1 − d2 = nλ + 
φ
2π 

λ, n = 0, ±1, ±2, ±3 …

Destructive interference: d1 − d2 = (n + 12)λ + 
φ
2π 

λ, n = 0, ±1, ±2, ±3 …

For ϕ = 0, these conditions give the familiar ones.
The conditions for arbitrary phase diff erence explain, fi nally, why the 

two sources must be coherent. Two sources are coherent if the phase 
diff erence between the sources stays constant as time goes on. If the 
phase φ keeps changing, then at the point where the two waves meet 
and interfere the pattern will be changing from maximum to minimum 
very quickly. The observer only sees an average of the maximum and the 
minimum – there is no interference pattern at all.
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Intensity in two-slit interference patterns
We have already seen in Topic 4 that the bright fringes in a Young-type 
two-slit experiment are equally bright if we have slit widths of negligible 
size. In Topic 4 we gave the graph of intensity as a function of the distance 
from the middle of the screen (Figure 4.57). An alternative is to plot the 
intensity as a function of the angle θ as defi ned in Figure 9.18 (on 
page 366). Figure 9.19 shows the variation of intensity with angle θ in 
degrees for two slits of negligible width. This shows that the fringes are 
equally bright if the slit width is negligible.

For smaller slit separations the maxima are further apart. Figure 9.20 
shows the intensity for a slit separation that is half that of Figure 9.19. This 
shows that, for accurate measurement of the fringe separation, as small a 
slit separation as possible should be used. 

−30 −20 −10 0 10 20 30

1

2

3

4
Intensity

θ/degrees

The eff ect of slit width on intensity 
The slit width cannot be neglected – real slits have a width. What is the 
eff ect of the slit width on intensity? The interference pattern one sees on 
a screen is the result of two separate phenomena; one is the interference of 
light leaving one slit with light leaving the other slit and the other is the 
interference pattern due to one slit alone, as discussed in Subtopic 9.2. 

Figure 9.19 The intensity pattern for two slits of negligible width.

−30 −20 −10 0 10 20 30

1

2

3

4
Intensity

θ/degrees

Figure 9.20 The intensity pattern for two slits of negligible width and smaller slit 
separation. The slit separation is eight times the wavelength.
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The red curve in Figure 9.21 shows the intensity pattern for two slits 
separated by the same distance as those that gave rise to the pattern in 
Figure 9.20. The positions of the maxima and the minima remains the 
same as in Figure 9.20 but the intensity is modulated by the one-slit 
pattern, which is the curve in blue. 

−30 −20 −10 0 10 20 30

1

2

3

4
Intensity

θ/degrees

Figure 9.21 The two-slit interference intensity pattern for slits of width equal to 
three times the wavelength. The slit separation is eight times the wavelength.

Multiple-slit diff raction
As the number of slits increases, the interference pattern increases in 
complexity. Consider the case of four slits. The intensity pattern is shown 
in Figure 9.22. We see that there are now two secondary maxima in-
between the primary maxima.

Figure 9.23 shows the case of six slits. There are now four secondary 
maxima between primary maxima. As the number of slits increases 
the secondary maxima become unimportant. With N slits, there N − 2 
secondary maxima. The intensity of the central maximum is N 2 times the 
intensity of just one slit by itself. 

Intensity
primary maxima

10–10–20–30 0 20 30
θ/degrees

10

15

5

two secondary
maxima

Figure 9.22 Intensity pattern for four slits.
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15

20
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Figure 9.23 The intensity distribution for six slits. Note how the width 
of the maxima decreases but their position stays the same. Note also 
how the relative importance of the secondary maxima decreases with 
increasing slit number. 
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Figure 9.24 shows the case with 20 slits. The secondary maxima have 
all but disappeared. We also observe that as the number of slits increases, 
the width of the primary maxima decreases; the bright fringes become 
very sharp and easily identifi able.

a

Intensity Intensity

10–10–20–30 0 20 30
θ/degrees θ/degrees

300

400

100

200

b
10–10–20–30 0 20 30

300

400

100

200

Figure 9.24  a The intensity distribution for 20 slits. The secondary maxima are completely unimportant and the primary 
maxima are very thin. In b the slit width is much smaller so that the single-slit diff raction pattern is very wide. The primary 
maxima now have roughly the same intensity.

It can be proven (see next section) that for multiple slits the 
primary maxima are observed at angles given by:

d sin θ = nλ, n = 0, ±1, ±2, ±3, …

This is the same condition as in the two-slit case. Here d is the 
separation of two successive slits.

The primary maxima of the multiple-slit interference pattern 
are observed at the same angles as the corresponding two-slit 
pattern with the same slit separation.

Notice that in all diagrams we are assuming a non-zero slit width (equal 
to three wavelengths in fact). If the width can be ignored then the 
primary maxima have roughly the same intensity as the central maximum.

In summary, if we increase the number of slits to N:
• The primary maxima will become thinner and sharper 

 (the width is proportional to 
1
N)

• The N – 2 secondary maxima will become unimportant
• The intensity of the central maximum is proportional to N 2.



9  WAVE PHENOMENA HL 371

The diff raction grating
The diff raction grating is an important device in spectroscopy (the 
analysis of light). It is mainly used to measure the wavelength of light. A 
diff raction grating consists of a large number of parallel slits whose width 
we take to be negligible. Instead of actual slits, modern gratings consist 
of a transparent slide on which rulings or grooves have been precisely 
cut. The advantage of a large number of slits is that the maxima in the 
interference pattern are sharp and bright and can easily be distinguished 
from their neighbours (Figure 9.25). These bright fringes are called ‘lines’. 
Because the fringes are well separated the measurement of their separation 
is easier.

The maxima of the pattern are observed at angles that can be found 
by an argument similar to that for just two slits: Figure 9.26 shows the 
path diff erence (in light blue) between rays leaving the slits. The smallest 
path diff erence is δ: that between the top two rays. By similar triangles, 
any other path diff erence is an integral multiple of δ. So if δ is an integral 
multiple of λ, all other path diff erences will also be an integral multiple of 
λ. But δ = d sin θ. Hence the condition for constructive interference is:

d sin θ = nλ,  n = 0, 1, 2, ....

In practice, a diff raction grating is stated by its manufacturer to have ‘x 

lines per millimetre’. This means that the separation of the slits is d = 
1
x mm. 

It is quite common to fi nd diff raction gratings with 600 lines per mm 
corresponding to a slit separation of d = 1.67 × 10−6 m. 

Worked example
9.11 Look at Figure 9.23 (on page 369) which shows the intensity pattern for six slits. Verify that the slit width is 

three times the wavelength and determine the separation of two consecutive slits in terms of the wavelength.

The minimum of the single-slit diff raction pattern (the blue curve) is at about 19° ≈ 0.33 rad.

Using the approximate single-slit diff raction formula θ ≈ 
λ
b we deduce that:

b ≈ 
λ
θ = 

λ
0.33 ≈ 3λ

So the slit separation is three times the wavelength, as claimed above. 

The fi rst primary maximum away from the central is at θ = 7°. Since:

 d sin θ = 1 × λ

⇒ d = 
λ

sin 7° ≈ 8λ

Intensity

θ/degrees

Figure 9.25 The intensity distribution for a 
diff raction grating. The maxima have roughly 
the same intensity and are very thin.

diffraction grating

θ

θ

δ

2δ

4δ

light
3δ

Figure 9.26 The path diff erence between 
any two rays is an integral multiple of the 
smallest path diff erence ∆ between the top 
two rays. The dashed line is normal to the 
rays, which makes the angle between this 
line and the grating θ. 
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Thin fi lm interference
The colours that are seen in a soap bubble or on a thin fi lm of oil fl oating 
on water on the street are examples of a general eff ect called thin fi lm 
interference (Figure 9.27).

To understand this phenomenon we must fi rst realise that, upon 
refl ection, a ray of light will undergo a phase change of π if it refl ects off  
a medium of higher refractive index. This means that if the incident wave 
arrives at the boundary as a crest it will refl ect as a trough. This is similar 
to a pulse on a rope refl ecting off  a fi xed end.

Consider light of wavelength λ in air, incident on a thin transparent fi lm 
of oil with parallel sides. The fi lm is surrounded by air (Figure 9.28). 

Let d be the thickness of the fi lm. A ray is incident on the fi lm from 
air. At point A the ray refracts into the fi lm and refl ects. There will be a 
phase change of π at A since oil has a higher refractive index than air. The 
refl ected ray enters an observer’s eye. The refracted ray continues in oil 
and refracts and refl ects at B. There is no phase change at B. The refl ected 

A

B

C

incident light

d

θ θ

Figure 9.27 Interference pattern in a thin 
fi lm of oil fl oating on water.

Figure 9.28 Thin fi lm interference in oil is explained by the phase diff erence due to 
the extra distance covered by one of the rays and by the phase change upon refl ection 
at the top surface. 

Exam tip
You must be very careful with 
the conditions for constructive 
or destructive interference 
with thin fi lms. You must fi rst 
check what phase changes (if 
any) take place. 

Worked example
9.12 Light of wavelength 680 nm falls normally on a diff raction grating that has 600 rulings per mm. What is the 

angle separating the central maximum (n = 0) from the next (n = 1)? How many maxima can be seen?

The separation between slits is:

d = 
1

600 × 10−3 m

With n = 1 we fi nd:

sin θ = 1 × 680 × 10−9 × 600 × 103

sin θ = 0.408

Hence θ = 24.1°

The angle separating the two is therefore 24.1°.

For n = 2 we fi nd θ = 54.7°. No solution can be found for n = 3; the sine of the angle becomes larger than 1. 
Thus, we can see the central maximum and two orders on either side.
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ray continues to C, where it refracts out into air and into the observer’s 
eye. The two rays from A and C will interfere. 

Assume that the angle of incidence θ is very small so we are essentially 
looking normally down on the fi lm. This means the path diff erence is 
2d. Normally, the condition for constructive interference is that the path 
diff erence is an integral multiple of the wavelength. But remember that 
here we have a phase change that turns crests into troughs. This means 
that the condition for constructive interference changes to:

path diff erence = (m + 12)λo

where λo is the wavelength in oil. Here m is any integer but in practice we 
only use m = 0.

The wavelength of light in oil λo is found from λo = 
λ
n, where n is the 

refractive index of oil and λ the wavelength of light in air. So this gives the 
following conditions:

 one phase change no or two phase changes
Constructive interference: 2dn = (m + 12)λ 2dn = mλ
Destructive interference 2dn = mλ 2dn = (m + 12)λ

The colours are explained as follows: the thin fi lm is illuminated with 
white light. The wavelength that suff ers destructive interference will 
have the corresponding colour absent in the refl ected light. Similarly 
the wavelength that suff ers constructive interference will have its 
corresponding colour dominantly in the refl ected light. These two factors 
determine the colour of the fi lm.

Worked example
9.13 A solar cell must be coated to ensure as little as possible of the light falling on it is refl ected. A solar cell 

has a very high index of refraction (about 3.50). A coating of index of refraction 1.50 is placed on the cell. 
Estimate the minimum thickness needed in order to minimise refl ection of light of wavelength 524 nm.

We will have phase changes of π at both refl ections (from the top of the coating and the solar cell surface) and we 
want to have destructive interference. The condition is therefore:

2dn = (m + 12)λ

We want the minimum thickness so m = 0. Therefore:

2dn = 12 λ

Hence the thickness is:

d = 
λ
4n

d = 
524 × 10−9

4 × 1.50

d = 87.3 nm
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Nature of science
Curiosity and serendipity
The shimmering colours of a peacock’s tail feathers, the colours inside the 
paua shell, and the glistening surface of a golden stag beetle’s coat are all 
examples of iridescence in nature. Similar colours are seen in soap bubbles 
and oil fi lms. Curious as to what caused these beautiful colours and eff ects 
in nature, scientists speculated on diff erent mechanisms. One suggestion 
was that the surface pigments of iridescent feathers appeared to refl ect 
diff erent colours when viewed from diff erent angles. Another suggestion 
was that the colours were formed as a result of the structure of the surface, 
not anything to do with the pigments. With the acceptance of the wave 
theory of light, scientists in the late 19th century developed a theory of 
interference in thin fi lms that could explain these colours. Developments 
in microscopy meant that fi ner and fi ner structure could be seen, and 
using an electron microscope in the 20th century it was possible to see 
complex thin-fi lm structures in iridescent bird feathers. 

In 1817 Joseph Fraunhofer accidentally produced a thin fi lm coating 
when he left nitric acid on a polished glass surface. Experimenting with 
diff erent glasses, he was able to produce a surface with the same vivid 
colours seen in a soap bubbles. When he observed the same colours 
appearing as a coating of alcohol evaporated from a polished metal surface, 
he concluded that such colours would appear in any transparent thin fi lm. 
This was the start of the technology of thin fi lms, developed in the 20th 
century to make optical coatings for glass.

Figure 9.29 The iridescent ‘eye’ of a 
peacock’s tail feather.

20 Light is incident normally on two narrow 
parallel slits a distance of 1.00 mm apart. A screen 
is placed a distance of 1.2 m from the slits. The 
distance on the screen between the central 
maximum and the centre of the n = 4 bright spot 
is measured to be 3.1 mm.
a Determine the wavelength of light. 
b This experiment is repeated in water (of 

refractive index 1.33). Suggest how the 
distance of 3.1 mm would change, if at all.

? Test yourself
17 In a Young’s two-slit experiment, a coherent 

source of light of wavelength 680 nm is used to 
illuminate two very narrow slits a distance of 
0.12 mm apart. A screen is placed at a distance of 
1.50 m from the slits. Calculate the separation of 
two successive bright spots.

18 Explain why two identical fl ashlights pointing 
light to the same spot on a screen will never 
produce an interference pattern.

19 In a Young’s two-slit experiment it is found that 
an nth-order maximum for a wavelength of 
680.0 nm coincides with the (n + 1)th maximum 
of light of wavelength 510.0 nm. Determine n.
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21 The graph shows the intensity pattern from a 
two-slit interference experiment.

a Determine the separation of the slits in terms 
of the wavelength of light used.

b Suggest how the pattern in a changes if the 
slit separation is halved.

22 A grating with 400 lines per mm is illuminated 
with light of wavelength 600.0 nm.
a Determine the angles at which maxima are 

observed.
b Determine the largest order that can be seen 

with this grating and this wavelength.
23 A piece of glass of index of refraction 1.50 is 

coated with a thin layer of magnesium fl uoride 
of index of refraction 1.38. It is illuminated 
with light of wavelength 680 nm. Determine the 
minimum thickness of the coating that will result 
in no refl ection.

24 A thin soap bubble of index of refraction 1.33 is 
viewed with light of wavelength 550.0 nm and 
appears very bright. Predict a possible value of 
the thickness of the soap bubble.

25 Two very narrow, parallel slits separated by a 
distance of 1.4 × 10−5 m are illuminated by 
coherent, monochromatic light of wavelength 
7.0 × 10−7 m.
a Describe what is meant by coherent and 

monochromatic light.
b Draw a graph to show the intensity of light 

observed on a screen far from the slits.
c By drawing another graph on the same 

axes, illustrate the eff ect on the intensity 
distribution of increasing the width of the slits 
to 2.8 × 10−5 m.

26 a Draw a graph to show the variation with 
angle of the intensity of light observed on a 
screen some distance from two very narrow, 
parallel slits when coherent monochromatic 
light falls on the slits.

 b Describe how the graph you drew in a 
changes when:

   i  the number of slits increases but their 
separation stays the same

  ii  the number of slits stays at two but their 
separation decreases.

θ

Intensity

20°–20°–40°–60°

0.2

0.4

0.6

0.8

1

0 40° 60°
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9.4 Resolution
This short section deals in detail with the limits to resolution imposed by 
diff raction.

The Rayleigh criterion
In Section 9.2 we discussed in some detail the diff raction of a wave 
through a slit of linear size b. One application of diff raction is in the 
problem of the resolution of the images of two objects that are close to 
each other. Resolution of two objects means the ability to see as distinct 
two objects that are distinct. Light from each of the objects will diff ract 
as it goes though the opening of the eye of the observer. The light from 
each source will create its own diff raction pattern on the retina of the eye 
of the observer. If these patterns are far apart the observer has no problem 
distinguishing the two sources as distinct (Figure 9.30).

Learning objectives

• Understand the limits on 
resolution placed by diff raction.

• Solve problems related to the 
Rayleigh criterion and resolving 
power (resolvance) in diff raction 
gratings.

a
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If on the other hand, the two sources are too close to each other then 
their diff raction patterns will overlap on the retina of the eye of the observer, 
as shown in Figure 9.31. The observer cannot distinguish the two objects.

Figure 9.30 a The individual diff raction patterns for two sources that are far apart from each other (drawn in red and 
blue). b The combined pattern for the two sources. The observer clearly sees two distinct objects. There is a very clear 
drop in intensity in the middle of the pattern.

Figure 9.31 a The individual diff raction patterns for two sources that are very close to each other. b The combined 
pattern for the two sources. The observer cannot distinguish two distinct objects. The combined pattern looks very 
much like that from a single source.
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The limiting case, i.e. when the two objects can just be resolved, is 
when the fi rst minimum of the diff raction pattern of one source coincides 
with the central maximum of the diff raction pattern of the other source, 
as shown in Figure 9.32. This is known as the Rayleigh criterion. The 
photograph in Figure 9.33 illustrates what is meant by ‘just resolved’.

a

Intensity
the central maximum
of one source...
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sθA

Figure 9.34 shows two objects separated by distance s. The two objects 
are a distance d from the observer. The angle that the separation of the 
objects subtends at the eye is called the angular separation θA of the 
two objects and is equal in radians to 

s
d.

Notice that the angle θA is also the angular separation of the central 
maxima of the diff raction patterns of the two sources. According to the 
Rayleigh criterion, resolution is just possible when this angular separation 

is equal to the angle of the fi rst diff raction minimum: θD = 
λ
b (as we saw in 

Subtopic 9.2). 

Figure 9.32 a The limiting case where resolution is thought to be just barely possible. The fi rst minimum of one 
source coincides with the central maximum of the other. b The combined pattern for the two sources shows a small 
dip in the middle.

Figure 9.33 Two images that are a not resolvable, b barely resolvable and c clearly 
resolvable.

Figure 9.34 Two objects that are separated by a distance s are viewed by an observer 
a distance d away. The separation s subtends an angle θA at the eye of the observer.

Exam tip
Solving resolution problems 
involves the comparison of two 
angles: the angular separation 
and the angle of diff raction. We 
have resolution if the angular 
separation is greater than or 
equal to the diff raction angle.

a b c
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For a circular slit things have to be modifi ed somewhat and it can be 
shown that the angle of diff raction for a circular slit of diameter b is given by:

θD = 1.22 
λ
b

So, for a circular slit, resolution is possible when:

θA ≥ θD

s
d ≥ 1.22 

λ
b

Worked examples
9.14 The camera of a spy satellite orbiting at 400 km has a diameter of 35 cm. Estimate the smallest distance this 

camera can resolve on the surface of the Earth. (Assume a wavelength of 500 nm.)

Using Rayleigh’s criterion, at the limit of resolution we have that 
s
d = 1.22 

λ
b. Therefore substituting the known 

values we fi nd:

s = 1.22 × 
λ
b × d

s = 
1.22 × 5.0 × 10−7 × 4.0 × 105

0.35

s = 0.70 m

9.15 The headlights of a car are 2 m apart. The pupil of the human eye has a diameter of about 2 mm. Suppose 
that light of wavelength 500 nm is being used. Estimate the maximum distance at which the two headlights 
are seen as distinct.

Using Rayleigh’s criterion, at the limit of resolution 
s
d = 1.22 

λ
b. Therefore solving for the distance d:

d = 
sb

1.22λ

d = 
2.0 × 2.0 × 10−3

1.22 × 5.0 × 10−7

d = 7000 m

The car should be no more than this distance away.

The IB data booklet does not 
include the subscript D in θD. We 
have included it to stress that this 
refers to the diff raction angle.
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9.16 The pupil of the human eye has a diameter of about 2 mm and the distance between the pupil and the back 
of the eye (the retina) where the image is formed is about 20 mm. Using light of wavelength 500 nm, the 
eye can resolve objects that have an angular separation of 3 × 10−4 rad. Use this information to estimate the 
distance between the receptors in the eye.

Since the angular separation θ of two objects that can be resolved is 3 × 10−4 rad, this must also be the angular 
separation between two receptors on the retina. Thus, the linear separation l of two adjacent receptors must be 
smaller than about:

l = r θ

Here r = 20 mm, so:

l = 20 × 10−3 × 3 × 104

l = 6 × 10−6 m

Diff raction grating resolution
An important characteristic of a diff raction grating is its ability to resolve, 
i.e. see as distinct, two lines in a spectrum that correspond to wavelengths 
λ1 and λ2 that are very close to each other. Because the wavelengths are 
close to each other the angles at which the lines are observed will also be 
close to each other and so diffi  cult to resolve. 

In Figure 9.35 if the angular separation of the two lines is too small the 
two lines will not be seen as distinct. 

The resolving power R (or resolvance) of a diff raction grating is 
defi ned as:

R = 
λavg

Δ λ

where λavg is the average of λ1 and λ2 and Δλ is their diff erence. The higher 
the resolving power, the smaller the diff erences in wavelength that can 
be resolved. It can be shown that R = mN where m is the order at which 
the lines are observed and N is the total number of slits or rulings on the 
diff raction grating. So we have that:

λavg

Δ λ
 = mN

⇒ Δλ = 
λavg

mN

This gives the smallest diff erence in wavelengths that can be resolved. If 
Δλ is very small it is necessary to use a grating with a very large number of 
rulings.

In
te

ns
ity

angular separation

θ/degrees

Figure 9.35 Two lines that are close to each 
may not be resolvable.
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Worked example
9.17 A beam of light containing diff erent wavelengths is incident on a diff raction grating. The grating has 

600 lines per mm and is 2.0 cm wide. The average wavelength in the beam is 620 nm. Calculate the least 
diff erence in wavelength that can be resolved by this grating in the second order.

From the formula for resolving power we have:

Δλ = 
λavg

mN

Since the grating is 20 mm wide we fi nd:

N = 600 × 20 = 12 000

We are using the second order so m = 2 and therefore:

Δλ = 
λavg

mN
 = 

620
2 × 12 000 = 0.0258 ≈ 0.026 nm

Nature of science
Pushing the limits of resolution
The Rayleigh criterion determines the detail that can be resolved for a 
given wavelength. Advances in technology have pushed the limits of what 
can be resolved using both large and small wavelengths. Larger diameter 
receiving dishes give greater resolution to radio telescopes, which use very 
long wavelengths. Even greater resolution is obtained using vast arrays 
of radio telescopes connected together, made possible through advances 
in signal processing. At the other extreme, small objects need small 
wavelengths. All other things being equal, blue light is better than red light 
for distinguishing detail. A huge technological advance was made when 
it was realised that the wave used to ‘see’ a small object does not even 
have to be an electromagnetic wave. In Topic 12 we will fi nd out that all 
particles, and in particular electrons, show wave-like behaviour, and this is 
the basis of the images obtained by the electron microscope. The reason 
particle physicists need particle accelerators is because the high energies 
obtained give particles very short wavelengths, which can then be used to 
probe the structure of other tiny particles.

28 a  The headlights of a car are separated by a 
distance of 1.4 m. Estimate the distance these 
would be resolved as two separate sources by 
a lens of diameter 5 cm with a wavelength of 
500 nm.

b Discuss the eff ect, if any, of decreasing the 
wavelength on the distance in a.

? Test yourself
27 Determine whether a telescope with an 

objective lens of diameter 20 cm can resolve 
two objects a distance of 10 km away separated 
by 1 cm. (Assume we are using a wavelength of 
600 nm.)
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9.5 The Doppler eff ect
This section looks at the Doppler eff ect, the change in the observed 
frequency of a wave when there is relative motion between the source and 
the observer. The Doppler eff ect is a fundamental wave phenomenon with 
many applications. The phenomenon applies to all waves, but only sound 
and light waves are considered here.

Wavefront diagrams
If you stand by the edge of a road and a car moving at high speed 
approaches you will hear a high-pitched sound. The instant the car moves 
past you the frequency of the sound will drop abruptly and will stay low 

29 Assume that the pupil of the human eye has 
a diameter of 4.0 mm and receives light of 
wavelength 5.0 × 10−7 m.
a Calculate the smallest angular separation that 

can be resolved by the eye at this wavelength.
b Estimate the least distance between features on 

the Moon (a distance of 3.8 × 108 m away) that 
can be resolved by the human eye.

30 The Jodrell Bank radio telescope in Cheshire, 
UK, has a diameter of 76 m. Assume that it 
receives electromagnetic waves of wavelength 
21 cm.
a Calculate the smallest angular separation that 

can be resolved by this telescope.
b Determine whether this telescope can resolve 

the two stars of a binary star system that are 
separated by a distance of 3.6 × 1011 m and are 
8.8 × 1016 m from Earth (assume a wavelength 
of 21 cm).

31 The Arecibo radio telescope has a diameter of 
300 m. Assume that it receives electromagnetic 
waves of wavelength 8.0 cm. Determine if this 
radio telescope will see the Andromeda galaxy (a 
distance of 2.5 × 106 light years away) as a point 
source of light or an extended object. Take the 
diameter of Andromeda to be 2.2 × 105 light 
years.

32 A spacecraft is returning to Earth after a long 
mission far from Earth. Estimate the distance 
from Earth, at which an astronaut in the 
spacecraft will fi rst see the Earth and the Moon 
as distinct objects with a naked eye. Take the 
separation of the Earth and the Moon to be 
3.8 × 108 m, and assume a pupil diameter of 
4.5 mm and light of wavelength 5.5 × 10−7 m.

33 The Hubble Space Telescope has a mirror of 
diameter 2.4 m.
a Estimate the resolution of the telescope, 

assuming that it operates at a wavelength of 
5.5 × 10−7 m.

b Suggest why the Hubble Space Telescope has 
an advantage over Earth-based telescopes of 
similar mirror diameter.

34 The spectrum of sodium includes two lines at 
wavelengths 588.995 nm and 589.592 nm. A 
sodium lamp is viewed by a diff raction grating 
that just manages to resolve these two lines in 
the third order at 12°. Determine:
a the slit spacing d of the grating
b the total number of rulings on the grating.

35 a A diff raction grating is 5.0 mm wide and has 
600 lines per mm. A beam of light containing 
a range of wavelengths is incident on the 
grating. The average wavelength is 550 nm. 
Determine the least wavelength range that can 
be resolved in second order.

b You can increase the resolving power by 
increasing the order m or the number of lines N. 
Suggest whether these two ways are equivalent.

Learning objectives

• Understand the Doppler eff ect 
through wavefront diagrams.

• Solve problems involving 
frequency and wavelength shifts 
and speeds of source or observer.
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as the car moves away from you: this is the Doppler eff ect. It is more 
pronounced if the car going by is a Formula 1 racing car!

The Doppler eff ect is the change in the observed frequency of a 
wave which happens whenever there is relative motion between 
the source and the observer.

We can explain most aspects of the Doppler eff ect using wavefront 
diagrams. Consider fi rst a source of sound S that is stationary in still air. 
The source emits circular wavefronts (Figure 9.36). 

Suppose that the source emits a wave of frequency f and that the speed 
of the sound in still air is v. This means that f wavefronts are emitted per 
second. An observer who moves towards the stationary source will meet 
one wavefront after the other more frequently and so will measure a 
higher frequency of sound than f. The distance between the wavefronts 
does not change and so the moving observer will measure the same 
wavelength of sound as the source. Similarly, if the observer moves away 
from the source, then he or she will meet wavefronts less frequently and so 
will measure a frequency lower than f. The wavelength will be the same as 
that measured by the source.

source moving

stationary
observer

Figure 9.36 The wavefronts emitted by 
a stationary source are concentric. The 
common centre is the position of the source.

If it is the source that is moving, then the wavefronts will look like 
those in Figure 9.37. Because the source is moving towards the observer, 
the wavefronts between the source and the observer are crowding 
together. This means that the observer will meet them more frequently, 
i.e. he or she will measure a frequency higher than f. Because of the 
crowding of the wavefronts the wavelength measured will be less than 
the wavelength measured by the source. If, on the other hand, the source 
moves away from the observer, the frequency measured by the observer 
will be less than f  because the wavefronts arrive at the observer less 
frequently. The wavelength measured is larger than that at the source 
because the wavefronts are further apart.

These are the main features of the Doppler eff ect for sound. The next 
two sections look at the Doppler eff ect quantitatively.

Figure 9.37 A source is approaching the stationary observer with speed uS.

Exam tip
A very common mistake with 
the Doppler eff ect is that 
students confuse frequency 
with intensity or loudness 
of the sound. As a source 
approaches at constant speed, 
the intensity increases because 
the distance gets smaller. The 
frequency is observed to be 
higher than that emitted but 
constant.
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Moving source and stationary observer
To derive a formula relating the emitted and observed frequencies, look at 
the situation shown in Figure 9.38.

us

v − usus

vt = 0 s

t = 1 s

towards stationary observer

f  wavefronts in
this distance

first wavefront
now here

source emits last
wavefront

source

source emits first wavefront

us

The source emits sound of frequency f and wavelength λ.The sound has 
speed v in still air. So in one second, the source will emit f wavefronts. The 
source is moving with speed us towards the observer, so in one second the 
source will move a distance equal to uS towards the stationary observer. 
The movement of the source means that these f wavefronts are all within 
a distance of v − uS. The stationary observer will therefore measure a 
wavelength λ′ (separation of wavefronts) equal to:

λ′ = 
v − us

f

The frequency f ′ measured by the stationary observer is therefore:

f ′ = 
v
λ′

f ′ = 
v

v − us
f

f ′ = f (
v

v − us
) source moving towards observer

As the source approaches, the stationary observer thus measures a higher 
frequency than that emitted by the source. The wavelength measured by 
the observer will be shorter than the wavelength measured at the source. 
You can see this clearly from the wavefront diagram of Figure 9.38: the 
distance between the wavefronts in front of the source is smaller than that 
in Figure 9.37. 

Figure 9.38 Determining the Doppler frequency.

Exam tip
Notice that the speed of the 
wave measured by the observer 
is still v despite the fact the 
source moves. The speed of 
a wave is determined by the 
properties of the medium. This 
is still air for both source and 
observer and both measure the 
same speed, v.
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In fact:

λ′ = 
v − us

f

λ′ = 
v
f  
  1 − 

us
v

λ′ = λ  1 − 
us
v  source moving towards observer

A similar calculation for the case of the source moving away from the 
stationary observer gives:

f ′ = f    
v

v + us
 source moving away from observer

and

λ′ = λ  1 + 
us
v  source moving away from observer

Worked example
9.18 The siren of a car moving at 28.0 m s−1 emits sound of frequency 1250 Hz. The car is directed towards a 

stationary observer X and moves away from an observer Y. Calculate the frequency and wavelength of sound 
observed by X and Y. The speed of sound in still air is 340 m s−1.

We need to use the formulas for a moving source, i.e. f ′ = 
vf

v ± us

Students are often confused as to whether the sign in the denominator should be plus or minus. The easy way to 
fi gure this out is to realise that if the source is approaching observer X we expect an increase in frequency. This 
means we need to use the minus sign, to make denominator smaller and so get a larger frequency. 

So, substituting the values for X:

f ′ = 
340 × 1250
340 − 28  ≈ 1360 Hz

Remember that the speed of the sound is still v. To fi nd the wavelength measured by X we use the relationship 
between speed, frequency and wavelength:

λ′ = 
340
1360 ≈ 0.25 m

For Y, f ′ = 
340 × 1250
340 + 28  ≈ 1150 Hz and λ′ = 

340
1150 ≈ 0.30 m
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Stationary source and moving observer
In the case of a stationary source and a moving observer we may argue as 
follows. First, let us consider the case of the observer moving towards the 
source. The observer who moves with speed uo with respect to the source 
may claim that he is at rest and that it is the source that approaches him 
with speed uo. But the air is also coming towards the observer with speed 
uo and so the observer will measure a higher wave speed, v + uo. 

We can now apply the same equations as for a source moving towards 
the observer, and so the frequency measured by the observer is:

f ′ = f 
v + uo

v + uo − uo

f ′ = f    
v + uo

v  observer moving towards source

Similarly, if the observer moves away from the source we get

f ′ = f    
v  − uo

v  observer moving away from source

As we expect from the analysis with wavefront diagrams, the wavelength 
measured by the observer will be the same as that measured by the source. 
Consider the case of an observer moving towards a source:

λ′ = 
v + uo

f ′

λ′ = 
v + uo

f    
v + uo

v  

λ′ = 
v + uo
v + uo

 × 
v
f

λ′ = 
v
f

λ′ = λ

The wavelengths are the same.
This is why in defi ning the Doppler eff ect we refer to the change in 

frequency measured by the observer and not the change in wavelength.
The Doppler eff ect has many applications. One of the most common 

is to determine the speed of moving objects from cars on a highway (as 
Worked example 9.20 shows). Another application is to measure the speed 
of fl ow of blood cells in an artery or to monitor the development of a 
storm. The Doppler eff ect applied to light is responsible for one of the 
greatest discoveries in science, the expansion of the Universe (see ‘The 
Doppler eff ect for light’).

Exam tip
The speed of sound relative 
to the observer is no longer 
v. The medium has changed. 
For the source the medium is 
still air. For the observer the 
medium is moving air. 

Exam tip
The IB data booklet has the 
formulas for frequency. There 
is no need to remember the 
formulas for wavelength – just 
use the relationship:

wavelength = 
wave speed
frequency
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Worked examples
9.19 A train sounding a 500 Hz siren is moving at a constant speed of 8.0 m s−1 in a straight line. An observer is 

in front of the train and off  its line of motion. What frequencies does the observer hear? (Take the speed of 
sound to be 340 m s−1.)

Figure 9.39

What counts is the velocity of the train along the line of sight between the train and the observer. When the train 
is very far away (Figure 9.39) it essentially comes straight towards the observer and so the frequency received is:

f ′ = f    
v

v − us

f ′ = 500 × 
340

340 − 8

f ′ ≈ 510 Hz 

When the train is again very far away to the right, the train is moving directly away from the observer and the 
frequency received will be:

f ′ = f    
v

v + us

f ′ = 500 × 
340

340 + 8

f ′ ≈ 490 Hz 

As the train approaches, we take components of the train’s velocity vector in the direction along the line of sight 
and the direction normal to it (Figure 9.39).

From the diagram, the component along the line of sight decreases as the train gets closer to the observer. Thus, 
the observer will measure a decreasing frequency. The sound starts at 510 Hz and falls to 500 Hz when the train is 
at position P. As the train moves past P to the right, the observer will hear sound of decreasing frequency starting at 
500 Hz and ending at 490 Hz.

Thus, the observer hears frequencies in the range of 510 Hz to 490 Hz, as shown in Figure 9.40.

Figure 9.40

train close by

observer

Pνsus

f/Hz 

Distance 
observer 

510

500

490
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9.20 A sound wave of frequency 15 000 Hz is emitted towards an approaching car. The wave is refl ected from the 
car and is then received back at the emitter at a frequency of 16 100 Hz. Calculate the velocity of the car. 
(Take the speed of sound to be 340 m s−1.)

The car is approaching the emitter so the frequency it receives is:

f1 = 15 000 × 
340 + u

340  Hz

where u is the unknown car speed.

The car now acts as an emitter of a wave of this frequency (f1), and the original emitter will act as the new receiver. 
Thus, the frequency received (16 100 Hz) from the approaching car is:

 16 100 =   15 000 × 
340 + u

340  × 
340

340 − u

⇒ 
16 100
15 000 = 

340 + u
340 − u

 
340 + u
340 − u  = 1.073 

Solving for u we fi nd u = 12.0 m s−1.

The Doppler eff ect for light
The Doppler eff ect also applies to light, but the equation giving the 
frequency observed is more complicated than the formula for sound. 
However, in the case in which the speed of the source or the observer is 
small compared to the speed of light, the equation takes a simple form:

Δf
f  ≈ 

v
c

In this formula v is the speed of the source or the observer, c is the speed 
of light and f is the emitted frequency. Then Δf gives the change in the 
observed frequency. 

(Note that this approximate formula may also be used for sound 
provided the speed of the source or the observer is small compared to the 
speed of sound.)

Since c = f λ it also follows that:
Δλ
λ  ≈ 

v
c

In this formula v is the speed of the source or the observer, c is the speed 
of light and λ is the emitted wavelength. Then Δλ gives the change in the 
observed wavelength.

Remember that if the source of light approaches then the frequency 
increases and the wavelength decreases. When the wavelength 
decreases we say we have a blue-shift. If the source of light moves away 
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then the frequency decreases and the wavelength increases. In this case we 
speak of a red-shift.

Light from distant galaxies measured on Earth shows a red-shift, i.e. it 
is longer than the wavelength emitted. This means that the galaxies are 
moving away from us. This great discovery in the 1920s is convincing 
evidence of an expanding universe.

Worked example
9.21 Hydrogen atoms in a distant galaxy emit light of wavelength 656 nm. The light received on Earth is measured 

to have a wavelength of 689 nm. State whether the galaxy is approaching the Earth or moving away, and 
calculate the speed of the galaxy.

The received wavelength is longer than that emitted, and so the galaxy is moving away from Earth (we have a red-
shift). Using Δλ ≈ 

v
c  λ we get:

v = 
c Δλ
λ

v = 
3.00 × 108 × (689 − 656) × 10−7

656 × 10−7

v = 1.5 × 107 m s−1

Nature of science
The Doppler eff ect was fi rst proposed to explain changes in the 
wavelength of light from binary stars moving in relation to each other. 
The eff ect also explains the change in pitch that occurs when a fast 
moving source of sound passes by. Applying the theory to diff erent 
types of wave in diff erent areas of physics has led to Doppler imaging in 
medicine using ultrasound, hand-held radar guns to check for speeding 
vehicles, and improvements in weather forecasting using the Doppler shift 
in radio waves refl ected from moving cloud systems. 

The expansion of the Universe was discovered by Edwin Hubble 
(1889–1953) through applying the red-shift formula that is based on 
the Doppler eff ect to light from distant galaxies. Observers on Earth 
who measure the light emitted by galaxies fi nd that the wavelength is 
longer than that emitted. The galaxies must be moving away. Yet the 
modern view is that space in-between galaxies is itself being stretched. 
This stretching makes all distances, including wavelengths, get larger. So 
the reason we observe red-shift is not the Doppler eff ect, but a much 
more complicated phenomenon predicted by Einstein’s general theory 
of relativity. The Doppler eff ect remains as a simple, intuitive yet wrong 
description of what is actually going on, which gives the right answer for 
galaxies that are not too far away.
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43 A sound wave of frequency 500 Hz is emitted 
by a moving source toward a stationary observer. 
The signal is refl ected by the observer and 
received by the source, where the frequency is 
measured and found to be 512 Hz. Calculate the 
speed of the source.

44 Consider the general case when both the source 
and the observer move towards each other. Let us 
be the velocity of the source and uo that of the 
observer. In the frame of reference in which the 
observer is at rest, the waves appear to move with 
velocity v + uo and the source appears to move 
with velocity us + uo. Show that the frequency 
received by the observer is:

  fo = fs 
c + vo
c − vs

45 Ultrasound of frequency 5.000 MHz refl ected 
from red blood cells moving in an artery is found 
to show a frequency shift of 2.4 kHz. The speed 
of ultrasound in blood is v = 1500 m s–1.
a Explain why the appropriate formula for the 

  frequency shift is 
Δf
f  = 2

u
v , where u is the 

  speed of the blood cells. 
b Estimate the speed of the blood cells.
c In practice, a range of frequency shifts is 

observed. Explain this observation.
46 Calculate the speed of a galaxy emitting light of 

wavelength 5.48 × 10−7 m which when received 
on Earth is measured to have a wavelength of 
5.65 × 10−7 m.

47 Light from a nearby galaxy is emitted at a 
wavelength of 657 nm and is observed on Earth 
at a wavelength of 654 nm. 
a Deduce the speed of this galaxy. 
b State what, precisely, can be deduced about 

the direction of the velocity of this galaxy.
48 The Sun rotates about its axis with a period 

that may be assumed to be constant at 27 days. 
The radius of the Sun is 7.00 × 108 m. Discuss 
the shifts in frequency of light emitted from the 
Sun’s equator and received on Earth. Assume 
that the Sun emits monochromatic light of 
wavelength 5.00 × 10–7 m.

? Test yourself
Take the speed of sound in still air to be 
340 m s–1.
36 Explain, with the help of diagrams, the Doppler 

eff ect. Show clearly the cases of a source that a 
moves towards and b goes away from a stationary 
observer, as well the case of a moving observer.

37 A source approaches a stationary observer at 
40 m s−1 emitting sound of frequency 500 Hz. 
a Determine the frequency the observer 

measures.
b Calculate the wavelength of the sound as 

measured by i the source and ii the observer.
38 A source is moving away from a stationary 

observer at 32 m s−1 emitting sound of frequency 
480 Hz.
a Determine the frequency the observer 

measures.
b Calculate the wavelength of the sound as 

measured by i the source and ii the observer.
39 A sound wave of frequency 512 Hz is emitted 

by a stationary source toward an observer who is 
moving away at 12 m s−1. 
a Determine the frequency the observer 

measures.
b Calculate the wavelength of the sound as 

measured by i the source and ii the observer.
40 A sound wave of frequency 628 Hz is emitted 

by a stationary source toward an observer who is 
approaching at 25 m s−1. 
a Determine the frequency the observer 

measures.
b Calculate the wavelength of the sound as 

measured by i the source and ii the observer.
41 A source of sound is directed at an approaching 

car. The sound is refl ected by the car and is 
received back at the source. Carefully explain 
what changes in frequency the observer at the 
source will detect.

42 A sound wave of frequency 500 Hz is emitted by 
a stationary source toward a receding observer. 
The signal is refl ected by the observer and 
received by the source, where the frequency is 
measured and found to be 480 Hz. Calculate the 
speed of the observer.
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Exam-style questions

1 A ball of mass m is attached to two identical springs of spring constant k as shown. Initially the springs have their 
natural length. The ball is displaced a small distance to the right and is then released.

49 In a binary star system, two stars orbit a common 
point and move so that they are always in 
diametrically opposite positions. Light from both 
stars reaches an observer on Earth. Assume that 
both stars emit light of wavelength 6.58 × 10–7 m.
a When the stars are in the position shown 

in the diagram below, the observer on 
Earth measures a wavelength of light of 
6.58 × 10–7 m from both stars. Explain why 
there is no Doppler shift in this case.

b When the stars are in the position shown in 
the diagram below, the observer on Earth 
measures two wavelengths in the received 
light, 6.50 × 10–7 m and 6.76 × 10–7 m. 
Determine the speed of each of the stars.

star A
towards Earth

star B

towards Earth

star A

star B

A B

ball

 What is the period of oscillation of the ball?

A 2π   
m
k  B 2

1
2π   

m
k  C 2

3
2π   

m
k  D 2−1

2π   
m
k

2 A particle performs simple harmonic oscillations with amplitude 0.1 mm and frequency 100 Hz. What is the 
maximum acceleration of this particle (in m s−2 )?

A 0.2π B 0.4π C 2π2 D 4π2
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3 Which of the following graphs shows the variation with time of the potential energy of a particle undergoing 
simple harmonic oscillations with a period of 1.0 s?

0.0 0.5 1.0

A
1.5 2.0

0.2

0.0

0.4

0.6

0.8

1.0E /J

E /J

t /s

t /s t /s

E /J

E /J

t /s
0.0 0.5 1.0

B
1.5 2.0

0.2

0.0

0.4

0.6

0.8

1.0

C

0.5

1.0

0.0

0.5

1.0

0.5 1.0 1.5 2.0

D

0.5

1.0

0.0

0.5

1.0

0.5 1.0 1.5 2.0

4 Light of wavelength λ is incident normally on a slit of width b. A screen is placed a distance D from the slit. What is 
the width of the central maximum measured along the screen?

A 
λ
b  B 

2λ
b  C 

λD
b  D 

2λD
b

5 Light of wavelength λ is incident on two parallel slits. An interference pattern is formed on a screen behind the slits. 
The separation of the slits and the width of the slits are both decreased. Which of the following is correct about the 
separation and the width of the bright fringes?

separation width

A increases increases
B increases decreases
C decreases increases
D decreases decreases

6 Two radio wave emitting stars are separated by a distance d and are both a distance r from Earth. Radio waves of 
wavelength λ are received by a radio telescope of diameter b on Earth. The two stars will be well resolved by the 
telescope if which condition is satisfi ed?

A 
d
r  < 1.22 × 

λ
b B 

d
r  >1.22 × 

λ
b C 

r
d < 1.22 × 

λ
b D 

r
d > 1.22 × 

λ
b
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 7 Coherent light of wavelength λ is incident on two parallel slits that are separated by a distance d. Angle θ is the 
smallest angle for which the two rays shown interfere destructively on a screen far from the slits. 

d
θ

 Which of the following could be correct?

A d sin θ = 
λ
2  B d sin θ = λ C d sin θ = 

3λ
2  D sin θ = 2λ

 8 A train sounding its horn goes past a train station without stopping. The train moves at constant speed. Which is 
correct about the frequency of the horn measured by the observer?

A keeps increasing then keeps decreasing 
B keeps decreasing then keeps increasing
C is constant and high then constant and low
D is constant and low then constant and high

 9 Light is incident essentially normally on a thin fi lm of thickness t and refractive index 1.5. The fi lm is on 
transparent glass of refractive index 2.5. 

t

 Which of the following conditions on the wavelength in oil leads to destructive interference of the refl ected light?

A λ = 6t 
B λ = 3t 
C λ = t 
D λ = 1.5t 

10 Light is incident on N very thin parallel slits and an interference pattern is formed on a screen a distance away. 
The number of slits is increased while the separation of two consecutive slits stays the same. Which is correct as 
N increases?

A the number of secondary maxima decreases
B the intensity of the secondary maxima increases
C the primary maxima become narrower
D the distance between the central maximum and the fi rst primary maximum to the side increases
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11 The graph shows how the acceleration of a particle varies with displacement from a fi xed equilibrium position.

10

5

2 31−2 −1 0−3

−5

−10

x /cm

a /m s–2

3.60 m

not to scale

θ

a Use the graph to explain why the particle is performing simple harmonic oscillations. [3]
b Determine:
  i the amplitude of oscillations [1]
  ii the frequency of the motion. [2]
c  i The mass of the particle is 0.25 kg. Calculate the maximum potential energy of the particle. [2]
  ii Determine the speed of the particle when its kinetic energy equals its potential energy. [3]
d Sketch a graph to show how the kinetic energy varies with displacement. [2]

12 In a Young two-slit experiment, a source of light of unknown wavelength is used to illuminate two very narrow 
slits that are a distance 0.120 mm apart. 

 Bright fringes are observed on a screen a distance of 3.60 m from the slits. The separation between the bright 
fringes is 1.86 cm.

a  i Explain how the bright fringes are formed. [2]
  ii Determine the wavelength of light. [3]
b Draw a graph to show how the intensity of the light observed on the screen varies with the angle θ. The 

intensity at the screen due to one slit alone is 20 W m−2. You may neglect the slit width. [3]
c  i  The two slits are replaced by a diff raction grating. The light in a makes a second order maximum at an 

angle of 58°. Calculate the number of rulings per mm for this grating. [2]
  ii  Another wavelength of visible light creates a maximum at the same angle as in c i but at a diff erent 

order. Determine this wavelength and the order of its maximum. [4]
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13 Monochromatic light of wavelength 5.0 × 10−7 m in air is incident on a rectangular piece of glass of refractive 
index 1.60 that is coated by a thin layer of magnesium fl uoride of refractive index 1.38.

d

incident light

magnesium fluoride

glass

Intensity

10–10–20 0 20

15

θ/degrees

10

5

a Copy and complete this diagram by drawing the paths of the two rays, originating with the incident ray, 
that will interfere in the eye of an observer looking down on the glass from above. [2]

b Indicate on the diagram points at which refl ected rays undergo phase changes. [2]
c Calculate the least thickness d of this coating that will result in no light being refl ected. Assume that the 

ray is incident normally. [3]

14 The graph shows the interference pattern for a number of very thin parallel slits.

a Justify that the number of slits is 4. [2]
b List a total of four ways in which this pattern changes as:
  i the number of slits increases but their separation stays the same
  ii the number of slits stays the same but their separation decreases. [4]
c It is required to resolve two lines in the spectrum of hydrogen: a line with wavelength 656.45 nm in 11H 

and a line of wavelength 656.27 nm in the isotope 21H. Calculate the least number of slits per mm 
required to resolve these two lines in the second order at an angle of 15°. [3]
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15 The graph shows the single-slit diff raction pattern for monochromatic light from one point source.

 The wavelength of light is 5.0 × 10–7 m.

a Calculate the slit diameter assuming that it is circular. [2]
b A second source is placed at distance of 3.0 cm from the other source. 
  i  On a copy of the axes above draw the diff raction pattern from the second source in the case 

in which the two sources are just barely resolved. [2]
  ii Calculate the distance of the two sources from the slit. [2]

16 a State what is meant by the Doppler eff ect. [1]
b Illustrate the Doppler eff ect for the case of a moving source using wavefront diagrams. [2]
c Outline one practical application of the Doppler eff ect.  [2]
d A disc of radius 0.20 m rotates about its axis making eight revolutions per second. Sound of frequency 

2400 Hz is emitted in all directions from a source on the circumference of the disc. The sound is 
received by an observer far away from the disc. Determine the range of frequencies and the range of 
wavelengths that the observer measures. [4]

Intensity

0.20.1–0.1–0.2–0.3 0 0.3

1.0

θ/mrad

0.4

0.6

0.8

0.2
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10  Fields (HL)
10.1 Describing fi elds
This topic deals with gravitational fi elds and potentials and the very 
closely related electric fi elds and potentials. We will start with gravitational 
quantities. Once all the gravitational material is covered, the electric 
quantities will be discussed.

Gravitational fi elds
Our starting point is that a massive spherical body of mass M will produce 
around it a gravitational fi eld, whose magnitude is given by:

g = 
GM
r 2

We say that the mass M is the source of the fi eld. A small mass m that 
fi nds itself in the presence of such a gravitational fi eld will respond to the 
fi eld by experiencing a force acting on it. The magnitude of this force will 
be given by F = mg. The direction of the force is the same as that of the 
gravitational fi eld. For a point mass or a spherical mass M the gravitational 
fi eld due to the mass is radial and is directed towards the centre of the 
mass (Figure 10.1).

However, if we look at the gravitational fi eld of a large planet 
very close to its surface we see that the planet surface looks fl at. The 
gravitational fi eld is therefore no longer radial but approximately uniform 
and directed at right angles to the planet’s surface (Figure 10.2).

Gravitational potential energy
Consider a mass M placed somewhere in space, and a second mass m that 
is a distance r from M. The two masses share gravitational potential 
energy, which is stored in their gravitational fi eld. This energy is the 
work that was done in bringing the two masses to a distance r apart 
from an initial separation that was infi nite. For all practical purposes we 
consider M to be fi xed in space and so it is just the small body of mass m 
that is moved (Figure 10.3).

The gravitational potential energy of two bodies is the work that 
was done in bringing the bodies to their present position from 
when they were infi nitely far apart.

Notice that, strictly speaking, this is energy that belongs to the pair of 
masses M and m and not just to one of them. So we are not quite correct 
when we speak of the gravitational potential energy of just one of the 
masses. Notice also that when we say that the masses are moved from 

Learning objectives

• Describe fi eld patterns where 
sources are masses or charges.

• Understand the concept of 
electric and gravitational 
potential.

• Describe the connection 
between equipotential surfaces 
and fi eld lines.

Figure 10.1 The gravitational fi eld around a 
point mass is radial.

Figure 10.2 The gravitational fi eld above a 
fl at mass is uniform.
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infi nity we are implying that they are moved at a very small constant 
speed, so that no kinetic energy is involved. 

The gravitational force is not constant, so we cannot straightforwardly 
calculate the work done. We need calculus for this calculation. The total 
work done in moving the mass m from infi nity to a distance r from the 
centre of a spherical mass M is:

W GMm
r

r GMm
r

GMm
r

d - -
r r

2
∞ ∞
∫= = ⎡

⎣⎢
⎤
⎦⎥ =

Note that this is the work done by an external agent in bringing the mass 
m from far away to a position near M at constant speed. The force this 
agent exerts on m is equal and opposite to the gravitational force exerted 
on m by M. It is important to be very clear about who exerts forces on 
whom and who does work, otherwise things can get very confused. 

So this work is now the gravitational potential energy of the two 
masses when their centres are separated by a distance r:

Ep = −
GMm

r

This energy is negative. It implies that if we want to separate the two 
masses to an infi nite distance apart, we must provide an amount of energy 

equal to + 
GMm

r  (Figure 10.4). Alternatively, the negative sign indicates 

that the force of gravity is a force of attraction.

M

m brought near to M

force does work

m at infinity

r

Figure 10.3 Work is done to bring the small mass from infi nity to a given position 
away from the big mass. The red arrow is the force of attraction between the two 
masses. We are interested in the work done by the force represented by the green 
arrow, i.e. the work done by the external agent. This work is negative and is stored as 
potential energy. The work done is independent of the actual path followed.

potential well

very far away EP = 0

EP = – GMm
R

Figure 10.4 The mass m at the surface of 
a planet of mass M is in a gravitational 
potential well. It needs energy to get out, 
i.e. move away from the planet’s surface.
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Worked example
10.1 Calculate the diff erence in the potential energy of a satellite of mass 1500 kg when it is taken from the 

surface of the Earth (mass M = 5.97 × 1024 kg, radius R = 6.38 × 106 m) to a distance of 520 km above the 
Earth’s surface.

The potential energy of the system initially is:

EP = − 
GMm

R
 = − 

6.67 × 10−11 × 5.97 × 1024 × 1500
6.38 × 106  = −9.4 × 1010 J

At a distance of 520 km from the Earth’s surface the separation of the masses is r = R + 520 km. The potential 
energy is therefore:

EP = −
GMm

r
 = − 

6.67 × 10−11 × 5.97 × 1024 × 1500
6.90 × 106  = −8.66 × 1010 ≈ −8.7 × 1010 J

The diff erence in these potential energies is:

(−8.7 × 1010) − (−9.4 × 1010) = 7.0 × 109 J 

This diff erence of 7.0 × 109 J is the energy that needs to be provided to move the satellite from Earth to its new 
position. Notice that no kinetic energy is involved: the satellite is moved at a small constant speed so the kinetic 
energy is negligibly small.

Gravitational potential
Related to the concept of gravitational potential energy is that of 
gravitational potential, Vg.

The gravitational potential at a point P in a gravitational fi eld is 
the work done per unit mass in bringing a small point mass m 
from infi nity to point P. 

If the work done is W, then the gravitational potential is the ratio of the 
work done to the mass m, that is:

Vg = 
W
m

The gravitational potential is a scalar quantity. Since W = −  
GMm

r , 
the potential a distance r from a spherical mass M is:

Vg = − 
GMm/r

m

Vg = −  
GM

r

The units of gravitational potential are J kg−1.

Exam tip
This defi nition must be 
remembered word perfect.
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Worked examples
10.2 Figure 10.6 shows two spherical bodies. Calculate the gravitational potential at point P. (Masses and distances 

are shown on the diagram.)

Figure 10.6 

In general, if mass M produces a gravitational potential Vg at some 
point and we place a mass m at that point, the gravitational potential 
energy of the system is EP = mVg.

If a mass m is positioned at a point in a gravitational fi eld where the 
gravitational potential is VgA and is then moved to another point where 
the gravitational potential is VgB, then the work that is done on the mass 
is the diff erence in gravitational potential energy:

W = ∆EP

W = mVgB − mVgA

W = m∆Vg

The work done depends only on the mass and the change in potential, 
not the actual path taken (Figure 10.5).

Exam tip
This formula is used when an 
external agent has to do work 
to move a mass m from one 
point in a gravitational fi eld to 
another at constant small speed.

A

B

mass M

Figure 10.5 Work must be done to move a mass from one point to another in a 
gravitational fi eld.

4.4 × 1012 kg

3.5 × 105 m 2.0 × 105 m

6.2 × 1010 kg

P

Notice that in moving the mass from one point to another, we 
are assuming that the mass is moved at a very small constant speed 
(examinations, tests and books do not always make this very clear!). In this 
way, the kinetic energy involved is negligible. 
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Gravitational potential is a scalar quantity, so we fi nd the potential created by each mass separately and then add. 

Potential from left mass:

V1 = − 
GM

r

V1 = − 
6.67 × 10−11 × 4.4 × 1012

3.5 × 105

V1 = −8.385 × 10−4 J kg−1

Potential from right mass:

V2 = − 
6.67 × 10−11 × 6.2 × 1010

2.0 × 105

V2 = −2.068 × 10−5 J kg−1

The total potential is then the sum, i.e. V = V1 + V2 = −8.6 × 10−4 J kg−1.

10.3 The mass of the Moon is about 81 times smaller than that of the Earth. The distance between the Earth and 
the Moon is about d = 3.8 × 108 m. The mass of the Earth is 5.97 × 1024 kg.
a Determine the distance from the centre of the Earth of the point on the line joining the Earth to the 

Moon where the combined gravitational fi eld strength of the Earth and the Moon is zero. 
b Calculate the combined gravitational potential at that point. 
c Calculate the potential energy when a 2500 kg probe is placed at that point.

a Let the point we are looking for be point P, and the distance we are looking for be x. Let the mass of the Earth 

 be M, so the mass of the Moon is 
M
81. 

 Use the information to draw a diagram to show the situation, as in Figure 10.7.

Figure 10.7 The Earth–Moon system.

The fi eld due to the Earth at point x is then: g Earth = 
GM
x2

The fi eld due to the Moon at point x is then: gMoon = 
GM/81
(d − x)2

d = 3.8 × 108 m

x d – x

Earth, mass M Moon, mass

P

M
81
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The combined fi eld is zero. The two fi elds are opposite in direction and must be equal in magnitude. Therefore:

 gEarth = gMoon 

 
GM
x2  = 

GM/81
(d − x)2

 
1
x2 = 

1
81(d − x)2

 ⇒ x2 = 81(d − x)2

 x = 9(d − x) 

⇒ x = 
9d
10 = 

9
10 × 3.8 × 108 = 3.4 × 108 m 

b The combined potential at this point (we add the individual potentials for the Earth and the Moon since 
potential is a scalar quantity) is:

  Vg = − 
GM

x
 − 

GM/81
d − x

 Vg = − 
6.67 × 10−11 × 5.97 × 1024

3.4 × 108  − 
6.67 × 10−11 × 5.97 × 1024

0.4 × 108× 81

 Vg = −1.17 × 106 − 0.123 × 106

 Vg = −1.3 × 106 J kg−1

c Use the equation EP = mVg.

 Substituting the mass of the probe for the mass m and using the value for Vg from part b:

 EP = 2500 × (−1.3 × 106)

 EP = −3.2 × 109 J

10.4 The graph in Figure 10.8 shows the variation of the 
gravitational potential V with distance r away from the 
centre of a dense compact planet of radius 2 × 109 m.

 Use the graph to calculate the work required to move 
a probe of mass 3400 kg from the surface to a distance 
of 7.5 × 106 m from the centre of the planet.

r / × 106 m

V
/ ×

 1
09  J

kg
–1

20 4 6 8 10 12

–25

–20

–15

–10

–5

0

Figure 10.8 The variation with distance r of the 
gravitational potential V due to a spherical mass.
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The work required can be found from W = m∆Vg or from the completely equivalent W = ∆EP.

The change in gravitational potential ∆Vg is given by:

 ∆Vg = Vfi nal − Vinitial

 ∆Vg = −7.0 × 109 − (−26 × 109)

 ∆Vg = 19 × 109 J kg−1 

So the work done is:

 W = m∆Vg

 W = 3400 × 19 × 109

 W = 6.5 × 1013 J

d

r

θ

r

P

q

–q

a

Figure 10.9 Two equal and opposite charges separated by a given distance form an 
electric dipole. The diagram shows the electric fi elds that must be added as vectors to 
get the net electric fi eld at P.

Electric fi elds
The idea of an electric fi eld was introduced in Topic 5.1. To summarise: 
if a positive test charge q experiences an electric force F, the electric fi eld 
at the position of the test charge is defi ned as the ratio of the force to the 
charge:

E = 
F
q

The direction of the electric fi eld is the same as the direction of the force 
(on the positive test charge q). At a point a distance r away from a point 
or spherical charge Q, the magnitude of the electric fi eld is:

E = 
kQ
r 2

where k is known as the Coulomb constant and equals 
k = 8.99 × 109 N m2 C–2.

Vector methods can then be used to fi nd the electric fi eld due to an 
arrangement of point charges. An example is that of the dipole, which has 
two equal and opposite charges separated by a distance a (Figure 10.9).

We would like to fi nd the electric fi eld created by this dipole. It is 
easiest to fi nd this fi eld on the perpendicular bisector of the line joining 
the charges. At other points, the answer is more involved. Let us consider a 
point a distance d from the midpoint of the line joining the charges. 
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The electric fi eld at P has a contribution of E = 
kq
r2

 from each charge, 

directed as shown. The horizontal components will cancel each other out 
but the vertical components add up. The vertical component of E is 

E sin θ, and since sin θ = 
a
2r

 we fi nd (recall r2 = d2 + 
a2

4
):

E k
qa

d( + )a2
4
2 3

2
=

This is directed vertically downwards, in the direction of the vector from 
q to −q. 

It is left as an exercise to show that when both charges are positive, the 
corresponding electric fi eld is given by:

E k
qd

d

2

( + )a2
4
2 3

2
=

and is horizontal (along the perpendicular bisector to the line joining the 
charges).

Electric potential and energy
Most of what we learned about gravitational potential energy and 
gravitational potential applies also to electricity. Just as a mass creates 
a gravitational potential around it, an electric charge creates electric 
potential. And just as two masses have gravitational potential energy 
between them, two electric charges also share electric potential 
energy. The formulas we derived for gravitation carry over to electricity 
essentially by replacing mass everywhere by charge, as we will see. The 
ideas are the same as those for gravitation so the derivations for electricity 
will be brief.

Suppose that at some point in space we place a large positive charge Q. 
If we place another positive charge q at infi nity and try to move it closer 
to the large charge Q, we will have to exert a force on q, since it is being 
repelled by Q (Figure 10.10). That is, we have to do work in order to 
change the position of q and bring it closer to Q.

Q

q brought near to Q

force does work
P

q at infinity

r

Figure 10.10 Work is done to bring the positive charge q from infi nity to a given 
position away from positive charge Q. The red arrow is the force of repulsion between 
the two charges. The green arrow represents the force that moves charge q towards Q.
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The electric potential at a point P is the amount of work done per 
unit charge as a small positive test charge q is moved from infi nity 
to the point P:

Ve = 
W
q

The unit of potential is the volt (V), and 1 V = 1 J C−1.

The work done in moving a charge q from infi nity to point P goes into 
electric potential energy, EP. 

If the electric potential at some point P is Ve, and we place a 
charge q at P, the electric potential energy EP of the system is 
given by:

EP = qVe

Using calculus to calculate the work done in moving the charge q from 
infi nity to a separation r, as we did for gravitation, results in:

W = 
kQq

r

Therefore:

Ve = 
kQ
r

and

EP = 
kQq

r

Electric potential and electric potential energy are scalar quantities, 
just like gravitational potential and gravitational potential energy. For 
gravitational and electric fi elds, the work done is independent of the path 
followed. As with gravity, moving a charge q from one point in an electric 
fi eld to another requires work (Figure 10.11).

The work done W in moving charge q from A to B is:

W = q∆Ve = q(VeB − VeA)

The quantity VeB − VeA is the potential diff erence between A and B. 
In all these formulas, the charges must be entered with their correct sign.

A

B

charge Q

Figure 10.11 Work must be done in order 
to move a charge from one point to another 
where the potential is diff erent.
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Worked example
10.5 The hydrogen atom has a single proton and a single electron (Figure 10.12).

a Find the electric potential a distance of 0.50 × 10−10 m from the proton of the hydrogen atom. The proton 
has a charge 1.6 × 10−19 C, equal and opposite to that of the electron. 

b Use your answer to a to calculate the electric potential energy between the proton in a hydrogen atom 
and an electron orbiting the proton at a radius 0.50 × 10−10 m.

a Ve = 
kQ
r

 Substituting the values from the question:

 Ve = 
8.99 × 109 × 1.60 × 10−19

0.50 × 10−10

 Ve = 28.77 ≈ 29 V

b The electric potential energy is given by:

 EP = 
kQq

r  = qVe

 Substituting the value for Ve from part a:

 EP = 28.77 × (1.6 × 10−19)

 EP = 4.6 × 10−18 J

Electric potential is a scalar quantity. So if we have two charges q1 and 
q2, the electric potential at a point P that is a distance r1 from q1 and a 
distance r2 from q2 is just the sum of the individual electric potentials:

Ve = 
kq1
r1

 + 
kq2
r2

That is, we fi rst fi nd the potential at P from q1 alone, then from q2 alone, and 
then add up the two (Figure 10.13). We fi nd the electric potential for more 
than two charges in the same way – by adding the individual potentials. 

electron

proton

Figure 10.12

P
q1 r1

r2

q2

Figure 10.13 The potential at P is found 
by fi nding the potential there from the fi rst 
charge, then fi nding the potential from the 
second charge, and fi nally adding the two.
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One way of visualising electric potential is shown in Figure 10.14. It 
shows the electric potential from one positive and one negative charge. 
With no charges, the surface would be fl at. The potential is represented by 
the height from the fl at surface. 

Figure 10.14 The electric potential due to two equal and opposite charges. 
The potential is proportional to the height of the surface.

0

a

b

0

Ve 

R

R

r

Ve 

r

0

a

b

0

Ve 

R

R

r

Ve 

r

Figure 10.15 The electric potential is constant inside the sphere and falls off  as 1r  
outside. Shown here are a a positively charged sphere and b a negatively 
charged sphere.

The simple formula for electric potential works for point charges. (By 
point charges we mean that the objects on which the charges qi are placed 
are mathematical points, or close to it.) The formula also works in another 
special case – when the object on which the charge q is placed is a sphere. 
But the result depends on where we measure the potential. 

For a point P outside the sphere and at a distance r from the centre of 
the sphere, the potential at P is indeed:

Ve = 
kQ
r

On the surface of the sphere the potential is:

Ve = 
kQ
R

where R is the radius of the sphere. 
But at any point inside the sphere, the electric potential is constant and 

has the same value as the potential at the surface (Figure 10.15).
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Worked example
10.6 Figure 10.16 shows two unequal positive charges +Q and +q. Which one of the graphs in Figure 10.17 

shows the variation with distance x from the larger charge of the electric potential Ve along the line joining 
the centres of the charges?

The smaller charge will disturb the larger charge’s potential only at distances close to the small charge and so the 
answer has to be B.

Equipotential surfaces 
As we have seen, a spherical uniform mass M is the source of gravitational 
potential that, at a distance r from the centre of the source, is given by:

Vg = −  
GM

r

Similarly, a spherical charge Q is the source of electric potential that, at a 
distance r from the centre of the source, is given by:

Ve = 
kQ
r

In either case, those points that are at the same distance from the source 
(the mass or the charge) have the same potential. Points that are the same 
distance from the source lie on spheres. A two-dimensional representation 
of these spheres of constant potential is given in Figure 10.18. They 
are called equipotential surfaces. For a point mass, they are spherical 
surfaces (shown here as circles on this two-dimensional graph).

An equipotential surface consists of those points that have the 
same potential.

Figure 10.18 Equipotential surfaces due to 
one spherical mass or charge. These surfaces 
are usually drawn so that the diff erence in 
potential between any two adjacent surfaces 
is the same.

+Q +q

distance from larger charge
x

A B C D

0

Ve 

x 0

Ve 

x 0

Ve 

x0

Ve 

x

Figure 10.16 Two unequal positive charges +Q and +q (Q > q).

Figure 10.17 Possible variation of electric potential with distance from the larger charge.
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The connection between potential and fi eld
There is a deep connection between potential and fi eld for both 
gravitation and electricity. To see this connection for gravitation, consider 
two equipotential surfaces a distance ∆r apart. Let ∆Vg be the potential 
diff erence between the two surfaces. The situation is shown in Figure 
10.19. We want to move the point mass m from one equipotential surface 
to the other at a small constant speed.

We know that this requires an amount of work W given by:

W = m∆Vg

But we may also calculate the work from W = force × distance. The 
force on the point mass is the gravitational force F = mg, where g is the 
magnitude of the gravitational fi eld strength at the position of the mass m. 
Assuming that the two surfaces are very close to each other means that g 
will not change very much as we move from one surface to the other, and 
so we may take g to be constant. Then the work done is also given by:

W = mg∆r

Equating the two expressions for work done gives:

g = 
ΔVg

Δr

(Can you now give a better answer to Worked example 10.6?)

A more careful treatment using calculus gives g = −  
dVg

dr , the derivative 
of the potential with respect to distance. Since we are not using calculus 
and we only calculate magnitudes of the fi elds, the minus sign will not be 
of any use to us and we will ignore it. This gives the magnitude of the 
gravitational fi eld as the rate of change with distance of the gravitational 
potential. In the same way, the electric fi eld is the rate of change with 
distance of the electric potential: 

E = 
∆Ve
∆r

(Again, calculus requires E = −  
dVe
dr  )

In a graph showing the variation with distance of the potential, 
the slope (gradient) of the graph is the magnitude of the fi eld 
strength. This applies to both gravitational and electric fi elds.

Are fi elds real?
Are electric (and 

gravitational) fi elds real, or are 
they just convenient devices for 
doing calculations? We have seen 
that an electric dipole creates an 
electric fi eld. Suppose that the 
dipole is created by an electron 
(negative charge) and a positron 
(positive charge). The positron is 
the antiparticle of the electron 
(we will learn more about 
particles in Topic 12).

An electron and a positron can 
undergo pair annihilation, i.e. 
they can move into each other 
and destroy each other (there 
is more about this in Topic 
12). In the process their mass 
is converted into pure energy 
(gamma-ray photons) according 
to e− + e+ → 2γ. What 
happens to the electric fi eld 
after the electron and positron 
have annihilated each other? 
Interestingly, the electric fi eld 
will still exist, and be measurable, 

for a time 
d
c  after annihilation, 

where d is the distance between 
the charges of the dipole and c 
is the speed of light. The fi eld 
exists even though its source has 
disappeared!

∆ r

∆V

m

Figure 10.19 A point mass m is to be moved 
from one equipotential surface to the other. 
This requires work.
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r / × 106 m

V
/ ×

 1
09  J

kg
–1
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Figure 10.20 The slope of the tangent to the graph gives the gravitational fi eld strength.

The graph shown in Figure 10.20 is a copy of the curve in Worked example 
10.4 and shows the tangent drawn at the point with r = 4.0 × 106 m.

The slope of this tangent line is given by:

∆Vg

∆r  = 
26 × 109

8 × 106

∆Vg

∆r  = 3.2 × 103 ≈ 3 × 103 N kg−1

This is the magnitude of the gravitational fi eld strength at a distance of 
4.0 × 106 m from the centre of the planet.

equipotential
field line

Figure 10.21 Equipotential surfaces and 
fi eld lines are at right angles to each other.

The connection between fi eld lines and 
equipotential surfaces
Equipotential surfaces and fi eld lines are normal (perpendicular) to each 
other. We already know this for the case of a single mass or a single charge: 
the fi eld lines are radial lines and the equipotential surfaces are spheres 
centred at the mass or charge. Figure 10.21 shows this for the case of a 
mass. (Can you see why the diagram also applies to a negative charge?) 

The explanation of why the fi eld lines are at right angles to the 
equipotential surfaces is as follows: to move a mass from one point on an 
equipotential surface to another requires zero work because W = mΔV and 
ΔV = 0. If the fi eld lines were not normal to the equipotential surfaces, 
there would be a component of the fi eld along the equipotential and so 
a force on the mass. As the mass moved this force would do work, which 
contradicts our derivation that the work should be zero. 
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Figure 10.22 shows the equipotential surfaces (in black) and fi eld lines 
(in red) for two charges. In Figure 10.22a q2 = q1 (both positive) and in 
Figure 10.22b q2 = −q1.The fi eld is zero halfway between the charges 
along the line joining the charges in Figure 10.22a.

Exam tip
The fi eld inside parallel 
plates is a common theme in 
examinations.

+ + + + + + + +

– – – – – – – –

d

Figure 10.24 The electric fi eld between two 
oppositely charged parallel plates is uniform, 
i.e. it is the same everywhere except near the 
edges of the plates. The potential increases 
uniformly as we move from the negative to 
the positive plate. 

Figure 10.23 shows the equipotential surfaces (in black) and fi eld lines 
(in red) for two charges. The fi eld is zero closer to the smaller charge 
along the line joining the charges in Figure 10.23a. In Figure 10.23a 
q2 = 4q1 and in Figure 10.23b q2 = −4q1.

a b

q1 q2 q1 q2

Figure 10.22 Field lines and equipotential surfaces for a two equal charges of the same 
sign and b two equal and opposite charges.

a b

q1 q2 q1 q2

Figure 10.23 Field lines and equipotential surfaces for a two unequal charges of the same 
sign and b two unequal and opposite charges.

Parallel plates
There is one more case where we can fi nd a simple expression for the 
electric fi eld. This the case of two long parallel plates separated by a 
distance d (Figure 10.24). The plates are oppositely charged. Red lines are 
fi eld lines and black lines are equipotential surfaces.

Using E = 
∆Ve
∆r  we fi nd that the electric fi eld for parallel plates is given 

by:

E = 
V
d

where the potential diff erence between two parallel plates is V and the 
separation between the plates is d.

When the electric fi eld between a charged cloud and the Earth exceeds 
3 × 106 V m–1, a discharge known as lightning occurs, Figure 10.25.



10  FIELDS HL 411

Figure 10.25 A spectacular lightning displa y over a city. 

Worked examples
10.7 A wire of length L has a potential diff erence V across its ends. 

a Find the electric fi eld inside the wire. 
b Hence fi nd the work done when a charge q is moved from one end of the wire to the other.

a From E = 
∆V
∆r  it follows that E = 

V
L

b The work done can be found in two ways. 
 1 Use W = q∆V = qV
 2 Use W = Fd = qEL = q 

V
L L = qV

The answer is W = qV in both cases.

10.8 The electric potential a distance r from a charge Q is Ve = 
kQ
r  

. Use this expression to fi nd the electric fi eld at 
the same point.

Here we must use the calculus expression (and so include the minus sign!):

E = −  
dVe
dr

E = −  
d
dr  

kQ
r

E = −  
kQ
r2

This gives the result we expect.
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Similarities between electricity and gravitation
As is clear from a comparison between Newton’s law of gravitation 
and Coulomb’s law, there are many similarities between electricity and 
gravitation (both force laws are inverse square laws). The biggest diff erence 
is, of course, the existence of positive as well as negative electric charge, 
which implies that the electric force can be attractive or repulsive. The 
one sign of the mass leads to attractive forces only. The constant G is very 
small compared to k. This implies that the force of gravitation is signifi cant 
only when one or both of the bodies have enormous mass.

Nature of science
The Sun infl uences the motion of the Earth a distance of 1.5 × 1011 m 
away. How is the ‘infl uence’ of the Sun ‘transmitted’ to the position of 
the Earth? If the Sun were to suddenly disappear, how long would it 
take the Earth to leave its orbit and plunge into darkness? To answer 
such questions required a huge shift in scientifi c thinking, known as a 
paradigm shift. Fields were introduced, which replaced the idea of direct, 
observable action with a mechanism for ‘action at a distance’. Fields were 
further refi ned with the concept of waves. If a charge were to suddenly 
appear, an electric fi eld would be established in space at the speed of 
light. The ‘information’ about the existence of the charge is carried by 
electromagnetic waves travelling through vacuum at the speed of light. It 
is similarly believed that gravitational waves carry the ‘information’ about 
the existence of mass. But unlike electromagnetic waves, gravity waves 
have not yet been observed, even though no one doubts their existence. 

1 Consider two particles of mass m and 16m 
separated by a distance d.

 a  Deduce that at point P, a distance 
d
5 from the 

particle with mass m, the gravitational fi eld 
strength is zero.

 b  Determine the value of the gravitational 
potential at P.

2 a  What is the gravitational potential at a distance 
from the Earth’s centre equal to 5 Earth radii?

 b  What is the gravitational potential energy of 
a 500 kg satellite placed at a distance from the 
Earth’s centre equal to 5 Earth radii?

3 a  What is the gravitational potential energy stored 
in the gravitational fi eld between the Earth and 
the Moon?

 b  What is the Earth’s gravitational potential at the 
position of the Moon?

 c  Find the speed with which the Moon orbits the 
Earth. (The Earth–Moon distance is 3.8 × 108 m. 
Take the mass of the Earth to be 5.97 × 1024 kg.)

4 A spacecraft of mass 30 000 kg leaves the Earth on 
its way to the Moon and lands on the Moon. Plot 
the spacecraft’s potential energy as a function of 
its distance from the Earth’s centre. (The Earth–
Moon distance is 3.8 × 108 m. Take the mass of 
the Earth to be 5.97 × 1024 kg and the mass of the 
Moon to be 7.35 × 1022 kg.)

? Test yourself
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5 The diagram shows the variation with distance 
from the centre of the planet of the gravitational 
potential due to the planet and its moon. The 
planet’s centre is at r = 0 and the centre of 
the moon is at r = 1. The units of separation 
are arbitrary. At the point where r = 0.75 the 
gravitational fi eld is zero.

 a  Determine the ratio of the mass of the planet to 
that of the moon.

 b  With what speed must a probe be launched 
from the surface of the planet in order to arrive 
on the surface of the moon?

6 The diagram shows a planet orbiting the Sun 
counter-clockwise, at two positions – A and B. 
Also shown is the gravitational force acting on 
the planet at each position. By decomposing the 
force into components normal and tangential to 
the path (dotted lines), explain why it is only the 
tangential component that does work. Hence 
explain why the planet will accelerate from A to P 
but will slow down from P to B.

 7 The diagram shows the variation of the 
gravitational force with distance between two 
masses. What does the shaded area represent?

 8 The diagram shows equipotential surfaces due to 
two spherical masses.

a  Using the diagram, explain how it can be 
deduced that the masses are unequal.

b  Copy the diagram and draw in the 
gravitational fi eld lines due to the two masses.

c  Explain why the equipotential surfaces are 
spherical very far from the two masses.

 9 a  Determine the electric potential at the mid-
point of the line joining two equal positive 
charges q in terms of q, the Coulomb constant 
and the charge separation d.

  b Repeat a for two equal but opposite charges.
 10 Two charges, q1 = 2.0 µC and q2 = −4.0 µC, are 

0.30 m apart. Find the electric potential at a point 
P, which is 0.40 m from q1 and 0.60 m from q2.

V e
/T

J k
g–1

r

–1

0

–2

–3

–4

–5

–6

–7
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 11 Four equal charges of 5.0 µC are placed at the 
vertices of a square of side 10 cm.

 a Calculate the value of the electric potential at 
the centre of the square.

 b Determine the electric fi eld at the centre of 
the square.

 c How do you reconcile your answers to a and 
b with the fact that the electric fi eld is the 
derivative of the potential?

 12 A charge q of 10.0 C is placed somewhere in 
space. What is the work required to bring a 
charge of 1.0 mC from a point X, 10.0 m from 
q, to a point Y, 2.0 m from q? Does the answer 
depend on which path the charge follows?

 13 An electron is brought from infi nity to a distance 
of 10.0 cm from a charge of −10.0 C. How much 
work was done on the electron?

 14 An electron moves from point A where the 
potential is 100.0 V to point B where the 
potential is 200.0 V. The electron started from 
rest. Calculate the speed of the electron as it 
passes the point B.

 15 Four charges are placed at the vertices of a square 
of side 5.00 cm, as shown in the diagram.

 a On a copy of the diagram, show the forces 
acting on the 2.0 µC charge. Find the 
magnitude and direction of the net force on 
the 2.0 µC charge.

 b Calculate the value of the electric potential at 
the centre of the square.

 c Determine the work that must be done in 
order to move a charge of 1 nC initially at 
infi nity to the centre of the square.

 16 Two conducting spheres are separated by a distance 
that is large compared with their radii. The fi rst 
sphere has a radius of 10.0 cm and has a charge 
of 2.00 µC on its surface. The second sphere has 
a radius of 15.0 cm and is neutral. The spheres are 
then connected by a long conducting wire.

 a Find the charge on each sphere.
 b Calculate the charge density on each sphere 

(charge density is the total charge on the sphere 
divided by the surface area of the sphere).

 c Calculate the electric fi eld on the surface of 
each sphere.

 d Comment on your result in the light of your 
answer to part b. Why is it stated that the wire 
is long?

 17 The diagram shows the equipotential lines 
for two equal and opposite charges. Draw the 
electric fi eld lines for these two charges.

 18 Two long parallel plates are separated by a 
distance of 15.0 cm. The bottom plate is kept at 
a potential of −250 V and the top at +250 V. A 
charge of −2.00 µC is placed at a point 3.00 cm 
from the bottom plate.

 a Find the electric potential energy of the 
charge.

  The charge is then moved vertically up to a 
point 3.00 cm from the top plate.

 b What is the electrical potential energy of the 
charge now?

 c How much work was done on the charge?

–1 μC 2 μC

–3 μC4 μC
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10.2 Fields at work
This section deals with the application of Newton’s law of gravitation to 
the motion of the planets around the Sun and satellites around the Earth. 

Orbital motion
A satellite of mass m orbits a planet of mass M with speed v. The radius of 
the orbit is r (Figure 10.26). The total energy ET of this system is the sum 
of the kinetic energy EK and the gravitational potential energy EP. 

EK = 12mv2  and  EP = − 
GMm

r

So:

ET = 12mv2 − 
GMm

r

Note that we do not include any kinetic energy for the planet, as we 
assume it does not move.

Since the satellite is orbiting in a circle, it must have an acceleration 

towards the centre of the circle of magnitude 
v 2

r . From Newton’s second 

law of motion, to provide this acceleration there must be a force F on the 
satellite directed towards the centre of the circle:

F = 
mv2

r

Learning objectives

• Derive an expression for the 
orbital speed.

• Solve problems on orbital 
motion, including total energy.

• Use the concept of escape speed.
• Explain weightlessness.
• Understand the inverse square 

law behaviour of the electric 
and gravitational force.

m

rF

v

M

Figure 10.26 A system of a satellite orbiting 
a planet.

 19 An electron is shot with a speed equal to 
1.59 × 106 m s−1 from a point where the electric 
potential is zero toward an immovable negative 
charge q (see the diagram).

 a Determine the potential at P be so that the 
electron stops momentarily at P and then 
turns back.

 b Calculate the magnitude of q.
 20 Two equal and opposite charges are placed at 

points with coordinates x = 0, y = a and x = 0, 
y = −a, as shown in the diagram.

 a Find the electric fi eld at the point with 
coordinates x = d, y = 0.

 b Repeat for two equal negative charges −q on 
the y-axis.

 c Sketch graphs to show the variation of these 
fi elds with the distance d.

 21 Three protons are initially very far apart. 
Calculate the work that must be done in order 
to bring these protons to the vertices of an 
equilateral triangle of side 5.0 × 10−16 m.

2.0 × 10–10 m

electron P q

y

x

+q

–q
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This force is the gravitational attraction between the planet and the 
satellite. From Newton’s law of gravitation, this force is:

F = 
GMm

r2

Equating the expressions for the force:

GMm
r2  = 

mv2

r

Rearranging and simplifying, we obtain:

v2 = 
GM

r

Multiplying by 
m
2 , the kinetic energy EK is:

EK = 
GMm

2r
The total energy of the system becomes:

ET = 
GMm

2r  − 
GMm

r

ET = − 
GMm

2r
From above, EK = 12mv2 = 

GMm
r2  so the equation for ET can also be 

expressed as:

ET = − 12mv2

Figure 10.27 shows the kinetic energy EK, potential energy EP and total 
energy ET of a mass of 1 kg in orbit around the Earth, as a function of 
distance from the Earth’s centre. This distance is measured in terms of the 
Earth’s radius R.

The law of gravitation combined with Newton’s second law of motion 
allows an understanding of the motion of planets around the Sun, as well 
as the motion of satellites around the Earth. Suppose you launched an 

0

20

–20

–40

–60

En
er

gy
/M

J 2 4 6 8

EK

ET

EP

r / R

Figure 10.27 Graphs of the kinetic, potential and total energy of a mass of 1 kg in 
circular orbit around the Earth.

Exam tip
It is very important that you 
know how to derive the 
formula for orbital speed.

Finding the square root gives us a 
formula for the orbital speed, vorbit:

vorbit =    
GM

r
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straight line

hyperbola
EK + EP > 0

parabola
EK + EP = 0

circle or ellipse
EK + EP < 0

Figure 10.28 Launching a body from the surface of a planet results in various orbits, 
depending on the total energy ET of the body.

object from the surface of a planet with some speed. What would be the 
path followed by this object? Newton’s laws give several possibilities. 
• If the total energy is positive, the object will follow a hyperbolic path 

and never return.
• If the total energy is zero, the object will follow parabolic path to 

infi nity, where it will just about stop. It will never return.
• If the total energy is negative, the object will go into a circular or 

elliptical orbit (or crash into the planet if the launching speed is 
too low).

Figure 10.28 illustrates these possible paths.

Worked examples
10.9 Evaluate the speed of a satellite in orbit at a height of 500 km above the Earth’s surface and a satellite that just 

grazes the surface of the Earth. (Take the radius of the Earth to be 6.38 × 106 m.)

The speed is given by:

v 2 = 
GM

r

The radius of orbit r of the satellite at a height of 500 km above the Earth’s surface is:

r = (6.38 × 106) + (0.5 × 106) = 6.88 × 106 m

Substituting for r and using the values from the question:

v =   
6.67 × 10–11 × 5.97 × 1024

6.88 × 106  

⇒ v = 7.6 × 103 m s−1

For a grazing orbit, r = 6.38 × 106 m.

Using this value and following the same method, v = 7.9 × 103 m s−1.
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10.10 A satellite in a low orbit will experience a small frictional force (due to the atmosphere) in a direction 
opposite to the satellite’s velocity.
a Explain why the satellite will move into an orbit closer to the Earth’s surface.
b Deduce that the speed of the satellite will increase.

a Since there is a frictional force acting, the satellite’s total energy will be reduced.

 The total energy of a satellite of mass m in a circular orbit of radius r around the Earth of mass M is:

  ET = − 
GMm

2r

 The masses do not change and G is a constant. The energy ET is negative, so reducing the energy means it 
becomes more negative. This means there must be a smaller radius, i.e. the satellite comes closer to the Earth by 
spiralling inwards.

b The speed of the satellite in a circular orbit is given by:

v =    
GM

r

 So we see that, as the satellite comes closer to Earth, its speed increases.

10.11 A probe of mass m is launched from the surface of a planet of mass M and radius R with kinetic energy 

 EK = 
4GM
5R .

a Explain why this probe will not escape the gravitational fi eld of the planet.
b The probe eventually settles into a circular orbit around the planet. Calculate the radius of its orbit in 

terms of R.

a The total energy at launch is the sum of the kinetic and potential energies:

  ET = 
4GMm

5R  − 
GMm

R

  ET = − 
GMm

5R

This is negative and so the probe cannot escape. 

b The total energy in orbit is:

  ET = −  
GMm

2r

By energy conservation, the total energy once the probe is in orbit must equal the total energy at launch. So:

  −  
GMm

2r  = −  
GMm

5R

  
1
2r = 

1
5R

  2r  = 5R

So  r  = 
5R
2
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10.12 Figure 10.29 shows the variation of the gravitational potential due to a planet and its moon with distance 
r from the centre of the planet. The centre-to-centre distance between the planet and the moon is d. The 
planet’s centre is at r = 0 and the centre of the moon is at r = d.

Figure 10.29 

 State and explain the minimum energy required so that a 850 kg probe at rest on the planet’s surface will 
arrive on the moon.

The probe will arrive at the moon provided it has enough energy to get to the peak of the curve. Once there, the 
moon will pull it in.

On the surface of the planet Vg = −3.9 × 108 J kg−1. At the peak the potential is Vg = −0.4 × 108 J kg−1. 
The minimum energy required is equal to the work done to move through this potential diff erence. 

W = mΔVg

W = 850 × (−0.4 × 108 + 3.9 × 108)

W = 3.0 × 1011 J

So the minimum energy required is 3.0 × 1011 J.

Escape velocity
Suppose that a body of mass m is launched from the surface of a planet of 
mass M and radius R with speed v (Figure 10.30). The total energy of the 
system is the sum of the kinetic and gravitational potential energies:

ET = 12mv2 − 
GMm

R

The factor R is used in the expression for the gravitational potential 
energy because the centre-to-centre distance of M and m is R.

We would like to give to the mass m suffi  cient energy at launch so that 
it moves very far away from M (essentially to infi nity). What should the 
launch speed be? 

projectile

vesc

Figure 10.30 The escape speed will take the 
projectile from the surface of the planet to 
infi nity, where it will come to rest.
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If m gets very far away, then the potential energy will be zero. If we give 
the minimum energy at launch, then when the mass m reaches infi nity, it 
will just about stop there and so will have negligible kinetic energy. The 
total energy will then be zero. By energy conservation, this means that 
the total energy at launch is also zero. Using vesc as the minimum velocity 
needed to escape from the planet, this means:

1
2mvesc

2 − 
GMm

R  = 0

This implies that:

vesc =    
2GM

R

This minimum velocity vesc that a mass must have in order to reach 
infi nity and stop there is called the escape velocity. Note that the escape 
velocity is independent of the mass of the body escaping.

For the Earth, the escape velocity is therefore:

vesc =    
2GMEarth

REarth

Using the fact that on Earth the gravitational fi eld strength g is given by:

g = 
GMEarth

REarth
2

we see that the escape velocity for the Earth can also be rewritten as:

vesc =   2gREarth

The numerical value of this escape velocity is about 11.2 km s−1.

We met the expression for 
gravitational fi eld strength g in 
Subtopic 6.2.

Changing ideas
The motion of the planets is the perfect application of 

the theory of gravitation. The understanding of the motion of the 
planets has undergone very many ‘paradigm shifts’ since ancient times. 
Newton was motivated by the ‘laws’ discovered by Kepler. Kepler’s 
laws were published in 1619 in a book called the Harmony of the 
World, nearly 70 years before Newton published his work. In ancient 
times, Ptolemy constructed an involved system in which the Sun and 
the planets orbited the Earth. The Ptolemaic world view prevailed for 
centuries until Copernicus, early in the 16th century, asserted that the 
Sun was at the centre of the motion of the planets in the solar system. 
Newton’s law of gravitation has had great success in dealing with 
planetary motion but cannot account for some small irregularities, 
such as the precession of the orbit of Mercury and the bending of 
light near very massive bodies. In 1915, Einstein introduced the 
general theory of relativity, which replaced Newton’s theory of gravity 
and resolved the diffi  culties of the Newtonian theory.
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In practice, in order to escape from Earth, a body must overcome not 
only the pull of the Earth and the friction with the atmosphere, but also 
the pull of the Sun and the other planets. This means that the escape 
velocity from the Earth is larger than 11.2 km s−1. This discussion does 
not apply to powered objects such as rockets; it applies only to objects 
launched from the Earth such as cannon balls. In other words, it applies to 
ballistic motion only.

Worked examples
10.13 The escape velocity vesc from the surface of a planet of mass M and radius R is given by:

vesc =    
2GM

R

 A probe is launched from the surface of a planet with a speed that is half the escape speed. 

 Calculate, in terms of R, the largest distance from the surface of the planet the probe will get to before 
falling back down to the surface.

Let r be the largest distance from the centre of the planet reached by the probe.

The total energy of the probe at that distance is ET = − 
GMm

r , since the kinetic energy is zero. 

At launch the total energy is ET = 
1
2 

mv2 −  
GMm

R . 

Now use the fact that v = 
vesc
2  to fi nd the total energy at launch:

ET = 
1
2 

m  
v2

esc
4  − 

GMm
R

ET = 
1
2 

m   

2GM
R
4  −  

GMm
R

ET = 
GMm

4R  − 
GMm

R

ET = − 
3
4 

GMm
R

By energy conservation, the total energy at launch is equal to the total energy at the farthest distance, so:

−  
3
4 

GMm
R  = −  

GMm
r

3
4R  = 

1
r

⇒ r = 
4R
3

The height from the surface is therefore h = r − R = 
R
3 , a perhaps surprising result.
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10.14 The inevitable example! What must the radius of a star of mass M be such that the escape velocity from the 
star is equal to the speed of light, c?

Using vesc =    
2GM

R  with vesc = c, we fi nd:

R = 
2GM

c2

Since nothing can exceed the speed of light, the result from Worked 
example 10.14 implies that if the radius of the star is equal to or less than 
2GM

c2 , nothing can escape from the star. It is a black hole. The interesting 

thing about this formula is that it correctly gives the radius of the black 
hole even though Newton’s law of gravitation, which we used, does not 
apply! When dealing with very massive objects, Newton’s law has to be 
replaced by Einstein’s law of gravitation. Surprisingly, though, the answer 
is the same. This radius is called the Schwarzschild radius of the star 
(there is more about this in Option A Relativity).

Worked example
10.15 Compute the Schwarzschild radius of the Earth and of the Sun. (Use a mass of 2 × 1030 kg for the Sun and 

6 × 1024 kg for the Earth.)

For the Sun:

R = 
2GM

c2

R = 
2 × 6.67 × 10−11 × 2 × 1030

(3 × 108)2

R ≈ 3 × 103 m

A similar calculation for the Earth gives R = 9 mm. This shows that both the Earth and the Sun are far from being 
black holes!
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Figure 10.31 An astronaut inside a 
spacecraft or out in a spacewalk accelerates 
towards the Earth with the same acceleration 
as the spacecraft. So whether inside or 
outside, there is no force of reaction on the 
astronaut. He or she feels ‘weightless’.

Weightlessness
Consider an astronaut of mass m in a spacecraft in orbit around the Earth 
a distance r from the Earth’s centre (Figure 10.31). Why does the astronaut 
‘feel weightless’? At a distance of 300 km from the Earth’s surface, gravity 
is by no means negligible. A simple answer is that the astronaut as well as 
the spacecraft are both falling freely, i.e. they have the same acceleration. 
Hence there are no reaction forces from the fl oor. 

Quantitatively, the forces on the astronaut are the reaction force N from 
the fl oor of the spacecraft and his or her weight W (i.e. the gravitational 
force from the Earth):

F = W − N

The astronaut’s weight is given by:

W = 
GMm

r2

So the net force F on the astronaut is:

F = 
GMm

r2  − N

This is the force that provides the acceleration keeping the astronaut in 
orbit at radius r, so:

 
GMm

r2  − N = 
mv2

r

⇒ N = 
GMm

r2  − 
mv2

r

 N = 
m
r  

GM
r  − v2

But the orbital speed of the astronaut is given by:

vorbit
2 = 

GM
r

Substituting this into the equation for N gives N = 0. Thus, the astronaut 
experiences no reaction forces from the fl oor and so ‘feels’ weightless.

Inverse square law behaviour
The force of gravitation between two point masses is:

Fg = G 
m1m2

r2

And the force between two electric charges is:

Fe = k q1q2

r2

Both forces are inverse square laws, F ∝ r−2. 
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 24 A satellite that always looks down at the 
same spot on the Earth’s surface is called a 
geosynchronous satellite. 
a Find the distance of this satellite from the 

surface of the Earth.
b Could the satellite be looking down at any 

point on the surface of the Earth?

? Test yourself

d

2d

source

3d

Figure 10.32 As the distance from the 
source doubles the area presented to the 
source quadruples. The eff ect of the source 
per unit area decreases by a factor of 4.

Why is this so? A purely geometric explanation is that if we have a 
mass or charge, then its ‘infl uence’ a distance d away may be thought to be 
spread uniformly on the surface of a sphere of radius d, as shown in Figure 
10.32. Then the ‘infl uence’ per unit area is:

for a mass, m: 
m

4πd 2

for a charge, q: 
q

4πd 2

So it looks as if the inverse square law is a consequence of just geometry. 
But there is something much deeper. The precise inverse square law for 
electricity and gravitation is related to the fact that the photon and the 
graviton are particles with strictly zero mass – see Topic 7.

Nature of science
The Newtonian theory of gravity and mechanics applied to the motion 
of planets gives spectacular agreement with the observed motion of 
the planets. However, during the 19th century very small discrepancies 
between theory and observations began to arise. One of them had to do 
with the motion of the planet Uranus. What could be the cause of these 
discrepancies? One possibility was that Newtonian gravity was not correct 
– an unlikely possibility, given the previous successes of the theory. The 
French astronomer Urbain Le Verrier (1811–1877) argued that a new, 
unknown planet was aff ecting the orbit of Uranus and was responsible for 
the erratic behaviour of its orbit. Working backwards, Le Verrier calculated 
the possible orbit of the unknown planet that would give rise to the 
observed eff ects on Uranus. He communicated his results to the Berlin 
observatory. His letter arrived at the observatory on 23 September 1846, 
and on that same evening the planet Neptune was discovered!

 22 a  Calculate the speed of a satellite that orbits the 
Earth at a height of 500 km. 

 b Determine the period of revolution of this 
satellite. 

 23 Show by applying Newton’s law of gravitation 
and the second law of motion that a satellite (or 
planet) in a circular orbit of radius R around 
the Earth (or the Sun) has a period (i.e. time to 
complete one revolution) given by:

   T  2 = 
4π2R3

GM

  where M is the mass of the attracting body 
(Earth or Sun). This is Kepler’s third law.
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 25 The diagram shows cross-sections of two satellite 
orbits around the Earth. (To be in orbit means 
that only gravity is acting on the satellite.) 
Discuss whether either of these orbits is possible.

 26 In the text it was calculated that the acceleration 
due to gravity at a height of 300 km above 
the Earth’s surface is far from negligible, yet 
astronauts orbiting in a space shuttle at such a 
height feel weightless. Explain why.

 27 A rocket is launched from the surface of a planet. 
At the position shown in the diagram, the rocket 
is a distance of 2R from the planet (where R is 
the radius of the planet) and its speed is 

  v =    
GM
2R  . At that point the fuel runs out. 

a Explain why the probe will eventually crash 
onto the surface of the planet.

b Calculate, in terms of R, the maximum 
distance from the centre of the planet the 
rocket travels to.

c Determine the speed with which the rocket 
crashes onto the planet surface.

d Draw a graph to show how the speed of the 
rocket varies with distance r from the centre 
of the planet as the rocket begins to fall back 
towards the planet.

 28 Prove that the total energy of the Earth (mass m) 
as it orbits the Sun (mass M) can be expressed 

  as either E = − 12mv2 or E = − 
GMm

2r  

  where r is the radius of the Earth’s circular orbit. 
Calculate this energy numerically.

 29 The diagram shows two identical satellites in 
circular orbits. Which satellite has the larger:
a kinetic energy
b potential energy
c total energy?

 30 The total energy of a satellite during launch 

  from the Earth’s surface is E = − 
GMm

5r , where R 
is the radius of the Earth. 
a Explain why this satellite will not escape the 

Earth.
b The satellite eventually settles into a circular 

orbit. Calculate the radius of the orbit in 
terms of R.

 31 A satellite is in a circular orbit around the Earth. 
The satellite turns on its engines and the satellite 
now fi nds itself in a new circular orbit of larger 
radius. State and explain whether the work done 
by the engines is positive, zero or negative.

equator 

satellite 1

satellite 2

v

A

B
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 32 The diagram shows a planet orbiting the Sun. 
Explain why at points A and P of the orbit 
the potential energy of the planet assumes its 
minimum and maximum values, and determine 
which is which. Hence determine at what point 
in the orbit the planet has the greatest speed.

 33 Show that the escape speed from the surface of a 
planet of radius R can be written as vesc =   2gR 
where g is the gravitational fi eld strength on the 
planet’s surface.

 34 a  Deduce that a satellite orbiting a planet of 
mass M in a circular orbit of radius r has a 

   period of revolution given by T  =    
4π2r3

GM
b A grazing orbit is one in which the orbit 

radius is approximately equal to the radius 
R of the planet. Deduce that the period of 
revolution in a grazing orbit is given by 

  T  =    
3π
Gρ where ρ is the density of the planet.

c The period of a grazing orbit around the 
Earth is 85 minutes and around the planet 
Jupiter it is 169 minutes. Deduce the ratio

  
ρEarth
ρJupiter

.

 35 a  The acceleration of free fall at the surface of 
a planet is g and the radius of the planet is R. 
Deduce that the period of a satellite in a very 

   low orbit is given by T = 2π  =    
R
g

b Given that g = 4.5 m s–2 and R = 3.4 × 106 m, 
deduce that the orbital period of the low orbit 
is about 91 minutes.

c A spacecraft in orbit around this planet has a 
period of 140 minutes. Deduce the height of 
the spacecraft from the surface of the planet.

 36 Two stars of equal mass M orbit a common 
centre as shown in the diagram. The radius of 
the orbit of each star is R. Assume that each of 
the stars has a mass equal to 1.5 solar masses 
(solar mass = 2.0 × 1030 kg) and that the initial 
separation of the stars is 2.0 × 109 m.

a State the magnitude of the force on each star 
in terms of M, R and G.

b Deduce that the period of revolution of each 
star is given by the expression:

   T 2 = 
16π2r 3

GM
c Evaluate the period numerically.
d Show that the total energy of the two stars is 

given by:

   E = − 
GM2

4R
e The two-star system loses energy as a result of 

emitting gravitational radiation. Deduce that 
the stars will move closer to each other.

f  i  Explain why the fractional loss of energy 
per unit time may be calculated from the 
expression:

   
ΔE/E

Δt  = 
3
2 

ΔT/T
Δt

    where 
ΔT/T

Δt  is the fractional decrease in 
period per unit time. (Hint: Use ideas of 
error propagation.)

  ii  The orbital period decreases at a rate of 

   
ΔT/T

Δt  = 72 µs yr–1. Estimate the 

   fractional energy loss per year.
g The two stars will collapse into each other 

when ∆E ≈ E. Estimate the lifetime, in years, of 
this binary star system.

AP
Sun 2r
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 37 A charge −q whose mass is m moves in a circle of 
radius r around another positive stationary charge 
q located at the centre of the circle, as shown in 
the diagram.

a Draw the force on the moving charge.
b Show that the velocity of the charge is given by:

   v2 = 
1

4πε0 
q2

mr
c Show that the total energy of the charge is 

given by:

   E = − 
1

8πε0
 
q2

r
d Hence determine how much energy must be 

supplied to the charge if it is to orbit around 
the stationary charge at a radius equal to 2r.

 38 An electron of charge −e and mass m orbits the 
proton in a hydrogen atom as in the previous 
problem. 
a Show that the period of revolution of the 

  electron is given by T2 = 
4π2m
ke2 r3 where k is 

  the Coulomb constant and r the radius of the 
orbit.

b Calculate this period for an orbit radius of 
0.5 × 10−10 m.

c Using the results of the previous problem 
calculate the energy that must be supplied to 
the electron so it orbits the proton in an orbit 
of radius 2.0 × 10−10 m.

–q

+qr
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Exam-style questions

1 Two identical solid steel spheres touch. The gravitational force between them is F. The spheres are now replaced by 
two touching solid steel spheres of double the radius. What is the force between the spheres now?

A 
F
4 B 

F
16 C 4F D 16F

2 A planet has double the mass of the Earth and double the radius. The gravitational potential at the surface of the 
Earth is V and the magnitude of the gravitational fi eld strength is g. The gravitational potential and gravitational 
fi eld strength on the surface of the planet are:

Potential Field

A V g
4

B 2V g
2

C V g
2

D 2V g
4

3 Four charges that are equal in magnitude are put at the vertices of a square, as shown in the diagram. 

 Where is the electric potential zero? 

A At the origin only.
B Along the x-axis.
C Along the y-axis.
D Along both axes.

+q –q

x

y

+q –q
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4 Consider two spherical masses, each of mass M, whose centres are a distance d apart. Which of the following is true 
at the point midway on the line joining the two centres?

Potential Gravitational fi eld strength

A zero zero
B zero non-zero
C non-zero zero
D non-zero non-zero

5 A probe of mass m is in a circular orbit of radius r around a planet of mass M. The probe is moved to a higher 
circular orbit of orbit radius 2r. What is the work done on the probe?

A − 
GMm

2r  B 
GMm

2r  C 
GMm

4r  D − 
GMm

4r

6 A positive charge q is placed half way between two long parallel plates that are separated by a distance 2d. The 
charge on one of the plates is Q and the charge on the other plate is –Q. The potential diff erence between the 
plates is V. What is the magnitude of the force on the charge q?

A k  
Qq
d2  B k  

2Qq
d2  C 

qV
2d

 D 
qV
d

7 Shown are four arrangements of two unequal positive point charges separated by various distances. Which two 
arrangements result in the same electric potential energy?

q
I

q
d

q
II

2q
d

2q
III

q
2d

2q
IV

4q
2d

A I and II B II and IV C III and IV D I and III
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 8 The fi gure shows two oppositely charged parallel plates a distance d apart. 
+

+

+

+

+

+

+

–

–

–

–

–

–

–

 A proton is launched from the negative plate with initial speed u. The proton just reaches the positive plate. 
Which graph represents the variation of the speed v of the proton with distance x from the negative plate?

xd d d d

v

x

v

x

v

x

v

A B C D

q

r

+ + + +

+

+ + + + +
+ + + + + + + + +

+ + + + + + + + +
+ + + + + + + + +

+ + + + + + + + +
Q

M

distance from  charge M
x

N

x

Ve

0 x

Ve

0

x

Ve

0

I II III

 9 An amount of positive charge Q is placed uniformly on a large plane surface. A small positive point charge q 
placed a perpendicular distance r from the surface experiences a force F. 

 What is the magnitude of the electric fi eld at the position of the small charge q?

A 
kQ
r2  B  

F
Q

 C 
F
q  D 

kQ
r

10 Two charges M and N are separated by a certain distance, as shown in the diagram. 

 Graphs I, II and III show the variation of electric potential Ve with distance x from the centre of charge M. 

 Which of the possibilities below applies to the case of two equal and opposite charges? 

A I only B II only C III only D I, II or III
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11 The graph shows the variation with distance r of the gravitational potential Vg (in terajoules per kilogram) due to 
a planet of radius 2.0 × 105 m.

V g
/T

J 
kg

–1

r / 106  m

0

–1

–2

–3

–4

–5

0 1 2 3 4 5

a Calculate the mass of the planet. [2]
b Show that the escape speed from the surface of the planet may be written as vesc =   −2V, where V is the 

gravitational potential on the planet’s surface. [3]
c Use the graph to determine the escape speed from this planet. [2]
d Calculate how much energy is required to move a rocket of mass 1500 kg from the surface of the planet 

to a distance of 1.0 × 106 m from the centre. [2]
e Determine the additional energy required to put the rocket in orbit at the distance in part d. [2]
f A probe is released from rest at a distance from the planet’s centre of 0.50 × 106 m and allowed to crash 

onto the planet’s surface. Determine the speed with which the probe hits the surface. [2]

12 The graph shows the variation with distance r from the centre of a planet of the combined gravitational potential 
Vg due to the planet (of mass M) and its moon (of mass m) along the line joining the planet and the moon. The 

 horizontal axis is labelled 
r
d, where d is the centre-to-centre separation of the planet and the moon.

r /d
0 0.2 0.4 0.6 0.8 1.00.30.1 0.5 0.7 0.9

V g
/1

08  J
 k

g–1

0

–2

–4

–6

–8

–10

–12
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b Calculate the time the electron spends within the plates. [2]
c Determine the magnitude of the electric fi eld within the plates. [2]
d Calculate the angle that the velocity of the electron makes with the horizontal at point B. [2]
e Calculate the work done on the electron from A to B. [2]
f Using your answer to e, state the potential diff erence between points A and B. [1]

15 The diagram shows electric fi eld lines for two point charges X and Y.

a The distance d is equal to 4.8 × 108 m. Use the graph to calculate the magnitude of the gravitational fi eld 

 strength at the point where 
r
d = 0.20. [3]

b Explain the physical signifi cance of the point where 
r
d = 0.75. [2]

c Using the graph, calculate the ratio M/m. [3]

13 A sphere of radius 0.25 m has positive charge + 8.8 μC uniformly distributed on its surface. A small pellet 
of mass 0.075 kg and charge + 2.4 μC is directed radially at the sphere. When the pellet is at a distance of 
0.75 m from the centre of the sphere its speed is 3.2 m s−1. 

a Determine the distance from the centre of the sphere at which the pellet will stop. [3]
b Describe qualitatively the subsequent motion of the pellet. [2]
c Determine the speed of the pellet after it moves very far from the sphere. [2]

14 An electron is accelerated from rest by a potential diff erence of 29.1 V. 

a Show that the electron acquires a speed of 3.2 × 106 m s−1. [2]
 The accelerated electron enters the region between two parallel oppositely charged plates at point A. 

The electron exits the plates at point B after having moved a vertical distance of 0.25 cm. The length of 
the plates is 2.0 cm. 

+ + + + + + + + +

2.0 cm

A

B

0.25 cm

+ + + + + + +

– – – – – – – – – – – – – – – –

X
Y
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a State what is meant by fi eld lines. [2]
b State three properties of electric fi eld lines. [3]
c Determine the signs of X and Y. [1]
d  i Copy the diagram. On your copy, indicate where the electric fi eld is zero. [1]
  ii By making appropriate measurements on the diagram estimate the ratio charge X :  charge Y. [2]

16 a State what is meant by an equipotential surface.  [1]

b The diagram shows fi ve equipotential lines around two spherical masses.

ACB

  i  On a copy of the diagram, draw lines to represent fi eld lines for this arrangement of masses. You must 
draw six fi eld lines. [2]

  ii  Two consecutive lines are separated by a potential diff erence of 106 J kg–1 and the innermost line has 
potential −15.0 × 106 J kg–1. Calculate the work done to move a mass of 1500 kg from point A to 
point B. [2]

  iii  The distance between points B and C is 4.0 × 106 m. Estimate the average gravitational fi eld strength 
between B and C. [2]

  iv  The equipotential lines tend to become circular as the distance from the sources increases. 
Explain this observation. [2]

c State and explain whether the pattern for equipotential lines shown above could also apply to 
electric charges. [3]
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11.1 Electromagnetic induction
This section deals with Faraday’s law, which dictates how a changing 
magnetic fl ux through a loop induces an emf in the loop. A related 
law, Lenz’s law, determines the direction of this emf. The principles of 
electromagnetic induction are the result of ingenious experimenting by 
the English physicist Michael Faraday (1791–1867).

Motional emf
Imagine a rod of length L that is moved with velocity v in a region of a 
magnetic fi eld of constant magnitude B. Assume for convenience that the 
magnetic fi eld is going into the plane of the page and that the rod moves 
from left to right (Figure 11.1).

The rod is conducting – that is, it has many ‘free’ electrons. As it moves, 
the electrons within it also move from left to right. The magnetic fi eld 
will exert a force on these moving electrons. The force on the electrons is 
directed downward (green arrow) and therefore the electrons are pushed 
downward. This means that the bottom end of the rod has a net negative 
charge and the top end has an equal net positive charge. (The net charge 
of the rod is zero.) The fl ow of electrons towards the bottom end of the 
rod will stop when the electrons already there are numerous enough to 
push any new electrons back by electrostatic repulsion. There is, in other 
words, an electric fi eld established in the rod whose direction is from top 
to bottom. 

The value of this electric fi eld E is given by:

E = 
ε
L

where ε is the potential diff erence between the ends of the rod, known as 
the induced emf. The fl ow of electrons will stop when the electric force 
eE pushing the electrons back equals the magnetic force evB. Thus:

eE = evB

Dividing both sides by e and substituting for the electric fi eld, this 
becomes:

ε = BvL

We have found the extraordinary result that a conducting rod of length L 
moving with speed v normally to a magnetic fi eld B will have a potential 
diff erence BvL across its ends. This is called a motional emf, as it has been 
induced as a result of the motion of the conductor in the magnetic fi eld. 

11  Electromagnetic induction (HL)
Learning objectives

• Understand the concept of 
induced emf.

• Understand the diff erence 
between magnetic fl ux and 
magnetic fl ux linkage.

• Solve problems using Faraday’s 
law of electromagnetic 
induction.

• Apply Lenz’s law in diff erent 
situations.

F

vL

+ + +

– – –

Figure 11.1 The rod is made to move 
normally to the magnetic fi eld at constant 
speed. An emf develops between the ends of 
the rod.

In Topic 5 we saw that the electric 
force on a charge q in an electric 
fi eld E is qE and the magnetic 
force in a magnetic fi eld B is qvB. 
The expressions here are applied to 
an electron, whose charge is e.
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11  Electromagnetic induction (HL)

Exam tip
The work done to move an 
electron from top to bottom in 
the wire is W = FL. The force 
is evB and so the work done 
is W = evBL. The work done 
per unit charge is the emf, i.e. 
ε = BvL, as expected.

It is instructive to check that the quantity BvL really has the units of 
potential diff erence, namely volts:

[BvL] = T (m s−1) m = (
N

A m
)(m s−1) m = 

J
C s−1 s

−1 = 
J
C

 = V

It is important to note that, except for a very short interval of time 
initially, no current exists in the rod. But this example opens the way for 
generating an electric current out of magnetic fi elds. 

Suppose we modify things by letting the rod slide on two wires that 
are joined by resistor of resistance R, as shown in Figure 11.2. Now the 
moving rod behaves as a battery. There is a potential diff erence between 
the top and the bottom equal to BvL (this is the emf of the ‘battery’) and 

a current equal to I = 
BvL
R

 is established in the resistor and the moving 

rod, i.e. in the circuit on the left side of the diagram. This is because 
electrons in the bottom part of the circuit now have the opportunity to 
move up through the resistor, thus momentarily reducing the number of 
electrons in the bottom. The electric fi eld in the rod is reduced and so the 
downward magnetic force on the electrons pushes more electrons down, 
and so on.

Notice also that now that we have a current, the rod needs to be 
pushed if it is to continue to move at constant speed. This is because 
the rod carries current I and is in a magnetic fi eld, so it experiences a 
magnetic force F directed to the left given by:

F = BIL = B 
BvL
R

 L = 
vB2L2

R

For speed to remain constant a force of equal magnitude needs to act on 
the rod, directed to the right. The power P generated by this force is:

P = Fv = 
vB2L2

R

The power dissipated in the circuit as heat in the resistor is:

P = 
ε2

R
 = 

vB2L2

R

This is in perfect agreement with conservation of energy: the work done 
by the agent pushing the rod is dissipated in the resistor. Here, mechanical 
work (pushing the rod) is transformed into electrical energy and then heat.

Magnetic fl ux and magnetic fl ux linkage
In 1831, Faraday experimented with coils of wire wrapped around an iron 
ring (Figure 11.3). He was hoping that, somehow, the current in the left 
circuit might induce a current in the right circuit. No such current was 
observed in the right circuit, but Faraday did notice that a small current 
was induced only during the opening and closing of the switch.

vR

bottom

top

+ + + + + + + + + + + + + + + + + +

– – – – – – – – – – – – – – – – – –

Figure 11.2 As the rod is pushed along, a 
current is established in the circuit.

iron ring

galvanometer

switch
+

–

– +

0

switch

– +

0

switch

– +

0

+

–

+

–

Figure 11.3 As the switch is closed a small 
current is registered by the galvanometer. 
While the switch remains closed a current 
exists in the circuit to the left but the current 
in the right circuit is zero. As the switch is 
opened another small current is established 
in the right circuit.
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Similar results are obtained when a magnet is moved in or out of a 
coil of wire that is connected to a sensitive galvanometer (Figure 11.4). A 
current is induced.

If the magnet is simply placed near the coil but does not move relative 
to it, nothing happens. The current is created as a result of the motion of 
the magnet relative to the coil. If we move the coil toward the magnet, we 
again fi nd a reading. This indicates that it is the relative motion of the coil 
and magnet that is responsible for the eff ect. If the magnet moves toward 
the coil faster, the reading on the galvanometer is greater. If a magnet of 
greater strength is used, the current produced is greater. If we try a coil 
with more turns of wire, we again fi nd a greater current. We also observe 
that if the area of the loop is increased, the current also increases. But if 
the magnet is moved at an angle to the plane of the loop other than a 
right angle, the current decreases. To summarise, the observations are that 
the current registered by the galvanometer increases when:
• the relative speed of the magnet and the coil increases
• the strength of the magnet increases
• the number of turns increases
• the area of the loop increases
• the magnet moves at right angles to the plane of the loop.
Faraday found that the common thread behind these observations is the 
concept of magnetic fl ux. Imagine a loop of wire, which for simplicity 
we take to be planar (i.e. the entire loop lies on one plane). If this loop is 
in a region of magnetic fi eld whose magnitude and direction is constant, 
then we defi ne magnetic fl ux as follows.

The magnetic fl ux Φ through the loop is:

Φ = BA cos θ

where B is magnetic fi eld strength, A is the area of the loop and θ 
is the angle between the magnetic fi eld direction and the direction 
normal to the loop area (Figure 11.5). If the loop has N turns 
of wire around it, the fl ux is given by:

Φ = NBA cos θ

in which case we speak of fl ux linkage. The unit of magnetic fl ux 
is the weber (Wb): 1 Wb = 1 T m2.

This means that if the magnetic fi eld is along the plane of the loop, then 
θ = 90° and hence Φ = 0 (Figure 11.6a). The maximum fl ux through the 
loop occurs when θ = 0°, when the magnetic fi eld is normal to the loop 
area and its value is then BA (Figure 11.6b).

The intuitive picture of magnetic fl ux is the number of magnetic fi eld 
lines that cross or pierce the loop area. Note that if the magnetic fi eld 
went through only half the loop area, the other half being in a region of 

no magnetic fi eld, then the fl ux would be Φ = 
BA
2 . In other words, what 

counts is the part of the loop area that is pierced by magnetic fi eld lines. 

– +

0

N

S

B

area A

normal to
loop

direction of
magnetic field

θ

Figure 11.4 As the magnet is allowed to 
enter the coil a current is induced in the coil 
and is registered by the galvanometer. If the 
magnet is then pulled out of the coil the 
induced current is opposite.

Figure 11.5 The defi nition of magnetic fl ux, 
Φ  = BA cos θ.
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Worked example
11.1 A loop of area 8.0 cm2 is in a constant magnetic fi eld of B = 0.15 T. What is the magnetic fl ux through the 

loop when:
a the loop is perpendicular to the fi eld
b the loop is parallel to the fi eld
c the normal to the loop and the fi eld have an angle of 60° between them?

a In this case θ = 0° and cos 0° = 1. The area of the loop is 8.0 × 10−4 m2. Substituting in Φ = BA cos θ, the fl ux Φ is 
given by:

 Φ = 0.15 × 8.0 × 10−4

 Φ = 1.2 × 10−4 Wb

b In this case θ = 90° and cos 90° = 0, so Φ = 0.

c In this case θ = 60°, so:

 Φ = 0.15× 8.0 × 10−4 × 0.5

 Φ = 6.0 × 10−5 Wb

Faraday’s law
So what does magnetic fl ux have to do with the problem of how a 
magnetic fi eld can create an electric current? The answer lies in a 
changing magnetic fl ux linkage. In Figure 11.4 we had a magnetic 
fl ux linkage through the coil, which was changing with time. As a magnet 
is brought closer to the loop area, the value of the magnetic fi eld at the 
loop position is increasing and so is fl ux. If the magnet is held stationary 
near the loop, there is fl ux through the loop but it is not changing – so 
nothing happens. If the number of turns is increased, so is the fl ux linkage. 
Thus, there seems to be a connection between the amount of current 
induced and the rate of change of magnetic fl ux linkage through the loop.

Faraday found that the induced emf is equal to the (negative) rate 
of change of magnetic fl ux linkage, that is:

ε = −
N ∆Φ

∆t

a b

Figure 11.6 a The loop is not pierced by any magnetic fi eld lines, so the fl ux through 
it is zero. b The magnetic fi eld is normal to the loop, so the fl ux through it is the largest 
possible.

A changing fl ux creates an induced 
emf, not necessarily a current. 
There will be a current only 
if the loop is conducting, i.e. if 
the resistance of the circuit is 
not infi nite. For example, a loop 
containing an ideal voltmeter 
cannot let current through, but 
there will be an emf if the fl ux is 
changing.



438

So, it is an emf that is induced. If this emf is induced in a conductor then 
there will be current as well. 

The minus sign need not concern us, as we will be fi nding the 
magnitude of the induced emf. However, if we use calculus, we need the 
minus sign:

ε = −
N dΦ

dt

This is known as Faraday’s law (of electromagnetic induction).

Worked examples
11.2 The magnetic fi eld through a single loop of area 0.20 m2 is changing at a rate of 4.0 T s–1. What is the 

induced emf?

The magnetic fl ux through the loop is changing because of the changing magnetic fi eld, hence:

 Φ = BA

 ε = 
∆Φ
∆t

 ε = 
∆BA

∆t

 ε = 4.0 × 0.20

 ε = 0.80 V

11.3 A pair of conducting rails is placed in a uniform magnetic fi eld directed downward, as shown in Figure 11.7. 
The rails are a distance L = 0.20 m apart. A rod is placed on the rails and pushed to the right at constant speed 
v = 0.60 m s−1. What is the induced emf in the loop formed by the rod and the rails?

v

conducting rail

L

Figure 11.7 A rod on a pair of conducting rails.
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We looked at this problem at the beginning of this section, but now we will solve it the ‘easy’ way using the 
concept of a changing fl ux and Faraday’s law. 

The fl ux in the loop is changing since the area of the loop is increasing. Therefore there will be an emf induced. 

In a time interval ∆t the rod will move to the right a distance v ∆t and so the area will increase by ∆A = Lv ∆t 
(Figure 11.8).

Figure 11.8  As the rod moves along the rails, the area of the loop increases.

Using ε = 
∆Φ
∆t  and Φ = BA, we see that ε = B 

∆A
∆t  and so: 

 ε = B × 
Lv ∆t

∆t

 ε = BLv

 ε = 0.40 × 0.20 × 0.60

 ε = 48 mV

Using Faraday’s law
We began this section by describing a rod being dragged in a region of 
magnetic fi eld. We saw, by considering the forces acting on the electrons 
contained in the wire, that a potential diff erence was induced at its ends 
given by:

ε = BvL

We can re-derive this result by making use of the concept of changing 
fl ux and Faraday’s law. The rod cuts magnetic fi eld lines as it moves in the 
magnetic fi eld. In time ∆t it will move a distance of v ∆t (Figure 11.9) and 
so the fl ux through the area swept by the rod is:

 ∆Φ = BLv ∆t

⇒ ε = 
∆Φ
∆t

 ε = BvL

v

increased area of loop ∆A

v ∆ t

L

v ∆ t

L v

Figure 11.9 The rod sweeps out an area 
pierced by magnetic fi eld lines.
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Lenz’s law
Having seen that a changing magnetic fl ux will produce an emf and 
therefore a current in a conducting loop of wire, we now move to the 
interesting problem of determining the direction of this induced current. 
We already know the answer. In Figure 11.2 we said that the electrons 
move from top to bottom in the rod, i.e. the current is from bottom to 
top, counter-clockwise. But is there another way of getting the same 
answer? Let us look at Figure 11.10. 

There are two possibilities for the current direction – the current will 
either fl ow in a clockwise or a counter-clockwise fashion in the loop. In 
either case, there will be a force on the rod because it is a current-carrying 
wire in a magnetic fi eld.
• Choice A, current is clockwise. By the right-hand rule, the force is 

directed towards the right – in the direction of motion of the rod. The 
rod will therefore accelerate and its kinetic energy will increase. There 
is no obvious source for this extra kinetic energy. This must be the 
wrong choice for current: energy conservation would be violated.

• Choice B, current is counter-clockwise. By the right-hand rule, 
the force is directed towards the left – in the direction opposite to the 
motion of the rod. The rod will slow down and stop unless someone 
pushes it. This makes sense. This choice of current is the correct choice.

So, in Figure 11.2 we could guess the direction of the current by seeing 
what happens to the electrons in the rod. In Figure 11.10 we got the 
answer by analysing forces and energy. 

It is not always easy to apply either of these methods. For example, 
consider the situation in which the current in a straight wire is increasing. 
A loop of conducting wire is next to the wire, as shown in Figure 11.11.

There will be an emf induced in the loop because the fl ux is changing; 
it is changing because the current is increasing and so the magnetic fi eld 
it produces increases. What is the direction of the induced current? We 
cannot easily refer to forces any more. We need a more general method. 

Such a general statement has been given by the Russian physicist 
Heinrich Lenz (1804–1865), and is called Lenz’s law.

Lenz’s law states that the induced emf will be in such a direction 
as to oppose the change in the magnetic fl ux that created the 
current. It is equivalent to energy conservation.

This is a subtle and tricky formulation. Let us apply it to example of the 
loop of wire, as shown in Figure 11.12. The change in the magnetic fl ux 
has been an increase in magnetic fl ux (the blue fi eld created by the blue 
current in the wire is increasing). We must oppose this increase, i.e. we 
must decrease the fl ux. We can do so by creating a magnetic fi eld in a 
direction opposite to the blue fi eld, i.e. out of the page. So the question 
now is: what is the direction of the current in the loop such that the fi eld 
it produces is out of the page? From the right-hand rule, the current must 
be counter-clockwise. 

vR L

loop of wire

increasing current

Figure 11.10 The rod is made to move to 
the right. The magnetic fl ux through the loop 
is increasing and a current will be established 
in the rod.

Figure 11.11 A loop of wire near a straight 
wire in which the current is increasing.

loop of wire

increasing current

Figure 11.12 The current in the straight wire 
creates a magnetic fi eld into the page at the 
position of the loop. The induced current in 
the loop produces a magnetic fi eld in the 
opposite direction as to oppose the change 
in fl ux.
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Let us make sure that we understand what is going on by looking at 
another example.

Worked example
11.4 A loop of wire has its plane horizontal and a bar magnet 

is dropped from above so that it falls through the loop 
with the north pole fi rst, as shown in Figure 11.13. 
Find the direction of the current induced in the loop.

Figure 11.13 A magnet is dropped into a loop of wire.

The fl ux in the loop is increasing because the magnetic fi eld at the loop is getting larger as the magnet approaches. 
(We are taking the normal to the loop to be in the vertically down direction.) The induced current must then 
oppose the increase in the fl ux. This can be done if the induced current produces a magnetic fi eld in the opposite 
direction to that of the bar magnet, as shown by the blue arrow in Figure 11.14a. Thus, the current will fl ow in a 
counter-clockwise direction when looked at from above. 

As the magnet leaves the loop from the other side, the 
fl ux is decreasing. So the current induced must produce a 
magnetic fi eld in the same direction, i.e. down. This means 
the current is clockwise looked at from above, as shown in 
Figure 11.14b. (It follows that since the current changes 
from counter-clockwise to clockwise, at some point it must 
be zero.)

Nature of science
Much of the electro-mechanical technology we use today is due to 
the discoveries made by Michael Faraday. In 1831, using very simple 
equipment, Faraday observed a tiny pulse of current in one coil of wire 
when the current in a second coil was switched on or off , but nothing 
while a constant current was fl owing. In further experiments he found 
these transient currents when he slid a magnet quickly in and out of a 
coil of wire. Faraday explained this electromagnetic induction using the 
idea of lines of force, but did not provide a mathematical relationship. The 
mathematical description of these phenomena was given much later by 
the Scottish physicist James Clerk Maxwell (1831–1879).

direction
of motion

N

S

N

S

direction
of motion

induced current

a b

N

S

Figure 11.14 Current induced by magnet.
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2 The fl ux through a loop as a function of time is 
given by the graph. Sketch a graph of the emf 
induced in the loop as a function of time.

3 The graph shows the emf induced in a loop as a 
result of a changing fl ux in the loop.

 a  Sketch a possible fl ux versus time graph that 
would give rise to such an emf.

 b Explain why there isn’t a unique answer.

4 The diagram shows a top view of two solenoids 
with their axes parallel, one with a smaller 
diameter so that it fi ts inside the other. The bigger 
solenoid has a current fl owing in the clockwise 
direction (looked at from above) and the current is 
increasing in magnitude; fi nd the direction of the 
induced current in the smaller solenoid.

5 A metallic ring is dropped from a height above a 
bar magnet as shown in the diagram. Determine 
the direction of the induced current in the ring as 
the ring falls over the magnet in each case, giving 
full explanations for your choices.

6 A magnet is dropped from above into a metallic 
ring as shown in the diagram. Determine the 
direction of the current induced in the ring in 
each case.

 7 For the diagram in question 5a, determine the 
direction of the magnetic force on the ring as it 
a enters and b leaves the magnetic fi eld.
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1 The fl ux through a loop as a function of time is 
given by the graph in the diagram. Sketch a graph of 
the emf induced in the loop as a function of time.
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 8 A metallic rod of length L is dragged with 
constant velocity v in a region of magnetic 
fi eld directed into the page (shaded region), as 
shown in the diagram. By considering the force 
on electrons inside the rod, show that the ends 
of the rod will become oppositely charged. 
Determine the end that is positively charged.

 9 Find the direction of the current in the loop 
shown in the diagram as the current in the 
straight wire:

 a increases
 b decreases.

10 A large coil has a smaller coil inserted inside it 
so that their axes are parallel. The smaller coil has 
200 turns and a diameter of 2.0 cm. A changing 
current in the large coil causes the magnetic fi eld 
to be increasing at a rate of 0.45 T s–1. Calculate 
the emf induced in the smaller coil.

11 Look at the diagram. The rod AB is free to move. 
The magnetic fi eld is increasing. Determine 
what will happen to the rod AB.

12 A magnet is attached to a spring. The magnet 
oscillates in and out of a coil, as shown in the 
diagram.
a Draw a sketch graph to show the variation 

with time of the displacement of the magnet 
when i the switch is open and ii the switch is 
closed. 

b Explain your sketches in part a.

13 Two identical rings made out of conducting 
material are released from rest, from the same 
height above the ground. One ring will fall 
through a region of a horizontal magnetic fi eld.

 State and explain which ring will reach the 
ground fi rst, given that they are released at the 
same time.

L

A magnetic
field

into page

B

helical
spring

magnet

coil

ground
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11.2 Transmission of power

Alternating current
This section discusses the production of alternating current by the 
ac generator and the properties of alternating current. We discuss the 
transformer equation and examine the use of transformers in power 
transmission.

The ac generator
One very important application of electromagnetic induction is the ac 
generator – the method used universally to produce electricity (Figure 
11.15). A coil is made to rotate in a region of magnetic fi eld. This can 
be accomplished in a variety of ways: by a diesel engine burning oil, by 
falling water in a hydroelectric power station, by wind power, etc. The 
ends of the coil are fi rmly attached to two slip rings that rotate along 
with the coil. The slip rings touch carbon brushes that transfer the 
current into an external circuit.

Learning objectives

• Explain how alternating current 
is produced.

• Solve problems involving peak 
and rms values of current and 
voltage, and peak and average 
power.

• Understand how transformers 
are used.

• Understand the use of diode 
bridges in half-wave and full- 
wave rectifi cation.

N S
B

coil

rotation
carbon brushes

a

slip
rings

Figure 11.15 a A coil that is forced to turn in a region of magnetic fi eld will produce 
an emf. b Generators at the Hoover hydroelectric power plant in the USA.

The fl ux in the coil changes as the coil rotates and so an emf is 
produced in it. We assume that the coil has N = 10 turns of wire around 
it, the magnetic fi eld is B = 0.21 T, the coil has an area of 0.50 m2 and 
the coil rotates with frequency f of 50 revolutions per second. The fl ux 
linkage in the coil changes as time goes on according to a cosine function 
as shown in Figure 11.16.

The red, white and blue bar that is superposed on the graph indicates 
the position of the coil as we look at it along the axis of rotation: at t = 0 
for example the coil is vertical with the part painted red on top. The 
equation of the fl ux (linkage) is, in general: 

Φ = NBA cos θ 

where θ is the angle between the magnetic fi eld and the normal to the 
coil and N is the number of turns in the coil. Assuming that the coil 

b
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rotates at a frequency f, then θ = 2πft. Alternatively, we may make use of 
the angular speed of rotation ω; since ω = 2πf it follows that θ = ωt and so 
the fl ux becomes:

Φ = NBA cos (ωt)

By Faraday’s law, the emf induced in the coil is (minus) the rate of 
change of the fl ux linkage and is given by:

V = −
dΦ
dt

V = ωNBA sin (ωt)

The quantity V0 = ωNBA is the peak voltage produced by the generator. 
The variation of the induced emf with time is given by the graph in 
Figure 11.17. The peak voltage in this example is 325 V. 

Note that the emf induced is zero whenever the fl ux assumes its 
maximum or minimum values and, conversely, it is a maximum or 
minimum whenever the fl ux is zero. The noteworthy thing here is that 
the voltage can be negative as well as positive. This is what is called 
alternating voltage and the current that fl ows in the coil is alternating 
current (ac). This means that, unlike the ordinary direct current (dc) 

t /ms

Φ/ Wb

10 20 30 40
0.0

–0.5

–1.0

–1.5

0.5

1.0

1.5

Figure 11.16 The fl ux linkage in the coil is changing with time.

In Subtopic 11.2 the induced emf 
will be denoted by the symbol V.

V / V

10 20 30 40

–300

–200

–100

0

100

200

300

t /ms

Figure 11.17 The emf induced in the loop as a function of time. The peak voltage is 
325 V.
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that fl ows in a circuit connected to a battery, the electrons do not drift in 
the same direction but oscillate back and forth with the same frequency as 
that of the voltage. The fl ux and the emf are out of phase by 

π
2 or 90°.

The current in a circuit of resistance R can be found from:

I = 
V
R

I = 
V0 sin (ωt)

R

I = I0 sin (ωt)

where I0 = 
V0

R
 is the peak current. For the emf of Figure 11.17 and a 

resistance of 16 Ω, the current is shown in Figure 11.18.

I / A

10 20 30 40
0

–10

–20

10

20

t /ms

Power in ac circuits
The power P generated in an ac circuit is given by:

P = VI

Because both the current I and voltage V vary with time, the expression 
for power becomes:

P = V0I0 sin2 (ωt)

This means that, just like the current and the voltage, power is not 
constant in time. It has a peak value Pmax given by the product of the peak 
voltage and peak current:

Pmax = V0I0

The power as a function of time is shown in Figure 11.19. The average 
power dissipated is half the peak value.

Figure 11.18 The induced current in the rotating loop. Note that the current is in 
phase with the emf. The peak current is found from peak voltage divided by resistance, 

 i.e. 
325
16 , which is about 20 A.
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The relationship between voltage, current and power in an ac circuit is 
shown in Figure 11.20.

It is instructive to write the expression for power in terms of the 
parameters of the rotating coil:

P = VI

P = ωNBA sin (ωt) × 
ωNBA sin (ωt)

R

P = 
(ωNBA)2

R
 sin2 (ωt)

Worked example
11.5 The graph of Figure 11.21 shows the variation with time of the 

power delivered by an ac generator.
a State the frequency of rotation of the generator. 
b On a copy of the graph, sketch the graph of the power delivered 

when the frequency of rotation is halved.

Figure 11.21 The variation with time of the power delivered by an ac generator. 
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Figure 11.19 The power dissipated in a resistor as a function of time. Note that the 
period of one rotation of the coil is 20 ms. The power becomes zero with every half 
rotation of the coil. The horizontal dotted line indicates the average power, which is 
half the peak value.
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Figure 11.20 Power (orange), voltage (red) 
and current (blue) in an ac circuit resistor.
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Exam tip
This a very common 
examination question. 
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a The period T is found by looking at two loops, i.e. it is 20 ms.

 So the frequency is found from f = 
1
T

 f = 
1

0.020
 

 f = 50 Hz

b You need to fi nd how the power depends on frequency. To do this, you must be able to recall or derive the 
formula:

 P = 
(ωNBA)2

R
 sin2 (ωt)

 This shows that power is proportional to the square of the angular frequency, so power is also proportional to f 2 
(since ω = 2πf ):

P ∝ f 2

 If you halve the frequency, then the power is reduced by a factor of 4. So the peak of the graph will be at 4 W.

 Changing the frequency also changes the period. If the frequency is halved, then the period is doubled to 40 ms. 

 So we get the graph shown in Figure 11.22.

Figure 11.22 The power delivered when the frequency of rotation is halved.

Exam tip
It is important to understand 
how to get the period from a 
graph of power against time.
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Root mean square (rms) quantities
It would be convenient to defi ne an average voltage, average current and 
average power. For power this is not diffi  cult, as power is always positive. 
As we have seen, the average power is half the peak power value. But we 
can’t just fi nd the average of the current and voltage. In any one cycle, 
the voltage and current are as much positive as they are negative, and so 
average to zero. 

So how can we get an average measure of the current and the voltage? 
To get around this problem we use the following trick. First, we square 
the current, getting a quantity that is always positive during the entire 
cycle. Then we fi nd the average of this positive quantity. Finally, we take 



11  ELECTROMAGNETIC INDUCTION HL 449

its square root. The result is called the root mean square (rms) value of 
the current.

How do we evaluate an rms quantity? Squaring the current gives:

I2 = I0
2 sin2 (ωt)

We can rewrite sin2 (ωt) as 12[1 − cos (2ωt)], by making use of the double 
angle identity, cos 2θ = (1 − 2 sin2 θ).

So: 

I2 = 
I0

2

2 [1 − cos (2ωt)]

Over one cycle, the cosine term averages to zero and so the average of the 
square of the current is:

I2– = 
I0

2

2

(the bar denotes an average). Thus:

Ims =    I2–

Irms = 
I0

√2

Doing exactly the same thing for the voltage results in an rms voltage of:

Vms = 
V0

√2

The power in an ac circuit is given by:

P = V0I0 sin2 (ωt)

Using the double angle identity as before, this becomes:

P = 
V0I0

2
 [1 − cos (2ωt)]

On averaging, the cosine term goes to zero, so the average power is:

P
–
 = 

V0I0
2

We can also write this as:

P
–
 = 

V0

√2  
I0

√2

P
–
 = VrmsIrms

Exam tip
You will not be expected 
to know the proofs for the 
expressions of rms quantities. 
Dividing by √2 applies to 
sinusoidal currents and voltages 
only.
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We may also use the alternative formula for average power:

P
–
 = RI2

rms = 
V rms

2

R

The circuits in Figure 11.23 illustrate the meaning of rms quantities. 
If the dc current I is equal to the ac rms current Irms, then the average 
power dissipated in the resistor in the ac circuit is the same as the power 
dissipated in the same resistor in the dc circuit.

So, dealing with rms quantities and average power, in eff ect, turns ac 
circuits into dc circuits. 

Worked example
11.6 Find the rms quantities corresponding to the current and voltage of Figures 11.17 and 11.18.

From Figure 11.17, the peak voltage is 325 V giving:

Vms = 
325
√2

Vrms ≈ 230 V

Similarly, the peak current is 
325
16  = 20.3 A, as shown in Figure 11.18, giving:

Irms = 
20.3
√2

 

Irms ≈ 14.4 A

The peak power is the product of peak voltage and peak current:

Pmax = 325 × 
325
16  = 6600 W

The average power is half the maximum value, so the average power is 3300 W.

This should equal the product of the rms current times the rms voltage; indeed this product is:

230 × 14.4 = 3312 ≈ 3300 W

The transformer
The transformer is a device that takes a certain ac voltage as input and 
delivers a diff erent ac voltage as output. It consists of two coils wrapped 
around a common iron core (Figure 11.24). The primary coil is the one 
connected to the input ac source.

The primary coil has Np turns of wire and the secondary coil has Ns 
turns. When the primary coil is connected to an ac source of voltage, an 
alternating current passes through this coil. Since this current is changing, 
it creates a changing magnetic fi eld (in both magnitude and direction). 
The magnetic fi eld of the primary coil enters the secondary coil, so there 
is magnetic fl ux in the secondary coil. Since the magnetic fi eld in both 

R

I

R

Irms

Figure 11.23 If the two currents are the 
same, the average power in the ac circuit is 
the same as that in the dc circuit.
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soft iron core

secondary coil

outputinput

primary coil

coils is changing, the fl ux is also changing, By Faraday’s law, there will be 
an induced emf in the secondary coil.

The purpose of the iron core is to ensure that as much of the fl ux 
produced in the primary coil as possible enters the secondary coil. Iron 
has the property that it confi nes magnetic fl ux and so magnetic fi eld lines 
do not spread out into the region outside the core. 

Let the fl ux be changing at a rate 
∆Φ
∆t  through one turn of wire. Since 

there are Np turns in the secondary coil, the rate of change of fl ux linkage 

in the secondary coil is Ns 
∆Φ
∆t  (assuming no fl ux leakage outside the iron 

core). The emf induced in the secondary coil, εs, is therefore:

εs= Ns 
∆Φ
∆t

Similarly, the emf, εp, in the primary coil is:

εp = Np 
∆Φ
∆t

Dividing the second equation by the fi rst, the factor 
∆Φ
∆t  cancels and we get:

εp

εs
 = 

Np

Ns

If the secondary coil has more turns than the primary, the secondary 
voltage is bigger than the primary voltage and we have a step-up 
transformer. If the secondary coil has fewer turns, the secondary voltage is 
smaller and we have a step-down transformer. Note that the transformer 
works only when the voltage in the primary coil is changing. Direct (i.e. 
constant) voltage fed into the primary coil would result in zero voltage 
in the secondary (except for the short interval of time it takes the current 
in the primary coil to reach its fi nal steady value). For standard ac, the 
voltage varies with time as a sine function with a frequency of 50 or 
60 Hz. The frequency of the voltage in the secondary coil stays the same – 
the transformer cannot change the frequency of the voltage.

If the primary coil has a current Ip in it, then the power dissipated in 
the primary coil is εpIp. Assuming no power losses, the power dissipated in 
the secondary coil is the same as that in the primary and thus:

εpIp = εsIs

You may also see these equations 
using V rather than ε.

Figure 11.24 The transformer consists of two coils wrapped around a common iron 
core. The changing fl ux in the secondary coil produces an emf in that coil.

Exam tip
It is important to know that 
the transformer changes the 
voltage and the current, but 
not the frequency.
It is also important to know 
why the transformer will not 
work with a dc voltage in the 
primary coil.
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Therefore, using 
εp

εs
 = 

Np

Ns
 the relationship between the currents is:

Ip

Is
 = 

Ns

Np

We may put both equations together:

εp

εs
 = 

Np

Ns
 = 

Is

Ip

One source of power loss in a transformer is from eddy currents. Eddy 
currents are tiny currents created in the core because the free electrons of 
the core move in the presence of a magnetic fi eld. These currents heat up 
the core, dissipating energy. Having a laminated core rather than a single 
block reduces power losses by eliminating eddy currents.

Further losses of energy occur due to heating of the coils themselves. Yet 
another source of power loss is the complex phenomenon of magnetic 
hysteresis. As a result of magnetic hysteresis, the magnetic energy stored 
in the magnetic fi eld as the magnitude of the fi eld increases is not all given 
back as the fi eld magnitude decreases, resulting in power lost.

Worked example
11.7 A transformer with 3000 turns in the primary coil is to be used to step down an ac voltage of rms value 

230 V to an ac voltage of peak value 9.0 V. 
a Calculate the number of turns in the secondary coil. 
b The transformer is 80% effi  cient. The rms current in the primary coil is 0.25 mA. Calculate the rms value 

of the current in the secondary coil.

a The rms value of the secondary voltage is 
9.0
√2

 = 6.36 V.

 We need to use the transformer equation for voltages:

εp

εs
 = 

Np

Ns
 

 Substituting values, we get:

 
230
6.36 = 

3000
Ns

 ⇒ Ns = 83

b The average power is Pav = Vrms × Irms. For the primary coil this is: 

 Pp = 230 × 0.25 × 10–3 = 57.5 × 10–3 W

 Since the transformer is 80% effi  cient, the average power in the secondary coil is:

 Ps = 0.80 × 57.5 × 10–3 = 46 × 10–3 W
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 But the power in the secondary coil is the product of the rms voltage and current in the secondary. So:

  46 × 10–3 = 6.36 × Irms

 ⇒ Irms = 7.2 × 10−3

 The rms current in the secondary coil is 7.2 mA. 

Transformers and power transmission
Transformers are used in the transport of electricity from power stations, 
where electricity is produced, to the consumer. At any given time, a city will 
have a power demand, P, which is quite large (many megawatts for a large 
city). If the power station sends out electricity at a voltage V and a current I 
fl ows in the cables from the power station to the city and back, then:

P = VI

The cables have resistance, however, and thus there is power loss, 
Ploss = RI2, where R stands for the total resistance of the cables. To 
minimise this loss it is necessary to minimise the current (there is not 
much that can be done about minimising R). However, small I (I is still a 
few thousand amperes) means large V (recall, P = VI ), which is why power 
companies supply electricity at large voltages. Transformers are then used 
to reduce the high voltage down to that required for normal household 
appliances (240 V or 120 V) (Figure 11.25).

A schematic of Figure 11.25 is shown in Figure 11.26.

step-up
transformer

high-voltage
transmission lines

home

step-down
transformer
(substation)

step-down
transformer

12 kV 240 kV 2.4 kV 240 V

power
plant

Figure 11.25 The voltage produced in the power station is stepped up to high values 
in order to reduce losses during transmission. Transformers are again used to step 
down the voltage to the standard 120 V or 240 V that consumers need.

power
plant

12 kV
240 kV 240 kV

240 V

step-up
transformer

step-down
transformer

consumer

Figure 11.26 A schematic version of Figure 11.25.
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Worked example
11.8 A power plant produces 480 kW of power at a voltage of 2400 V. 

a Estimate the power lost in the transmission lines whose resistance 4.0 Ω, assuming no transformers are used 
in the transmission.

b Repeat the calculation where now the power plant steps up the voltage from 2400 V to 240 kV. 

a Without a transformer: from P = VI the current leaving the power plant is:

 I = 
480 × 103

2400

 I = 200 A

 The power lost is then:

 P = RI2 = 4.0 × 2002 = 160 kW

 This means that 33% of the power produced is lost.

b With a transformer: the transformer at the power plant steps up the voltage from 2.4 kV to 24 kV. Using:

εp

εs
 = 

Np

Ns
 = 

Is

Ip

 the current in the transmission lines is:

  
2.4
24  = 

Is
200

 ⇒ Is = 20 A

 The power lost is then P = RI2 = 4.0 × 202 = 1.6 kW, or only 0.33% of the produced power.

Diode bridges and rectifi cation
For many applications it is necessary to convert an ac current into a dc 
current, i.e. a current where the electrons all fl ow in the same direction. This 
can be partially achieved with a single diode. A diode allows current to pass 
through it in only one direction and only when the potential at A is higher 
then that at B, Figure 11.27. When the current is positive (red) it is allowed 
to pass through the diode. When it is negative (blue) it does not. The output 
shown is direct current, in the sense that it is always positive, but it is not 
constant in magnitude. This is half-wave rectifi cation. A big disadvantage 
of half-wave rectifi cation is that half the power is lost in the process.

A better way to rectify current uses a diode bridge rectifi er, shown 
in Figure 11.28. This achieves full-wave rectifi cation. During the fi rst 
half cycle the current moves clockwise and enters the bridge through 
diode A. It then moves through the load from top to bottom and exits 
though diode C. During this half cycle diodes B and D do not conduct 
any current. In the next half cycle, the current is counter-clockwise. It 
enters the bridge through diode B and moves through the load from 

input

output

A B

Figure 11.27 Half-wave rectifi cation.
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top to bottom again, i.e. in the same direction as the fi rst half cycle. The 
current exits the bridge through diode D. During this half cycle, diodes A 
and C do not conduct.

You must be aware that this diagram can be drawn in equivalent ways. 
For example, the bridge in Figure 11.28 may be redrawn as in Figure 
11.29. In this way all diodes point the same way, here to the ‘left’.

input
A & C

output across load

B & D A & C

A B

D

+ –

C

A B

D

– +

C

A B

D
–

+

C

A B

D+

–

C

A B

D
–

+

C

A B

D+

–

C

Figure 11.28 Full-wave rectifi cation diode bridge.

Figure 11.29 Full-wave rectifi cation diode bridge drawn in a diff erent way. In both 
cases the current in the load (shown in dotted oval) has the same direction.

Exam tip
Obviously it takes some 
practice to be able to 
reproduce this sort of diagram 
in an exam.

Nature of science
Technology follows science
Alternating current is the current universally produced. There are many reasons 
for this. It can be produced quite easily in generators. It can be turned on and 
off  much more safely than dc currents: switching off  large dc currents can create 
dangerous induction currents, but with ac the switching can be timed to when 
the currents are small. Finally, the use of ac current makes the use of transformers 
possible and this leads to a more economical transmission of power. For these 
reasons the use of ac is widespread. Solid scientifi c reasons dictate its use.
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14 The graph shows the variation of the fl ux in 
a coil as it rotates in a magnetic fi eld with the 
angle between the magnetic fi eld and the normal 
to the coil.

 a  Draw a graph to show the variation of the 
induced emf with angle.

   The same coil is now rotated at double the 
speed in the same magnetic fi eld. Draw graphs 
to show:

 b the variation of the fl ux with angle
 c the variation of the induced emf with angle.
15 The graph shows the variation with time of the 

power dissipated in a resistor when an alternating 
voltage from a generator is established at its ends. 
Assume that the resistance is constant at 2.5 Ω.

 a Find the rms value of the current.
 b Find the rms value of the voltage.
 c Find the period of rotation of the coil.
 d  The coil is now rotated at double the speed. 

Draw a graph to show the variation with time 
of the power dissipated in the resistor.

16 A transformer has 500 turns in its primary coil 
and 200 in the secondary coil.

 a  If an ac voltage of 220 V and frequency 
50 Hz is established in the primary coil, fi nd 
the voltage and frequency induced in the 
secondary coil.

 b  If the primary current is 6.0 A, fi nd the 
current in the secondary coil, assuming an 
effi  ciency of 70%.

17 A 300 MW power station produces electricity at 
80 kV, which is then supplied to consumers along 
cables of total resistance 5.0 Ω.

 a  What percentage of the produced power is 
lost in the cables?

 b  What does the percentage become if the 
electricity is produced at 100 kV?

18 The rms voltage output of a generator is 220 V. 
The coil is a square of side 20.0 cm, has 300 turns 
of wire and rotates at 50 revolutions per second. 
What is the magnetic fi eld?

19 The graph shows the variation, with time, of the 
magnetic fl ux linkage through a loop. What is 
the rms value of the emf produced in the loop?

20 A power station produces 150 kW of power, 
which is transmitted along cables of total 
resistance 2.0 Ω. What percentage of the power is 
lost if it is transmitted at:

 a 1000 V
 b 5000 V?
21 Calculate the average power dissipated in a 24 Ω 

resistor that is connected in series to a source of 
a.c voltage of peak value 140 V.

? Test yourself
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11.3 Capacitance
Any arrangement of two conductors separated from each other by 
insulating material (or a vacuum) is called a capacitor. The capacitor is 
capable of storing electric charge and, as we will see, electrical energy. 
Many appliances still keep a light on for some time after they have been 
switched off . The component responsible for this is a capacitor. Capacitors 
come in various forms, but in this course we will study the parallel plate 
capacitor, which consists of two identical parallel plates, each of area 
A, separated by a distance d, as shown in Figure 11.30. In a circuit, a 
capacitor is denoted by two parallel lines, also shown in Figure 11.30.

When the wires are connected to a battery, charge will accumulate 
on the plates: positive charge q on one plate and an equal and opposite 
charge −q on the other. As we already know, there will be an electric 
fi eld between the parallel plates when they are charged. We will assume 
a uniform fi eld everywhere with no edge eff ects. Suppose that the plates 
are connected to a battery of emf 12 V. How much charge accumulates on 
one of the plates? This is determined by a property of the capacitor called 
capacitance, C. 

Capacitance is defi ned as the charge per unit voltage that can be 
stored on the capacitor. In other words:

C = 
q
V

where q is the charge on one of the plates and V is the potential 
diff erence between the plates. Its unit is the farad, F (in honour 
of Michael Faraday), and 1 F = 1 C V–1.

Capacitance depends on the geometry of the capacitor. For the parallel 
plate capacitor:

C = ε 
A
d

where A is the area of one of the plates, d the separation of the plates and 
ε the permittivity of the medium between the plates. If the plates are in a 
vacuum, then ε = ε0 = 8.85 × 10−12 F m –1.

Worked example
11.9 A parallel plate capacitor has plates of area 0.880 m2, separated by a distance of 4.00 mm in a vacuum. It is 

connected to a dc source of potential diff erence 6.00 kV. Calculate:
a the capacitance of the capacitor
b the charge on one of the plates
c the electric fi eld between the plates
d the charge per unit area on one of the plates. 

Learning objectives

• Understand capacitance and the 
role of capacitors in circuits.

• Understand the eff ect of 
dielectric materials on 
capacitance.

• Solve problems involving series 
and parallel connections of 
capacitors in circuits.

• Solve problems involving 
circuits containing resistors and 
capacitors.

Learning objectivesLearning objectives

circuit symbol
for capacitor

area

d

wire

Figure 11.30 Geometry of a parallel plate 
capacitor and the circuit symbol.
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a From C = ε 
A
d  we fi nd:

 C = 8.85 × 10−12 × 
0.880

4.00 × 10−3 = 1.95 × 10−9 F

 This shows that the farad is a big unit.

b From the defi nition of capacitance C = 
q
V , we deduce that q = CV and so:

 q = 1.95 × 10−9 × 6.00 × 103 = 1.17 × 10−5 C

c The electric fi eld is given by E = 
V
d  and so:

 E = 
6.00 × 103

4.00 × 10−3 = 1.50 × 106 N C−1

d The charge per unit area σ is the charge divided by the area of the plate.

 σ = 
q
A  = 

1.17 × 10−5

0.880  = 1.33 × 10−5 C m−2

The eff ect of dielectric on capacitance
Figure 11.31a shows an isolated parallel plate capacitor in a vacuum and 
Figure 11.31b shows the same capacitor with an insulator between the 
plates. Insulators are also known as dielectric materials. If we look up 

tables of values of the permittivity we fi nd that ε > ε0. Since C = ε 
A
d , the 

capacitance with a dielectric is greater than that in a vacuum. 

d

a

+ + + + + + + +
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b
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V

V
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+ + + + + + +

– – – – – – – –
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+ + + + + + + +

– – – – – – – –

b

+

+ ++

– –

V

V
–

+ + + + + + +

– – – – – – – –

Figure 11.31 A capacitor a in a vacuum and b the same capacitor with a dielectric. 
The capacitors cannot discharge so the charge in a and b is the same.

Why does this happen? In Figure 11.31 the capacitor does not 
discharge because of the infi nite resistance voltmeter that does not allow 
the fl ow of any charge: the charge on the plates cannot change. There 
is an electric fi eld between the plates directed from top to bottom (red 
arrow). This electric fi eld acts on the electrons of the dielectric, pulling 
them somewhat against the fi eld, i.e. upwards. So there is separation of 
charge in the dielectric, known as charge polarisation (no relation to 
light polarisation!). This creates a small electric fi eld within the dielectric 
that is directed upward (black arrow). This means that the net electric fi eld 
between the parallel plates is reduced compared to that in a vacuum. 
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Now, the work done to move charge q from one plate to the other 
is given by W = Fd = qEd and since E is reduced, so is the work done. 
But the work done is also equal to W = qV.  This therefore implies that 
the potential diff erence across the plates has been reduced. From the 
defi nition C = 

q
V , it follows that the capacitance increases.

A similar eff ect takes place when the capacitor is connected to a battery 
that establishes a constant potential diff erence between the plates, as 
shown in Figure 11.32. 

d
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+
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Figure 11.32 A capacitor a in a vacuum and b with a dielectric. The capacitors are 
connected to a battery so the potential diff erence across a and b is the same. 

V

C2

C1
q1

q2

–q1

–q2

V

Ctotal

q = q1 + q2 –q

Figure 11.33 Two capacitors connected 
in parallel. They have the same potential 
diff erence across but diff erent charges.

From W = qV we see that the work is now constant. From W = qEd we 
deduce that the electric fi elds with and without the dielectric have to be 
the same. So the net fi eld in Figure 11.32a and that in 11.32b have to be 
the same. This can only happen if the red electric fi eld in Figure 11.32a is 
larger than that in 11.32b.This implies that the charge q on the plates has 
increased due to the presence of the dielectric. Having established that the 
charge increases and the voltage stays the same, it follows from C = 

q
V  that 

the capacitance increases.

Capacitors in parallel
Figure 11.33 shows two capacitors of capacitance C1 and C2 connected in 
parallel. Both are connected to a source of potential diff erence V and this 
is the common potential diff erence across both capacitors. 

The charge on the fi rst capacitor is q1 and that on the other is q2. 
We have that:

q1 = C1V and q2 = C2V

The total charge on the two capacitors is:

q = q1 + q2 = (C1 + C2)V

We may defi ne the total capacitance of the parallel combination as 
q = CparallelV so that:

Cparallell = C1 + C2

Extending this for additional capacitors in parallel, we get:

Cparallell = C1 + C2 + …
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Worked example
11.10 Two capacitors of capacitance 12 pF and 4.0 pF are connected in parallel to a source of potential diff erence 

9.0 V. Calculate the charge on each capacitor. 

With just two parallel capacitors the problem is very easy because we know the potential diff erence across each 
capacitor, 9.0 V. In other words, we do not need to use the formula for the total capacitance. We can use straight 
away:

q1 = C1V = 12 ×10–12 × 9.0 = 96 pC

and

q2 = C2V = 4.0 × 10–12 × 9.0 = 36 pC

Capacitors in series
Figure 11.34 shows two capacitors of capacitance C1 and C2 connected 
in series. In this case the charge on each capacitor is the same.

We know that V2 = 
q

C2
, and also that the source of potential diff erence 

V is equal to V1 + V2. The total capacitance of the series combination, 
Cseries, is then given by:

V = 
q

Cseries
 = 

q
C1

 + 
q

C2

Dividing by q gives:

1
Cseries

 = 
1

C1
 + 

1
C2

Extending this for additional capacitors in series, we get:

1
Cseries

 = 
1
C1

 + 
1
C2

+ …

C1 C2

V

Ctotal

q –q

V

q –qq –q

Figure 11.34 Two capacitors connected 
in series. They have the same charge but 
diff erent potential diff erence across.

Worked examples
11.11 Two capacitors of capacitance 12 pF and 4.0 pF are connected in series to a source of potential diff erence 

6.0 V. Calculate the charge on each capacitor.

We know the charge on each capacitor will be the same and equal to that on the total capacitor. The total 
capacitance is found from:

1
Cseries

 = 
1

C1
 + 

1
C2
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So:

 
1

Cseries
 = 

1
12 + 

1
4.0 = 

4.0
12

⇒ Cseries = 3.0 pF

The charge is then q = CV = 3.0 × 10–12 × 6.0 = 18 pC.

The potential diff erence across each capacitor is:

V1 = 
q

C1
 = 

18 × 10−12

12 × 10−12 = 1.5 V and V2 = 
q

C2
 = 

18 × 10−12

4.0 × 10−12 = 4.5 V

Notice that 1.5 + 4.5 = 6.0 V, as we expect.

11.12 Find the charge on and potential diff erence across each capacitor in Figure 11.35 when points A and B are 
connected to a battery of emf 12 V. The capacitors all have a capacitance of 12 pF.

Figure 11.35

To fi nd the charge, we need to fi nd the combined capacitance of all three capacitors, Ctotal.

Y and Z are in parallel, so together they are equivalent to a capacitor of capacitance 2 × 12 = 24 pF.

Now combine this with capacitor X. The 24 pF capacitor and X are in series, which gives a total capacitance, 
Ctotal, of:

 
1

Ctotal
 = 

1
24 + 

1
12

 
1

Ctotal
 = 

3.0
24

⇒ Ctotal = 8.0 pF. 

When the 8.0 pF capacitor is connected to an emf of 12 V it will acquire a charge q:

q = Ctotal × V = 8.0 × 10–12 × 12

q = 96 pC

This is also the charge on capacitor X, qX. So qX = 96 pC.

Using V = 
q
C , the potential diff erence across X, VX, is therefore:

VX = 
96 × 10−12

12 × 10−12 = 8.0 V

A B
X

Y

Z
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The emf of the battery is 12 V, so the potential diff erence across Y and Z is 12 − 8.0 =4.0 V. 

The charge on Y, qY, is then:

qY = CYVY = 12 × 10–12 × 4.0

qY = 36 pC

Similarly, qZ = 36 pC. 

So, we have: Vx = 8.0 V VY = 4.0 V VZ = 4.0 V
 qX = 96 pC qY = 36 pC qZ = 36 pC

Energy stored in a capacitor
We can use calculus to derive an expression for the energy stored in a 
capacitor. Think of a parallel plate capacitor that is initially uncharged. 
We may think of charge leaving one plate and moving to the other. This 
requires work to be done. Suppose that a small amount of charge dq is 
moved when the potential diff erence between the plates by V. Then the 
work is dW = V dq and is represented by the small shaded area in the graph 
of voltage versus charge, Figure 11.36. So the total work to charge the 
capacitor up to charge q is the total area under the curve, i.e. the integral:

W = ∫
q

0
V dq

W = ∫
q

0 

q
C dq

W = 
q2

2C 

This is the energy stored in the capacitor, or more precisely, in the electric 
fi eld in between the capacitor plates. Using C = 

q
V equivalent expressions 

of this energy are:

E = 
q2

2C = 
C2V2

2C

E = 12CV2

and

E = 12qV

In these expressions, q is the fi nal charge on the capacitor and V the fi nal 
potential diff erence across its plates.

Exam tip
This derivation uses calculus so 
it cannot be examined.

V

q

area = V × dq

width is dq

Figure 11.36 The graph of potential 
diff erence versus charge is a straight line. The 
area under the graph is the energy stored.
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Worked examples
11.13 Figure 11.37 shows two capacitors connected in a circuit. The fi rst capacitor has capacitance 3.20 µF and 

has been charged by connecting it to a source of emf 12.0 V. The other capacitor has capacitance 9.25 µF 
and is initially uncharged. When the switch is closed charge will move from one capacitor to the other. 
a Calculate the charge and potential diff erence for each capacitor after the switch is closed and charge no 

longer moves.
b Compare the energy stored before the switch is closed with that stored after the switch is closed.
c Comment on the answer to b.

Figure 11.37 Two capacitors connected in a circuit.

a The potential diff erence initially across the fi rst capacitor is 12 V and the charge is:

q1 = C1V = 3.20 × 10–6 × 12.0 = 3.84 × 10–5 C

 Charge will move from the fi rst to the second capacitor. This will decrease the potential diff erence of the fi rst 
and increase the potential diff erence on the second. 

 Charge will keep moving until the potential diff erence across each capacitor is the same. The charge on the 
capacitors will be q1 and q2 such that q1 + q2 = q, by charge conservation. So we have the relationships:

q1 + q2 = q

q1
C1

 = 
q2
C2

 From the second equation, q2 = 
q1C2
C1

. Substituting in the fi rst equation we get:

  q1 + 
q1C2
C1

 = q

 ⇒ q1 = 
C1

C1 + C2
 q

 This gives:

 q1 = 
3.20

3.20 + 9.25 × 3.84 × 10−5 = 9.87 µC

 Hence q2 = 28.5 µC. 

 These numbers imply that V1 = 
q1

C1
 = 

9.87 × 10−6

3.20 × 10−6 = 3.08 V and of course V2 = 3.08 V as well.

C1

C2

switch
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b The energy stored before the switch is closed is:

 Einitial = 12CV2 = 12 × 3.20 × 10−6 × 12.02 = 2.30 × 10−4 J

 After the switch is closed it is:

 Efi nal = 12C1V1
2 + 12C2V2

2 = 12 × 3.20 × 10−6 × 3.082 + 12 × 9.25 × 10−6 × 3.082

 Efi nal = 5.91 × 10−5 J

c The stored energies are not the same. Energy has been dissipated as heat in the connecting wires when charge 
moved.

11.14 A capacitor in a vacuum has capacitance 6.00 pF and has been charged by a battery of emf 12.0 V. 
a For the capacitor in vacuum, calculate the energy stored in the electric fi eld.
The battery is removed. A dielectric with ε = 6ε0 is now inserted in between the plates of the capacitor. 
b Calculate the energy stored now. 
c Compare the energies in a and b.

a E = 12CV2 = 12 × 6.00 × 10−12 × 12.02 = 432 pJ

b The new capacitance is:

 C' = ε Ad  = ε = 6ε0
A
d  = 6C

 The charge on the capacitor remains the same. Using the expression for the energy in terms of charge and 
capacitance:

 E = 
q2

2C (without the dielectric)

 E' = 
q2

2C' = 
q2

12C (with the dielectric)

 Therefore:

 E' = 
E
6 = 

432
6  = 72.0 pJ

c The energies are diff erent. The capacitor would actually attract the dielectric and pull it in. The person inserting 
the dielectric would therefore have to pull back on the slab, performing negative work equal to the diff erence of 
the two energies.

R

C

A B

ε
Charging a capacitor
The circuit in Figure 11.38 may be used to investigate both the charging 
and the discharging of a capacitor. If the switch is moved to position A, 
the capacitor will charge. After the capacitor has charged, moving the 
switch to B the capacitor will discharge through the resistor R.

Initially the capacitor is uncharged. As soon as the switch is moved to 
A, a current will be established and the charge on the capacitor plates will 
increase. In Figure 11.38 the current is clockwise, which means electrons 

Figure 11.38 Circuit for charging and 
discharging a capacitor. When the switch 
is at A the capacitor charges. When at B it 
discharges.
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move in a counter-clockwise direction, making the bottom plate negative. 
Eventually, the potential diff erence across the capacitor plates will become 
equal to the emf ε of the battery. 

Figure 11.39 shows how the potential diff erence V across the capacitor 
varies with time t. As time increases the potential approaches 6.0 V, which 
must be the emf of the charging battery. The graph assumes a resistance of 
1.0 kΩ and a capacitance of 2.0 µF.

Since q = CV the graph showing the variation of charge with time has 
the same shape as that of potential diff erence. This is shown in Figure 
11.40. The fi nal charge is q = Cε. 
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8I / mA
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Figure 11.39 The variation of potential 
diff erence with time for a charging capacitor.

Figure 11.40 The variation of charge with time for a charging capacitor. 

Figure 11.41 The variation of current with 
time for a charging capacitor. 

Figure 11.41 shows how the current in the circuit varies with time. 
The current starts out large but decreases, eventually reaching zero. This 
is because electrons on the negatively charged plate push back any new 
electrons trying to get there, stopping the current. Notice that the initial 
current is equal to I0 = 

ε
R. This means that, initially, it is as if the capacitor is 

not there at all. But after a long time the current stops, so now the capacitor 
behaves as if the circuit had been broken at the position of the capacitor.

Worked example
11.15 The graph in Figure 11.42 shows the variation 

with time t of the charge q on a capacitor plate 
as the capacitor is being charged in a circuit like 
that in Figure 11.38. 

The capacitance is 4.0 µF and the resistance of 
the resistor R is 2.0 kΩ.
a Use the graph to estimate the emf of the 

charging battery.
b Sketch a graph to show the variation with 

time of the current in the circuit while the 
capacitor is being charged, putting numbers 
on the vertical axis.

0
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40q /μC

0 10 20 30 40 50
t /ms

Figure 11.42 The variation with time t of the charge q on a 
capacitor plate.
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a From the graph, the fi nal charge q is 36 µC. Since q = Cε, we get:

 ε = 
36 × 10−6

4.0 × 10−6 = 9.0 V

b The question asks for values of current, so we need to work out the initial current:

 I0 = 
ε
R = 

9.0
2.0 × 103 = 4.5 mA

 The current drops exponentially, and so we have a graph like Figure 11.43.

Figure 11.43 The variation with time of the current in the circuit.
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Discharging a capacitor
Suppose that we now let a capacitor, with an initial charge q0 on its plates, 
discharge through a resistor of resistance R. The charge will eventually 
reach zero – the capacitor discharges (Figure 11.44). After a time t seconds 
the charge left on the capacitor plate is given by:

q = q0 e
− t

RC

The voltage across the capacitor is similarly given by V = V0 e
− t

RC where 
V0 is the initial voltage.

The quantity RC is called the time constant and is denoted by the 
symbol τ:

τ = RC

So:

q = q0 e
− tτ and V = V0 e

− tτ

The time constant determines the time scale for the discharge of the 
capacitor: a large time constant means that it will take a long time for the 
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Figure 11.44 The variation of charge with 
time for a discharging capacitor. 
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charge on the plates to decrease appreciably. More precisely, after a time 
t = τ the charge will be:

q = q0 e
− tτ= 

q0
e  ≈ 0.37q0

In other words, the time constant is the time after which the 
charge decreases to about 37% of its initial value.

Looking at Figure 11.44, we see that the charge decreases to 37% of 
its initial value after a time of about 2.0 ms, which is therefore the time 
constant for this circuit.

The electric current can be obtained from I = 
dq
dt :

I = 
d
dt  qe

− tτ  = −
q0
τ  e

− tτ

The minus current is of no use to us here. It just says that the capacitor is 
discharging and so the charge is decreasing. We will ignore it from now on.

The initial current is given by I0 = 
q0
τ . So we may also write:

I = I0 e
− tτ

This relationship is shown in Figure 11.45.
The initial charge is given by q0 = Cε, where ε is the emf of the battery 

that charged the capacitor. In this case then:

I0 = 
q0
τ  = qCε

RC  = εR 

as might be expected.
The discharge curves are exponential, like those for radioactive decay 

we saw in Topic 7. We may ask for the time it takes for the charge to 
decrease to half its initial value. This would be the ‘half-life’ T1/2 of the 
capacitor: we substitute q = 12q0 to get:

1
2q0 = q0 e

− T1/2
τ

Dividing both sides by the initial charge q0 and taking reciprocals:

2 = e
T1/2

τ

Taking logarithms to base e gives:

ln 2 = 
T1/2

τ

i.e.

τ = 
T1/2
ln 2

Exam tip
The formulas in the IB data 
booklet refer to a capacitor 
that is discharging. They 
cannot be used for charging 
the capacitor.

Exam tip
It is useful to know that I0 = 

q0
τ . 

This equation is not in the 
IB data booklet. 

0
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6I / mA
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t /ms
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5

Figure 11.45 The variation of current with 
time for a discharging capacitor. 

So the time constant is the time 
needed for the charge to decrease 
to half its initial value, divided by 
ln 2.
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Worked examples
11.16 Show that the unit of τ = RC is that of time.

First write the units:

[τ] = Ω × F

Now simplify the units by fi nding appropriate formulas. 

For resistance: R = 
V
I  and so Ω = 

V
A 

From the defi nition of capacitance: C = 
q
V  and so F = 

C
V.

Hence: 

[τ] = 
V
A × 

C
V = 

C
A 

But q = It, so C = A × s. Therefore:

[τ] = 
A × s

A  = s

11.17 A charged capacitor discharges through a resistor. After 5.00 s the voltage across the capacitor plates drops to 
10% of the initial voltage. Calculate:
a the time constant of the circuit 
b the time after which the voltage is reduced to 5% of its initial value.

a The voltage across the capacitor is given by V = V0 e
− tτ

 So we have that:

  0.10V0 = V0 e
− tτ

 Dividing both sides by V0, substituting values from the questions, and taking logarithms gives:

 ln 0.10 = − 
5.00

τ   and so  τ = 
5.00

ln 0.10 = 2.17 s

b Using again the equation V = V0 e
− tτ:

  0.05V0 = V0 e
− tτ

 Again, dividing both sides by V0 and taking logarithms:

  ln 0.05 = − 
t

2.17
 This gives:

  t = −2.17 × ln 0.05 = 6.50 s
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11.18 Consider the circuit in Figure 11.46. The switch is closed for a long time so that the capacitor is charged. 
The switch is then opened. Find the current in resistor R2 after 5.00 ms. Use the data: R1= 12.0 kΩ, 
R2 = 18.0 kΩ, emf = 12.0 V, C = 2.00 µF.

Figure 11.46 Circuit containing capacitor and resistors.

After a long time the capacitor will be fully charged and there will be no current in the loop containing the 
capacitor. In the other loop, the total resistance is 30.0 kΩ and so the current in that loop will be:

I = 
12.0

30.0 × 103 = 0.400 × 10−3 A

The potential diff erence across resistor R2 will be:

V2 = IR2 = 0.400 × 10–3 × 18.0 × 103 = 7.20 V

This is also the steady potential diff erence across the capacitor. The charge on the capacitor plates is then given by:

q0 = CV = 2.00 × 10–6 × 7.20 = 14.4 µC

When the switch is opened, current will fl ow only in the loop of the capacitor. The time constant for the circuit is 
then R2C:

τ = 18.0 × 103 × 2.00 × 10−6 = 3.6 × 10−2 s

The current is found using the equation:

I = I0 e
− tτ

Remember that I0 = 
q0
τ . Then we have:

 I = 
q0
τ  e

− tτ

 I = 
14.4 × 10−6

3.6 × 10−2  × exp  − 
5.00 × 10−3

3.6 × 10−2

 I = 348 µA

Capacitors in rectifi cation
The output of the diode bridge rectifi er may be processed further to 
make it smoother. This can be done by adding a capacitor in parallel to 
the load, as shown in Figure 11.47. The output is now smoother.

R2

R1

C
S

ε
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Worked example
11.19 Figure 11.48 shows an ac voltage that has been smoothed by a diode bridge circuit. Use the graph to 

answer these questions.
a State the peak voltage in the ac signal.
b Determine the frequency of the ac voltage.
c The capacitance of the capacitor in the smoothing bridge circuit has a value of 12 µF. Determine the 

change in the charge on the capacitor plates during one discharge of the capacitor.
d Hence estimate the average current during a discharge and the resistance through which the capacitor 

discharges.

Figure 11.48

Why is the output smoother? For the fi rst half cycle the current is 
clockwise. The current moves from top to bottom in the load. Now, in 
the fi rst quarter cycle the capacitor charges. At the end of the fi rst quarter 
cycle the potential at the top plate of the capacitor is a maximum. In 
the second quarter cycle (green), the potential at the top plate begins to 
decrease and so the capacitor discharges, sending current through the load 
from top to bottom. (The capacitor begins to discharge at the end of the 
third quarter cycle as well.) The ‘ripple’ is reduced with higher capacitance 
or load resistance.

Figure 11.47 A capacitor in parallel to the load resistor smooths out the output voltage.

input

output

current from discharging capacitor
‘ripple’

t /ms
0 5 10 15 20 25 30

3.0

3.2

3.4

3.6

3.8

4.0

4.2V / V
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a The peak voltage is 4.0 V.

b The period is 20 ms (we look from the peak at 5 ms to that at 25 ms; the peak at 15 ms is a ‘rectifi ed trough’) and 
so the frequency is:

  f = 
1

20 × 10−3 = 50 Hz

c The voltage changes by 0.6 V due to the discharge. So:

  ∆q = C ∆V = 12 × 10−6 × 0.6 = 7.2 µC

d The discharge lasted for 7.0 ms, and so:

  I = 
∆q
∆t

 = 
7.2 × 10−6

7.0 × 10−3 = 1.0 mA

 The average voltage across the resistor is 3.7 V and so an estimate of the resistance is:

  R = 
V
I
 = 

3.7
1.0 × 10−3  ≈ 3.7 M Ω

Nature of science
Common formalism
The mathematics of RC circuits follows closely the mathematics of 
radioactive decay. Therefore the same techniques of analysis that have 
been used in one area can also be used in the other. This happens 
countless times in physics – examples include oscillations in mechanics 
and oscillations in electrical circuits; electrostatics and gravitation; and 
thermodynamics and the physics of black hole event horizons.

25 A 9.0 V battery is used to charge a 20 mF 
capacitor. Calculate:

 a the charge on the capacitor 
 b the energy stored in the capacitor.
 The capacitor discharges in a time of 50 ms.
 c  Estimate the power released during the 

discharge.
26 Two capacitors of capacitance 120 µF and 240 µF 

are connected in parallel. The two are then 
connected to a source of potential diff erence 
6.0 V. Calculate:

 a the total capacitance of the arrangement
 b the charge stored on each capacitor
 c the energy stored in each capacitor.

? Test yourself
22 A parallel plate capacitor in a vacuum has a 

capacitance of 1.0 F. The plates are separated by a 
distance of 1 cm. Calculate the area of one of the 
capacitor plates. Comment on your answer.

23 Calculate the charge on one of the plates of 
a parallel plate capacitor of area 0.25 m2. The 
plates are separated by a distance of 8.0 mm, in a 
vacuum. The potential diff erence across the plates 
is 24 V.

24 A 12 µF capacitor is charged to a potential 
diff erence of 220 V in 15 ms. Estimate the 
average current needed to charge the capacitor.
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27 Repeat question 26 where now the capacitors 
are connected in series.

28 A capacitor of capacitance 25 pF is connected to 
a battery of emf 24 V for a long time. The battery 
is then removed and the capacitor is connected 
to an uncharged capacitor of capacitance 75 pF. 
Calculate:

 a the charge on each capacitor
 b  the change in total energy stored before and 

after the battery was disconnected.
 c Comment on the answer to b.
29 A 250 mF capacitor is charged by a battery of 

emf 12 V.
 a  Calculate the energy stored in the capacitor. 
 b  Estimate the time for which the lamp is lit, 

listing any assumptions you make.
The capacitor discharges through a lamp rated 
12 V, 6.0 W.

30 a  Sketch a graph to show how the potential 
diff erence V across a parallel plate capacitor 
varies with charge q on one of the plates.

 b  Suggest what the area under the graph 
represents.

31 A capacitor of capacitance 25.0 µF is charged by 
a battery of emf 48 V. The battery is removed 
and the capacitor is connected to a resistor of 
resistance 15 kΩ through which it discharges. 
Determine a the charge, b the current and c the 
voltage after a time of 0.20 s.

32 The graph shows how the voltage V on the 
plate of a capacitor of capacitance 50.0 µF varies 
with time t as the capacitor discharges through a 
resistor of resistance R.

 a  Use the graph to estimate the time constant of 
the system.

 b Calculate the resistance R.

33 A capacitor of capacitance 250 µF is charged by 
a battery of emf 12 V. The battery is removed 
and the capacitor is connected to a resistor of 
resistance 75 kΩ through which it discharges. 
Determine a the charge and b the current when 
the voltage across the capacitor is 6.0 V.

34 A capacitor of capacitance 2.00 µF is charged 
by connecting it to a battery of emf 9.00 V. 
The capacitor then discharges through a resistor 
of resistance 5.00 MΩ. Determine at a time of 
t = 1.00 s:

 a  the rate at which charge is leaving the 
capacitor plate

 b  the rate at which energy is being dissipated in 
the resistor

 c  the rate at which energy is being lost by the 
capacitor.

35 Refer to Figure 11.47 on page 470. The input 
voltage is sinusoidal.

 a  sketch a graph to show how voltage varies 
with time across 

  i diode A
  ii diode B
 b  suggest how the output can be made even 

smoother.
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12V / V
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t /s
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2.00 μF 5.00 MΩ
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Exam-style questions

1 A magnetic fi eld of uniformly increasing magnitude is directed into the plane of the page as shown. A conducting 
loop of wire is on the plane of the page.

L1

L2

L1

L2

 Which is correct about the direction and magnitude of the induced current in the wire?

Direction Magnitude

A clockwise constant
B counter-clockwise varying
C clockwise constant
D counter-clockwise varying

2 A loop of wire contains two identical light bulbs, L1 and L2. The region in the loop contains a changing magnetic 
fi eld whose direction is normal to the plane of the page. Both light bulbs are lit. A copper wire is placed across the 
loop as shown in the diagram.

 What will be the eff ect of this wire on the brightness of the light bulbs?

A L1 will go out and L2 will get dimmer.
B L1 will go out and L2 will get brighter.
C L2 will go out and L1 will get brighter.
D L2 will go out and L1 will get dimmer.
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3 A conducting loop of wire is in a region of magnetic fi eld directed into the plane of the page. The loop is rotated 
about axes I, II and III.

I II III

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25P / W

t /ms

 In which case or cases will there be an induced current in the loop?

A I and II only B I only C II only D I, II and III

4 The graph shows the variation with time of the power dissipated in a resistor of resistance 2.0 Ω in an ac circuit.

 What is the rms value of the voltage across the resistor and the period of the current?

Rms voltage Period

A √20  V 0.5 s

B √20  V 1.0 s

C √40  V 0.5 s

D √40  V 1.0 s

5 A parallel plate capacitor is connected to a battery of fi xed emf. The energy stored in the capacitor is E and the 
charge on one of the plates is q. A dielectric is inserted between the plates. Which row in the table gives the correct 
change(s), if any, in the capacitance and charge stored?

Capacitance Charge 

A no change no change
B increases increases
C decreases no change
D no change increases
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6 Capacitor X has capacitance 200 pF and potential diff erence 100 V. Capacitor Y has capacitance 100 pF and 
potential diff erence 200 V. Which row in the table is correct about the energy and charge stored by capacitor Y?

Energy stored by Y Charge stored by Y

A same as X same as X
B greater than X same as X
C same as X greater than X
D greater than X greater than X

7 In the circuit shown a capacitor that is initially uncharged is being charged by a battery. 

R

C
ε

A B C D

V

q

V

q

V

q

V

q

 Which of the following is a correct graph of the variation of the potential diff erence V across the plates with 
charge q on one of the capacitor plates?

8 What will the initial current be in the circuit below the instant the switch is closed, and what will it be eventually 
a long time after the switch is closed?

Initial Eventual

A ε
R

0

B ε
R

ε
R

C 0 0
D 0 ε

R

R

C
ε
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 9 The graph shows the variation with time t of the current I for a discharging capacitor.

0

4

6

10I / mA

0 2 4 6 8
t /s

2

8

A B

C D

 What is the time constant of this system?

A 2.0 s B 2.0√2 s C 
2.0
√2

 s D 
2.0
ln 2  s

10 In which of these circuits can full-wave rectifi cation take place?
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a Explain why an emf is induced in the solenoid from A to B. [3]
b Explain why the induced emf from C to D, when compared to that from A to B, has:
  i a greater peak value [2]
  ii a shorter duration. [1]
c Suggest:
  i what the areas between the graph and the time axis from A to B and from C to D represent [2]
  ii whether these areas are equal. [2]

12 A square loop of side 0.25 m is made to move at constant speed 
0.050 m s–1. The loop enters a region of uniform magnetic fi eld of 
strength 0.40 T directed into the plane of the page. There are 50 turns of 
conducting wire around the loop. 

 The loop begins to enter the region of magnetic fi eld at t = 0.

11 The diagram shows a small magnet that has been dropped from above a solenoid. As the magnet falls through the 
solenoid, a sensor shows how the induced emf in the solenoid varies with time.

A B C      D

emf

to sensor

Time

N

S

0.75 m

a On a copy of the axes below, draw a graph to show the variation with time t of:
  i the magnetic fl ux linkage Φ through the loop. [3]
  ii the induced emf in the loop. [3]
b The total resistance of the wire around the loop is 0.75 Ω.

0.0

1.4

0 5 30
t /s

10 15 20 25

0.2
0.4
0.6
0.8
1.0
1.2

–0.2

0.0

0.2

0.4V / V

–0.4

0 5 30
t /s

10 15 20 25

Φ / Wb

  i Calculate the power exerted by the agent pushing the loop. [3]
  ii Explain what has become of this power. [2]
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13 A wind generator provides power to a factory whose equipment operates at 120 kW and 240 V. The factory is 
connected to the wind generator with cables of total resistance 0.80 Ω. 

wind generator factory

120 kW
240 V

240 V2.4 kV

step-down
transformer

step-up
transformer

–100

–200

0

100

200

300
V / V

–300

30
t /ms

10 20 40

a Calculate:
  i the power lost in the cables [2]
  ii the voltage at the wind generator [2]
  iii the effi  ciency of the transmission system. [1]
b It is suggested that a transformer be used to step up the voltage of the wind generator so that the 

step-down transformer near the factory would bring the voltage down from 2.4 kV to 240 V.

  Determine the power loss in the cables now. [2]
c The graph shows the variation with time of the voltage in a particular piece of machinery in the factory.

  i Show that the rms value of the voltage is 240 V. [1]
  ii The average power dissipated in this machinery is 18 kW. Calculate the peak current in the machinery. [2]
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d The diagram shows a simple transformer. 

soft iron core

secondary coil

outputinput

primary coil

A B

X

Y

Z

  i  Explain how an ac voltage in the primary coil gives rise to an ac voltage in the secondary coil. 
Make sure you mention the function of the iron core in your answer. [4]

  ii Explain why the core gets warm while the transformer is operating. [2] 

14 Each of the capacitors in the diagram has capacitance 180 pF.

a  i State what is meant by capacitance. [1]
  ii Discuss whether a capacitor stores charge or energy or both. [2]
b Calculate the total capacitance of the system. [2]
c Points A and B are connected to a source of emf 12 V. Calculate:
  i the charge on one plate of capacitor Z [2]
  ii the potential diff erence across capacitor Z [1]
  iii the charge on one plate of capacitor X. [2]
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15 The diagram shows a charged parallel plate capacitor in a vacuum connected to an ideal voltmeter. The reading 
on the voltmeter is 9.0 V.

a Explain why the capacitor does not discharge. [2]
b The plates are 4.4 mm apart and have an area of 0.68 m2. 
  i Calculate the capacitance of the capacitor. [2]
  ii Determine the charge on one of the parallel plates of the capacitor. [2]
  iii Calculate the energy stored in the electric fi eld in between the plates. [2]
c A dielectric of electric permittivity ε = 12ε0 is inserted between the parallel plates of the capacitor. 

State and explain the eff ect of this, if any, on:
  i the charge on one of the plates [1]
  ii the potential diff erence between the plates [3]
  iii the capacitance. [2]

16 a  Using the components below draw a circuit that will make it possible to fi rst charge the uncharged 
capacitor and then let it discharge. [3]

+ + + + + + + +

– – – – – – – –

V = 9.0 V

0

14q / nC

0 5 30 35
t /ms

10 15 20 25

2

4

6

8

10

12

b The graph shows how the charge on the capacitor in a varies with time as the capacitor is being charged.

  i Estimate the charge on one of the capacitor plates after charging for a long time. [1]
c The emf of the battery that charged the capacitor was 6.0 V. 
  i Show that the capacitance of the capacitor is 2.0 nF.  [2]
  ii Calculate the energy transferred by the battery during the charging of the capacitor. [2]
  iii Calculate the energy stored in the capacitor after it is fully charged. [2]
  iv Compare and contrast the answers to ii and iii. [2]
d The capacitor is now allowed to discharge through a resistor of resistance 2.5 MΩ.
  Calculate the current through the resistor when the charge on one of the plates has been reduced to 8.0 nC. [4]
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Quantum and nuclear physics (HL)  12
12.1 The interaction of matter with 
radiation
This section deals with an array of new phenomena. The photoelectric 
eff ect and the spectra of atoms were unsolved problems in physics for the 
entire second half of the 19th century. Their solution paved the way for 
quantum theory, with its own array of unusual concepts and phenomena 
such as the wavefunction, the uncertainty principle and tunnelling.

Photons and light
Light is said to be an electromagnetic wave consisting of oscillating 
electric and magnetic fi elds. This was Maxwell’s great discovery in the 
19th century. The wave has some wavelength λ and a frequency f and, as 
with all waves, the wave speed c is given by:

c = f λ

where in this case the wave speed is the speed of light.
Through Maxwell’s theory, complex phenomena such as diff raction, 

interference, polarisation and others could be understood. The successful 
application of Maxwell’s theory meant that light was defi nitely and 
without any doubt a wave. It therefore came as a shock that, in a 
phenomenon known as the photoelectric eff ect, light did not behave as 
a wave should. (We shall look at this phenomenon in more detail in the 
next subsection.)

As we will see, Einstein suggested that light should be thought of as a 
collection of quanta, or bundles of energy. Each quantum or bundle of light 
has energy E given by E = hf, where f is the frequency of the light and h is 
Planck’s constant. A beam of light of frequency f is now to be thought of as 
a very large number of these quanta moving at the speed of light. The total 
energy of the beam is then the product of hf (the energy of one quantum) 
times N the number of quanta in the beam. The energy of the beam is 
therefore an integral multiple of the basic unit hf. No amount of energy less 
than hf would ever be found in the beam. These quanta have defi nite energy 
and are localised in space; this means that they behave as particles. But the 
theory of relativity states that if a particle moves at the speed of light it has 
to have zero mass. So this quantum of light, which came to be known as the 
photon, is a particle with zero mass and zero electric charge. 

In Topic 7 we saw that a photon can be created when an atom makes a 
transition from a high to a lower energy. Its energy is the energy diff erence 
of the two levels. A photon can also be absorbed by an atom. An atom in a 
low energy state can absorb a photon of just the right energy and make a 
transition to a higher energy level. When we look at the light from a light 
bulb we see a continuous emission of light. But if we could slow down the 

Learning objectives

• Understand the nature of 
photons and why they were 
needed to explain experimental 
results.

• Discuss the photoelectric eff ect.
• Understand the concept of 

matter waves.
• Solve problems involving pair 

production and pair annihilation.
• Understand the consequences of 

angular momentum quantisation 
in the Bohr model.

• Understand the concept of the 
wavefunction.

• Work with the Heisenberg 
uncertainty principle.

• Qualitatively understand 
barrier tunnelling and the 
factors aff ecting the tunnelling 
probability.
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process by a few billion times, the continuity in the emission of light would 
stop. We would see diff erent spots on the fi lament emit tiny fl ashes of light 
(photons) at random interval of time; the spots on the fi lament would be 
on (emitting) and off  (not emitting) randomly. The discreteness of energy 
we talked about in Topic 7 would surface again. 

In Einstein’s theory of special relativity the total energy E, the 
momentum p and the mass m of a particle are related according to: 

E2 = p2c2 + m2c4 

The mass of the photon is zero, so E = pc. The photon therefore has 

momentum p = 
E
c . (This implies that the conventional Newtonian formula 

for momentum, p = mv, does not apply to particles with zero mass.) So the 
momentum of the photon is:

p = 
E
c  = 

hf
c  = 

h
λ

Exam tip
Remember the basic formula 
from waves: c = f λ.

Worked examples
12.1 Estimate how many photons of wavelength 5.0 × 10−7 m are emitted per second by a 60 W lamp, assuming 

that 1% of the energy of the lamp goes into photons of this wavelength.

Let there be N photons per second emitted. 

Then the energy they carry is 
Nhc

λ  in one second.

This has to be 1% of 60 J, that is 0.60 J.

So: 
Nhc

λ  = 0.60

 N = 
0.60λ

hc

 N = 
0.60 × 5.0 × 10−7

6.63 × 10−34 × 3.0 × 108

⇒ N = 1.5 × 1018 photons per second.

12.2 All the photons from Worked example 12.1 are incident normally on a mirror of area 0.5 m2 and are 
refl ected by it. Estimate the pressure these photons exert on the mirror.
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Each photon has a momentum of  
E
c  or 

h
λ

The momentum change upon refl ection is 2 
h
λ (momentum is a vector!).

Since there are N such refl ections per second, the force F on the mirror is:

 F = 2N 
h
λ

 F = 2 × 1.5 × 1018 × 
6.63 × 10−34

5.0 × 10−7

⇒ F = 4.0 × 10−9 N

The pressure is thus:

F
A = 8.0 × 10−9 N m−2

(Note that if the photons were absorbed rather than refl ected, the pressure would be half that obtained here.)

The photoelectric eff ect
The photoelectric eff ect is the phenomenon in which light (or other 
forms of electromagnetic radiation) incident on a metallic surface causes 
electrons to be emitted from the surface. 

To investigate the facts about the photoelectric eff ect, apparatus like the 
one in Figure 12.1 may be used.

evacuated tube

variable voltage

photo-surface

electron

light

G

collecting plate

Figure 12.1 Apparatus for investigating the photoelectric eff ect. The variable voltage 
decelerates the emitted electrons and eventually stops them.

It consists of an evacuated tube, inside which is the photo-surface (the 
metallic surface that light is incident on). Light passes through an opening 
in the tube and falls on the photo-surface, which emits electrons. Some 
of the emitted electrons arrive at the collecting plate. The photo-surface 
and the collecting plate are part of a circuit as shown. Those electrons that 



484

make it to the collecting plate complete the circuit and so we have an 
electric current that is recorded by the sensitive galvanometer. 

Notice that in Figure 12.1 the negative terminal of the variable power 
supply is connected to the collecting plate. This means that the collecting 
plate actually repels the emitted electrons. Only the very energetic 
electrons will make it to the plate. As the magnitude of the voltage is 
increased (i.e. made more negative) fewer and fewer electrons make it to 
the plate; eventually no electron will arrive there and at that point the 
current becomes zero. The voltage at which the current becomes zero 
is called the stopping voltage, Vs. Its signifi cance is that the maximum 
kinetic energy of the emitted electrons must be eVs. We see this as follows: 
let the maximum kinetic energy of the electrons be Emax as they leave 
the photo-surface; the work done in moving an electron from the photo-
surface to the collecting plate is eVs. From mechanics we know that the 
work done is the change in the kinetic energy of the electron. So:

eVs = Emax

We now connect the positive terminal of the power supply to the 
collecting plate. The electrons are now attracted to the collecting plate and 
the current increases. As the voltage is increased even more the current 
saturates, i.e. it approaches a constant value. This is because the collecting 
plate is so positive that it attracts every single emitted electron (even 
those that were not directed at the collected plate). So we have a current–
voltage graph like the one in Figure 12.2. 

Worked example
12.3 Using the graph of Figure 12.2 determine:

a the stopping voltage
b the maximum energy of the emitted electrons
c the maximum speed of the emitted electrons.

a The current becomes zero when the voltage is –0.40 V so the stopping voltage is 0.40 V.

b The maximum kinetic energy of the emitted electrons is 0.40 eV = 6.4 × 10–20 J. 

c From Emax = 12mv2, we fi nd v =    
2Emax

m , giving:

 v =    
2 × 6.4 × 10−20

9.1 × 10−31  = 3.8 × 105 m s−1

The results of this experiment reveal two immediate surprises: the fi rst 
is that changing the intensity of the light does not aff ect the stopping 
voltage! Light from a candle and light from an airport searchlight give the 
same stopping voltage. Figure 12.3 shows that the stopping voltage for 
weak light (thin line) and intense light (thick line) are the same. 

Exam tip
The stopping voltage is strictly 
negative but we work with its 
magnitude.
It is very important to 
understand that the stopping 
voltage gives the maximum 
kinetic energy of the emitted 
electrons.

Current / nA

–1 10 2 3 4

0.5

1.0

1.5

2.0

Voltage / V

Figure 12.2 When the collecting plate is 
connected to the negative terminal of the 
power supply, there is a voltage at which the 
current becomes zero (Vs).
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The stopping voltage is independent of the intensity of the light 
source.

 The second surprise is that the stopping voltage depends on the 
frequency of the light. The higher the frequency, the higher the magnitude 
of the stopping voltage. This is shown in Figure 12.4: the violet curve 
corresponds to violet light and the green curve to green light of lower 
frequency. The stopping voltages are 0.40 V for green and 1.0 V for violet.

If we plot the kinetic energy of the electrons (which equals eVs) versus 
frequency, we fi nd a straight line as shown in Figure 12.5a.

The puzzling feature of this graph is that there exists a frequency, 
called the critical (or threshold) frequency fc, such that no electrons at all 
are emitted if the frequency of the light source is less than fc. This is true 
even if very intense light is allowed to fall on the photo-surface. When 
the experiment is repeated with a diff erent photo-surface and the kinetic 
energy of the electrons is plotted versus frequency, a line parallel to the 
fi rst is obtained, as shown in Figure 12.5b.
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a b

Figure 12.3 The stopping voltage for weak 
light (thin line) and intense light (thick line) 
of the same frequency.

Figure 12.4 The stopping voltages for green 
and violet light.

Figure 12.5 a The graph of kinetic energy versus frequency is a straight line. The 
horizontal intercept is the critical frequency, fc. b When another photo-surface is used, 
a line parallel to the fi rst is obtained.

The fi nal puzzling observation in these experiments is that the 
electrons are emitted immediately after the light is incident on the photo-
surface, with no apparent time delay.

We now have four surprising observations:

1 The intensity of the incident light does not aff ect the energy of 
the emitted electrons.

2 The electron energy depends on the frequency of the incident 
light.

3 There is a certain minimum frequency below which no 
electrons are emitted.

4 Electrons are emitted with no time delay.

These four observations cannot be understood in terms of light as a wave 
for several reasons:
• If light is a wave, then an intense beam of light carries a lot of energy 

and so it should cause the emission of electrons that have more energy. 
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• The formula for the energy of a light wave does not include the 
frequency, and so frequency should play no role in the energy of the 
emitted electrons. In the same way there can be no explanation of a 
critical frequency.

• Finally, a very low intensity beam of light carries little energy. An 
electron might have to wait for a considerable length of time before it 
accumulated enough energy to escape from the metal. This would cause 
a delay in its emission.

Einstein’s explanation
The explanation of all these strange observations was provided by Albert 
Einstein in 1905.

Einstein suggested that light consists of photons, which are 
quanta or bundles of energy and momentum. The energy 
of one such quantum is given by the formula:

E = hf

where f is the frequency of the electromagnetic radiation and 
h = 6.63 × 10−34 J s is a constant, known as Planck’s constant.

Einstein’s mechanism for the photoelectric eff ect is that a single photon 
of frequency f is absorbed by a single electron in the photo-surface, so the 
electron’s energy increases by hf. The electron will have to spend a certain 
amount of energy, let us say Φ, to free itself from the pull of the nuclei 
of the atoms of the photo-surface. The electron will be emitted (become 
free) if hf is bigger than Φ. The diff erence hf – Φ will simply be the kinetic 
energy EK of the (now) free electron (Figure 12.6). That is:

EK = hf − Φ

The value of Φ (called the work function) is read off  the graph, from 
the intercept of the straight line with the vertical axis. Note that the work 
function and the critical frequency are related by:

hfc = Φ

since EK = 0 in that case.
In the photoelectric apparatus, the maximum kinetic energy of the 

electrons is measured to be eVs = Emax. So:

Emax = hf − Φ

It follows that:

eVs = hf − Φ

Vs = 
h
e f − 

Φ
e

Exam tip
A simple analogy to see the 
diff erence between light as a 
wave and light as a particle 
is the following: imagine 
winning a huge amount of 
money in a lottery, say 100 
million euro. If this were to 
be given to you in the wave 
model of light you might have 
to wait a very long time to get 
all the money, if the money 
were paid to you at a rate of 
one million euro a year. In the 
photon model, all the money 
would be given to you at once.

photon hf electron
escapes

energy

a

b

Φ

Φ

photon hf 
electron just
escapes    

energy

Figure 12.6 a A single photon of light may 
release a single electron from a metal. b A 
more tightly bound electron needs more 
energy to release it from the metal.
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That is, in a graph of stopping voltage versus frequency, the graph is a 
straight line with slope h/e.

Worked examples
12.4 A photo-surface has a work function of 1.50 eV.

a Determine the critical frequency.
b Light of frequency 6.10 × 1014 Hz falls on this surface. 

Calculate the energy and speed of the emitted electrons.

a The critical frequency fc is given in terms of the work function by hfc = Φ and thus:

  fc = 
Φ
h

 = 
1.50 × 1.6 × 10−19

6.63 × 10−34

  fc = 3.62 × 1014 Hz

b The maximum kinetic energy of the electron is Emax = hf − Φ, i.e.
 Emax = hf − hfc = h( f − fc)

 Emax = 6.63 × 10–34× (6.10 − 3.62) × 1014 = 1.64 × 10−19 J (= 1.03 eV)

 From E = 12mv2 we fi nd:

  v =    
2Emax

m

  v =    
22 × 1.64 × 10−19

9.1 × 10−31  (Use joules for Emax to fi nd v.)

⇒ v = 6.0 × 105 m s−1

12.5 Monochromatic light of power P and wavelength 4.0 × 10−7 m falling on a photo-surface whose critical 
frequency is 6.0 × 1014 Hz releases 2.0 × 1010 electrons per second. 
a Determine the current collected in the anode. 
b The power of the light is increased to 2P. Predict the value of the new current. 
c Light of power 2P and wavelength 6.0 × 10−7 m falls on this photo-surface. Determine the current in 

this case.

a The defi nition of electric current is I = 
∆q
∆t . 

 In a time of 1 second, the number of electrons emitted is 2.0 × 1010 and so the charge they carry is e × 2.0 × 1010. 

 The current is thus I = e × 2.0 × 1010, i.e. 

 I = 3.2 × 10−9 A.

b If the power doubles, the number of photons will double and so the number of electrons emitted will double. 
Thus, so will the current, giving I = 6.4 × 10−9 A.

Exam tip
Remember to use energy in joules 
to calculate the critical frequency.
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c The critical frequency fc is 6.0 × 1014 Hz . From the wave equation, c = fc × critical wavelength.

 So the critical wavelength is:

 λc = 
c
fc
 = 

3 × 108

6.0 × 1014 = 5.0 × 10−7 m

  So if the wavelength becomes 6.0 × 10−7 m, no electrons will be emitted at all, hence I = 0.

12.6 The green light in Figure 12.4 has a wavelength of 496 nm.
a Determine the work function of the photo-surface. 
b Estimate the wavelength of the violet light in that experiment.

a The stopping voltage is 0.40 V and so, using eVs = hf − Φ we deduce that:

  Φ = 
hc
λ  − eVs

  Φ = 
1.24 × 10−6

4.96 × 10−7 − 0.40

  Φ = 2.10 eV

b We again use eVs = hf − Φ to get that 
hc
λ  = eVs + Φ.

 The stopping voltage is 1.0 eV and so:

  
hc
λ  = 1.0 + 2.1

  
hc
λ  = 3.1 eV

Hence:

λ = 
hc

3.10

λ = 
1.24 × 10−6

3.1

λ = 4.0 × 10−7 m

Exam tip
Notice the use of hc = 1.24 × 10−6 eV m, which makes 
calculations much faster. This constant is in the IB data booklet.

Matter waves
In 1923, Louis de Broglie suggested that to any particle of momentum 
p, there corresponds a wave of wavelength given by the formula (h is 
Planck’s constant):

λ = 
h
p

The de Broglie hypothesis, as this is known, thus assigns wave-like 
properties to something that is normally thought to be a particle. This 
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state of aff airs is called the duality of matter. All moving particles (not 
just electrons) are assigned a wavelength.
What does it mean to say that the electron has wave-like properties? One 
thing it does not mean is to think that the electron oscillates up and down 
as it moves along.

Showing wave-like properties means showing the basic phenomena of 
waves: diff raction and interference. A wave of wavelength λ will diff ract 
around an obstacle of size d if λ is comparable to or bigger than d. In 
Worked example 12.7 we calculated a typical electron wavelength to be of 
order 10−10 m. This distance is typical of the separation of atoms in crystals, 
and it is there that electron diff raction and interference will be seen.

Worked example
12.7 Find the de Broglie wavelength of an electron that has been accelerated from rest by a potential diff erence 

of 54 V.

The kinetic energy of the electron is given by EK = 
p2

2m

The work done in accelerating the electron through a potential diff erence V is qV, and this work goes into kinetic 
energy. Thus:

 
p2

2m
 = qV

⇒ p =    2mqV

Hence:

 λ = 
h

  2mqV

 λ = 
6.63 × 10−34

  2 × 9.1 × 10−31 × 1.60 × 10−19 × 54

 λ = 1.7 × 10−10 m

Exam tip
It is preferable to use EK = 

p2

2m
 for kinetic energy 

rather than EK = 12mv2.

Exam tip
The formula λ = 

h
  2mqV

 is very useful in paper 1 

questions, where it is often required to know that 

λ ∝ 
1

√V

Davisson and Germer investigated the 
scattering of low-energy electrons from a 
nickel surface. Initial results showed that, for 

fi xed electron energy, the intensity of the electron 
beam decreased sharply as the scattering angle θ 
increased. A container of liquid air was accidentally 
dropped, breaking the glass jar housing the apparatus 
and exposing the nickel surface (which was 
surrounded by vacuum) to air, oxidising it. To remove 
the oxide, Davisson and Germer heated the surface in 

an atmosphere of hydrogen. The scattering of electrons 
was continued but now the results were very diff erent. 
The intensity of the scattered electron beam varied 
strongly with scattering angle. After much thought, 
Davisson and Germer realised that they were dealing 
with scattering from a single crystal of nickel (that had 
grown on the surface as a result of heating it). Using 
crystals of known interatomic spacing, they eventually 
concluded they were seeing of electron diff raction 
with a wavelength given by the de Broglie formula.
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electron
gun

V

detector

electron
beam

Time

Experiments showing the wave nature of the electron were carried out 
in 1927 by Clinton J. Davisson (1881–1958) and Lester H. Germer (1896–
1971), and also by George Thomson (1892–1975), son of J.J. Thomson, the 
discoverer of the electron. In the Davisson–Germer experiment, electrons 
of kinetic energy 54 eV were directed at a surface of nickel where a single 
crystal had been grown and were scattered by it (Figure 12.7).

Figure 12.7 The apparatus of Davisson and Germer. Electrons emitted from the hot 
fi lament of the electron gun are accelerated through a known potential diff erence V 
and are then allowed to fall on a crystal. The positions of the scattered electrons are 
recorded by a detector.

d

θ

Figure 12.8 Electrons scattering off  the top 
layer of atoms in a crystal will interfere. The 
path diff erence is shown in blue.

Figure 12.9 Feynman diagram for pair 
annihilation.

Because the electron energy is low, the electrons could not penetrate 
the crystal and were scattered by just the top layer of atoms (Figure 12.8). 
The path diff erence between successive scattered electrons is d sin θ. 
When this is an integer multiple of the wavelength, we have constructive 
interference (the argument is the same as that given in Topic 9 for the 
diff raction grating):

d sin θ = nλ

In the Davisson–Germer experiment the distance d was known to be 
0.215 nm. The fi rst maximum (n = 1) was observed at an angle θ = 54°. 
This allows determination of the wavelength:

λ = d sin θ = 0.215 × 10−9 × sin 54° = 1.7 × 10−10 m

We have already calculated the de Broglie wavelength of the electron that 
had been accelerated by a potential diff erence 54 V in Worked example 
12.7; it was found to be 1.7 × 10−10 m. This is in excellent agreement with 
the experiment, thus verifying the de Broglie hypothesis.

Pair annihilation and pair production
One of the striking features of quantum theory is the ability to convert 
matter into energy and vice versa. We know that for every particle 
there exists an anti-particle with the same mass (but opposite all other 
properties). What would happen if a particle collided with its anti-particle 
(Figure 12.9)? This process is known as pair annihilation.
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Consider for simplicity an electron of kinetic energy EK that collides 
with a positron (the anti-particle of the electron) that moves in the 
opposite direction with the same kinetic energy. The total energy of the 
electron–positron system before they collide is ET = 2(mc2 + EK). This 
energy will be converted into the energy of two photons: the photons 
must be moving with the same energy in opposite directions and so they 
have the same wavelength:

λ = 
hc

mc2 + EK

The longest wavelength will be emitted when the particles are more or 
less at rest, EK = 0, and so in this case: 

λ = 
hc

mc2

λ = 
1.24 × 10−6

0.511 × 106
  (recall from the IB data booklet that, for the electron, 

mc2 = 0.511 × 106 eV)

λ = 2.4 × 10−12 m

A single photon cannot materialise into a particle–anti-particle pair 
because such a process cannot conserve energy and momentum. But a 
single photon can make use of a nearby nucleus (Figure 12.10) to produce 
a particle–anti-particle pair. The presence of the nucleus helps conserve 
energy and momentum. This process of pair creation, in eff ect, is a case 
where energy is converted into matter. 

Worked example
12.8 a Estimate the wavelength of a photon that can just produce an electron–positron pair.
 b Explain why this is only an estimate and not an accurate result.

a ‘Just’ producing the pair means producing it at rest. Thus the energy that needs to be provided is just the rest 
energy of particle, i.e. 2mc2. This energy is therefore 2 × 0.511 = 1.02 MeV.

 The energy of a photon is 
hc
λ  and so:

 
hc
λ  = 1.02 × 106

 λ = 
hc

1.02 × 106

 λ = 
1.24 × 10−6 eV m

1.02 × 106 eV

 λ = 1.2 × 10−12 m

b This is only an estimate because one photon by itself cannot create the pair. It needs the presence of a nucleus 
that will share in energy and momentum conservation. The answer in a has not taken into account the nucleus.

nucleus

pair produced 

photon that 
materialises

Time

Figure 12.10 Feynman diagram for pair 
production. A nearby nucleus is required.
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Quantisation of angular momentum
Niels Bohr (1885–1962) was a Danish physicist who studied the hydrogen 
atom (Figure 12.11). This is the simplest atom, consisting of a nucleus of a 
single proton and a single electron orbiting it (Figure 12.12).

electron

proton

Figure 12.11 A young Niels Bohr.

Let us calculate the total energy ET of the orbiting electron. It is:

ET = 
1
2mv 2 +   − 

ke2

r  
 kinetic  electric potential

But the electron is acted upon by the electric force, and so:

ke2

r2  = 
mv2

r

From this we deduce that mv 2= 
ke2

r , and so the total energy becomes:

ET = 
1
2 

ke2

r  − 
ke2

r

ET = − 
1
2 

ke2

r

At this point Bohr made the revolutionary assumption that the angular 
momentum of the orbiting electron, i.e. the quantity L = mvr, is 
quantised. By this he meant that L is an integral multiple of a basic unit, 

the unit being 
h
2π

 . Here h is Planck’s constant. The Bohr condition is 
therefore:

mvr = 
nh
2π

If we accept this for a moment, then we have that:

m2v2r2 = 
n2h2

4π2

and so mv2 = 
n2h2

4π2mr2

Figure 12.12 An electron orbiting a proton. The force on the electron is the electric 
force.

Exam tip
There is a lot of algebra in this 
derivation that must be learned 
carefully.

There are clear similarities 
here with the work done in 
Topic 10 on orbital motion in 
gravitation.
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But earlier we found that mv2 = 
ke2

r , so substituting for mv2 we get:

ke2

r  = 
n2h2

4π2mr2

This gives the extraordinary result that the orbital radius cannot be 
anything we wish: it equals

r = 
h2

4π2ke2m
 × n2

Putting in the constants (using slightly more accurate values than those 
listed in the data booklet) gives:

r = 
(6.626 × 10−34)2

4π2 × 8.988 × 109 × (1.602 × 10−19)2 × 9.109 × 10−31 × n2

r = 0.5 × 10−10 × n2 m

What is now even more extraordinary is that the total energy of the 
orbiting electron is:

E = −
2π2me4k2

h2
 × 

1
n2

We can combine all the constants in the fi rst term in the expression as C, 
to give:

E = −
C
n2

Here k is the constant in Coulomb’s law, m is the mass of the electron, 
e is the charge of the electron and h is Planck’s constant. Numerically 
(again, using slightly more accurate values) C equals:

C = 
2π2(9.109 × 10−31)(1.602 × 10−19)4(8.988 × 109)2

(6.626 × 10−34)2
 × n2

C = 2.170 × 10−18 J

C = 13.6 eV

So that fi nally, we obtain:

E = −
13.6
n2  eV

In other words, the theory predicts that the electron in the hydrogen atom 
has discrete or quantised energy. As we saw in Topic 7, this explains the 
emission and absorption spectra of hydrogen.
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Worked examples
12.9 In gravitation the period of revolution T of a planet in a circular orbit of radius R around the Sun obeys 

T2 ∝ R3. Deduce the corresponding relation in the Bohr hydrogen model for an electron.

From mvr = 
nh
2π we see that v ∝ 

n
r . This means that 

2πr
T  ∝ 

n
r  But v ∝ n2 and so T ∝ wr 3/2 as in gravitation!

12.10 Before Bohr, Johann Balmer (1825–1898) deduced experimentally that the photons emitted in transitions 
from a level n to the level n = 2 of hydrogen have wavelengths given by:

 λ = 
Bn2

n2 − 4

 where B is a constant. Justify this formula on the basis of the Bohr theory for hydrogen and fi nd an 
expression for the constant B.

Balmer considered transitions from an energy level n down to the energy level 2. Let the diff erence in energy of the 
electron in level n and level n = 2 be ∆E. Then:

∆E = − 
C
n2 − − 

C
22

where C = 
2π2me4k2

h2  This energy ∆E is equal to the energy of the emitted photon, i.e. 
hc
λ . Thus:

hc
λ

 = 
C
n2 − − 

C
22

1
λ
 = 

C
hc

 
1
4
  −  

1
n2

1
λ
 = 

C
hc

 × 
n2 − 4
4n2

This implies fi nally that λ = 
4hc
C

 × 
n2

n2 − 4

This is precisely Balmer’s formula with B = 
4hc
C

12.11 Show that the Bohr condition for the quantisation of angular momentum is equivalent to 2πr = nλ, where λ 
is the de Broglie wavelength of the electron and r the radius of its orbit. 

The Bohr condition is that: mvr = 
nh
2π

This can be re-written as: 2πr = 
nh
mv

But according to de Broglie, 
h

mv = λ, and so we have the result. 
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The result of  Worked example 12.11 shows that the allowed orbits in 
the Bohr model of hydrogen are those for which an integral number of 
electron wavelengths fi t on the circumference of the orbit. Figure 12.13 
shows the electron wave for n = 6. The circle in blue is the actual orbit. 
The solid red and the dotted red lines show the extremes of the electron 
wave. This is reminiscent of standing waves: the electron wave is a standing 
wave on the circumference. We know that standing waves do not transfer 
energy. This is a partial way to understand why the electrons do not 
radiate when in the allowed orbits.

The wavefunction
In the section on matter waves we said that particles exhibit wave-like 
behaviour; in the previous section we showed that the electron wave is 
a standing wave on the circumference of the orbit. But we have never 
specifi ed what kind of waves we are talking about.

In 1926 the Austrian physicist Erwin Schrödinger (1887–1961) (Figure 
12.14) provided a realistic, quantum model for the behaviour of electrons in 
any atom – not just the hydrogen atom. The Schrödinger theory assumes 
as a basic principle that there is a wave associated with the electron (very 
much like de Broglie had assumed). This wave is called the wavefunction, 
ψ(x, t), and is a function of position x and time t. Given the forces that act 
on the electron, it is possible, in principle, to solve a complicated diff erential 
equation obeyed by the wavefunction (the Schrödinger equation) and 
obtain ψ(x, t). For example, there is one wavefunction for a free electron, 
another for an electron in the hydrogen atom, etc.

The interpretation of what ψ(x, t) really means came from the German 
physicist Max Born (1882–1970). He suggested that the probability 
P(x, t) that an electron will be found within a small volume ∆V near 
position x at time t is:

P(x, t) = |ψ(x, t)|2∆V

Figure 12.13 The allowed electron orbits are those for which an integral number of 
electron wavelengths fi ts on the circumference of the orbit. 

Figure 12.14 Erwin Schrödinger.
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The theory only gives probabilities for fi nding an electron somewhere – it 
does not pinpoint an electron at a particular point in space. This is a radical 
change from classical physics, where objects have well-defi ned positions.

The Copenhagen 
interpretation of quantum 
mechanics

Through Bohr’s own work and the numerous 
discussions of Bohr with his visitors at his institute 
at Blegdamsvej 17 in Copenhagen, the presently 
accepted interpretation of quantum mechanics is 
called the Copenhagen interpretation. It states that 
any physically meaningful quantity about a system can 
only be obtained from knowledge of its Schrödinger 
wavefunction, ψ. It also states that at any one time 
the system’s wavefunction is a superposition of 
all possible states available to the system and that 
once a measurement is made that shows, for example, 
that the system has a particular momentum, then the 
wavefunction collapses to a wavefunction representing 
that particular momentum.

Not everyone has been comfortable with this 
interpretation. Schrödinger himself devised a 
situation that purports to show this interpretation 
is not sound. He thought of a cat in a box along 
with some radioactive atoms and a fl ask of poison. 
By some arrangement, if an atom decays the fl ask 
breaks releasing the poison and killing the cat. So 
the wavefunction of the cat is a superposition of the 

two states available to the cat, dead or alive. If we 
open the box and see that the cat is alive then the 
cat’s wavefunction collapses to one representing a live 
cat. But before opening the box we don’t know. This 
bothers many physicists. Physics Nobel prize winner 
Steven Weinberg says in a July 2013 interview in 
Physics Today: 

Some very good theorists seem to be happy 
with an interpretation of quantum mechanics 
in which the wavefunction only serves to allow 
us to calculate the results of measurements. But 
the measuring apparatus and the physicist are 
presumably also governed by quantum mechanics, 
so ultimately we need interpretive postulates that 
do not distinguish apparatus or physicists from 
the rest of the world, and from which the usual 
postulates like the Born rule can be deduced. This 
eff ort seems to lead to something like a ‘many 
worlds’ interpretation, which I fi nd repellent. 
Alternatively, one can try to modify quantum 
mechanics so that the wavefunction does describe 
reality, and collapses stochastically and nonlinearly, 
but this seems to open up the possibility of 
instantaneous communication. I work on the 
interpretation of quantum mechanics from time to 
time, but have gotten nowhere.

So, fi nally, the kind of wave that we are referring to is a probability 
wave: a wave that gives the probability of fi nding a particle near a 
particular position. So when we say that the scattered electrons in the 
Davisson–Germer experiment interfere, what we mean is that the 
probability waves of the electrons interfere.

When the Schrödinger theory is applied to the electron in a hydrogen 
atom, it gives all the results that Bohr derived (the correct energy levels, 
for example). But it also predicts the probability that a particular transition 
will occur. This is necessary in order to understand why some spectral 
lines are brighter than others. Thus the Schrödinger theory explains 
atomic spectra for hydrogen and all other elements.
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The uncertainty principle
The Heisenberg uncertainty principle is named after Werner Heisenberg 
(1901–1976), one of the founders of quantum mechanics (Figure 12.15). 
He discovered the principle in 1927. The basic idea behind it is the 
wave–particle duality. Particles sometimes behave like waves and waves 
sometimes behave like particles, so that we cannot cleanly divide physical 
objects as either particles or waves.

Duality
We have seen confl icting descriptions of physical objects. 

In Topic 9 we saw clear evidence that light behaves as a wave. In 
Topic 12 we see that light behaves as particles. In Topic 5 the 
motion of electrons in electric and magnetic fi elds was seen to obey 
the laws of Newtonian particle mechanics. In Topic 12 de Broglie 
tells us that electrons diff ract the way waves do. This state of aff airs 
is called the duality of matter – it shows the inadequacy of ordinary 
language to provide adequate descriptions of physical objects. It is 
made worse when we realise that two-slit interference experiments 
have been performed with light that is so weak that photons go 
through the slits one at a time. If so, what is the one photon going 
through a slit at a particular instant of time interfering with? Similar 
arguments may be made for electrons going through slits one at a 
time. The way out is to insist that the correct description during the 
passage through the slits is the wave description. In that case we can 
understand interference because a wave describes the object through 
the slits and the wave, because of its spread-out wavefront, covers 
both slits.

The Heisenberg uncertainty principle applied to position and 
momentum states that it is not possible to measure simultaneously 
the position and momentum of a particle with indefi nite precision. 
This has nothing to do with imperfect measuring devices or 
experimental errors. It represents a fundamental property of 
nature. The uncertainty ∆x in position and the uncertainty ∆p in 
momentum are related by:

∆x∆p ≥ 
h
4π

where h is Planck’s constant.

This says that making momentum as accurate as possible makes position 
inaccurate, whereas accuracy in position results in inaccuracy in 
momentum. In particular, if one is made zero, the other has to be infi nite.

Figure 12.15 Werner Heisenberg.
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Where does a formula like this come from? To get a rough answer 
consider the following argument due to Heisenberg. Imagine a horizontal 
beam of electrons travelling towards a circular aperture (Figure 12.16). We 
wish to make this beam as narrow as possible.

When the beam is made narrow the uncertainty in the vertical position 
of an electron is reduced. We can have a beam of width b if we let the beam 
go through a hole of diameter b. The uncertainty in position ∆x is then:

Δx ≈ 
b
2

We can make the electron beam as thin as possible by making the opening 
as small as possible. 

However, we will run into a problem as soon as the opening becomes 
of the same order as the de Broglie wavelength of the electrons. A wave 
of wavelength λ will diff ract when going through an aperture of about 
the same size as the wavelength. The electron will diff ract through the 
opening, which means that a few electrons will emerge from the opening 
with a direction that is no longer horizontal.

We can describe this phenomenon by saying that there is an 
uncertainty in the electron’s momentum in the vertical direction, of 
magnitude Δp. Figure 12.17 shows that there is a spreading of the 
electrons within an angular size 2θ.

b

θ electrons observed 
within this areab

θ
∆ p

p

Figure 12.16 The narrower the beam, 
the smaller the uncertainty in the vertical 
position of an electron.

The angle by which the electron is diff racted is given by:

θ ≈ 
λ
b

where b is the opening size. But from Figure 12.17, θ ≈ 
Δp
p  . Therefore:

λ
b ≈ 

Δp
p

But b ≈ 2Δx so:

 
λ

2Δx ≈ 
Δp
p

⇒ ΔxΔp ≈ 
λp
2

The de Broglie wavelength is given by λ = 
h
p. So:

ΔxΔp ≈ 
h
2

Figure 12.17 An electron passing through a slit suff ers a defl ection in the vertical 
direction.
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This is a simple explanation of where the uncertainty formula comes 
from. (This is derivation is only approximate, which is why we are missing 
a factor of 2π.)

Worked example
12.12 A very fi ne beam of electrons with speed 106 m s−1 are directed horizontally towards a slit whose opening 

is 10−10 m. Electrons are observed on a screen at distance of 1 m from the slit. Estimate the length on the 
screen where appreciable numbers of electrons will be observed.

There is an uncertainty of 10−10 m in the vertical component of the position of the electron. Therefore there will be 
an uncertainty in the vertical component of momentum of: 

Δpy ≈ 
6.63 × 10−34

4π × 10−10  ≈ 5 × 10−25 N s

The momentum of the electrons is p ≈ 9.1 × 10−31 × 106 ≈ 9 × 10−25 N s. The electrons will therefore be deviated by 
an angle θ given by:

θ ≈ 
Δpy

p
 ≈ 

5 × 10−25

9 × 10−25 ≈ 0.5 rad

The electrons will therefore be observed in region of length 2 × 0.5 × 1 = 1 m.

‘Electron in a box’
As an application of the uncertainty principle, consider an electron 
confi ned in a region of size L. The electron can only move back and forth 
along a straight line of length L. Then the uncertainty in position must 

satisfy Δx ≈ 
L
2, and so the uncertainty in momentum must be:

Δp ≈ 
h

4πΔx ≈ 
h

2πL

The electron must then have a kinetic energy of:

EK = 
p2

2m
 ≈ 

Δp2

2m
 = 

h2

8π2mL2

We may apply this result to an electron in the hydrogen atom. The size of 
the region within which the electron is confi ned is about L ≈ 10–10 m. Then:

EK ≈ 
h2

8π2mL2 = 
(6.6 × 10−34)2

8π2(9.1 × 10−31)(10−10)2

EK ≈ 6 × 10−19 J ≈ 4 eV

which is in fact just about right for the electron’s kinetic energy. This 
shows that the uncertainty principle is an excellent tool for making 
approximate estimates for various quantities.

Exam tip
An uncertainty in position Δx 
implies an uncertainty in the 

momentum: Δp ≈ 
h

4πΔx
Now the momentum will be 
measured to be p0 + Δp. The 
least magnitude of p0 is 0, and 
so the least possible magnitude 
of the momentum of the 
electron is Δp. The energy of 
the electron is then at least:

EK ≈ 
p2

2m
 ≈ 

Δp2

2m
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Uncertainty in energy and time
The uncertainty principle also applies to measurements of energy and 
time. If the energy of a state is measured with an uncertainty ∆E, then the 
lifetime of the state is of order ∆t such that:

ΔEΔt ≥ 
h
4π

This is also applies to decaying particles, where ∆E is the uncertainty in 
the measured value of the energy released and ∆t is the lifetime of the 
particle.

Exam tip
In the examination, the 
uncertainty relations will be 
used for rough estimates. In 
that case rough equalities 
rather than inequalities will do:

ΔxΔp ≈ 
h
4π

ΔEΔt ≈ 
h
4π

Worked example
12.13 In the decay ρ0 → π+ + π− the uncertainty in the energy released is 153 MeV. Calculate the expected 

lifetime of the ρ0 meson and hence identify the interaction through which the decay takes place.

We will apply the uncertainty relation for energy and time Δt ≈ 
h

4πΔE to get:

Δt ≈ 
6.63 × 10−34

4π × 154 × 106 × 1.6 × 10−19

Δt ≈ 2 × 10−24 s

Lifetimes that are this short are typical of the strong interaction.

Tunnelling
Consider a ball of mass 2 kg that moves with speed 10 m s−1 along the path 
shown in Figure 12.18. The kinetic energy of the ball is 100 J. Ahead of 
the ball is a hill of height 6 m. If the ball was placed at the top of the hill 
it would have potential energy mgh = 120 J. The total energy of the ball is 
only 100 J and so we do not expect the ball to get to the top of the hill 
and roll down the other side. 

The probability of fi nding the ball to the right of the hill is zero. The 
ball will be ‘refl ected’ by the hill. The hill acts as a ‘potential barrier’ to the 
ball. It does not allow the ball to go over the barrier if the ball does not 
have enough energy to get to the top of the barrier.

In microscopic physics the corresponding situation might involve 
protons of total energy E that face a region of positive electric potential 
as shown in Figure 12.19. If the electric potential is V then the energy 
needed by one proton to go over the barrier is eV. 

We expect that if the total energy of the proton is less than eV the 
proton has zero probability of moving from region A, through region B 
and into the ‘forbidden’ region C.

Figure 12.18 The total energy of the ball is 
not enough to go over the barrier so the ball 
will not go over the barrier.

Figure 12.19 A potential barrier to a proton. 
The energy needed to go over is eV.

w

A B C
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But one of the most impressive phenomena of quantum mechanics, 
tunnelling, makes this possible. This is intimately related to the fact 
that particles have wave properties and are described by wavefunctions. 
The Schrödinger theory must be used to determine the wavefunction 
of the protons in each of the three regions A, B and C in such a way 
that the wavefunctions in the three regions join smoothly (no jumps and 
no corners). This makes it necessary to have a non-zero wavefunction 
in region C. It is as if the wavefunction ‘leaks’ into region C. The 
probabilities are shown in Figure 12.20.

Position0

Probability

A B C

In region A we see an oscillating probability. This is evidence for the 
presence of a standing wave: the wavefunction of the incoming protons 
gets superposed with that of the refl ected protons. In region B the 
probability is exponentially decreasing (shown in blue). At the end of 
region B and the beginning of region C the probability is not zero. There 
is a non-zero wavefunction that describes the transmitted protons, those 
that tunnelled through the potential barrier. There is a small but non-zero 
probability of fi nding protons in the forbidden region C.

Three factors aff ect the probability of transmission: 
1 the mass m of the particles
2 the width w of the barrier
3 the diff erence ∆E between the energy of the barrier and that of the 

particles. 
The larger each of these quantities is, the smaller the transmission 
probability. In fact it is known that p ∝ exp (−w   m∆E ). So everything else 
being equal, the transmission probability for electrons is greater than for 
protons, for example.

It is important to realise that the particles that emerge in region C have 
the same energy as they did in region A! Thus the de Broglie wavelength 
in region C is the same as in region A. Strange as it seems, the tunnelling 
phenomenon has very many practical applications, including the scanning 
tunnelling microscope (the microscope that can ‘see’ atoms) (Figure 12.21)
and the tunnel diode (a diode in which the current can be very quickly 
switched between on and off ).

Figure 12.20 The wavefunction ‘leaks’ into the forbidden region C. (The graph shows 
the probability for fi nding the electron, not the wavefunction itself.)

Figure 12.21 Scanning tunnelling 
microscope image of nickel atoms. (Image 
originally created by IBM Corporation.)
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Nature of science
Quantum physics
The study of emission spectra from fl ames revealed characteristic lines 
that could be used to identify diff erent elements. Observations of 
the spectrum of sunlight showed dark absorption lines. In the 1800s 
improved instruments allowed for more accurate measurements of 
the wavelengths of light corresponding to the bright and dark lines in 
spectra. But what was the reason for these lines? As we saw in Topic 7, a 
quantum model was needed to explain these patterns. The fi rst of these 
quantum models was the Bohr model of the hydrogen atom, which 
could predict the wavelengths of the lines in the spectrum of hydrogen. 
To explain the puzzling observations seen in the photoelectric eff ect, 
Einstein suggested that light existed as packets of energy called photons – 
a quantum model for light. Accepting the idea of a wave–particle duality 
revolutionised scientifi c thinking. Any moving particle could have wave-
like characteristics! New ideas opened up new avenues for research, and 
led to the idea of the wavefunction for electrons in atoms, the uncertainty 
principle and probability functions. A whole new branch of physics was 
born – quantum physics.

4 a  State three aspects of the photoelectric eff ect 
that cannot be explained by the wave theory of 
light. For each, outline how the photon theory 
provides an explanation.

 b  Light of wavelength 2.08 × 10−7 m falls on a 
photo-surface. The stopping voltage is 1.40 V.

  i  Outline what is meant by stopping voltage.
  ii  Calculate the largest wavelength of light that 

will result in emission of electrons from this 
photo-surface.

5 a  The intensity of the light incident on a photo-
surface is doubled while the wavelength of light 
stays the same. For the emitted electrons, discuss 
the eff ect of this, if any, on i the energy and ii 
the number. 

 b  To determine the work function of a given 
photo-surface, light of wavelength 2.3 × 10−7 m 
is directed at the surface and the stopping 
voltage, Vs, recorded. When light of wavelength 
1.8 × 10−7 m is used, the stopping voltage is 
twice as large as the previous one. Determine 
the work function.

? Test yourself
1 a  Explain what is meant by the photoelectric 

eff ect.
 b  A photo-surface has a work function of 3.00 eV. 

Determine the critical frequency.
2 a  What evidence is there for the existence of 

photons?
 b  A photo-surface has a critical frequency 

of 2.25 × 1014 Hz. Radiation of frequency 
3.87 × 1014 Hz falls on this surface. Deduce the 
voltage required to stop electrons from being 
emitted. 

3 Light of wavelength 5.4 × 107 m falls on a photo-
surface and causes the emission of electrons of 
maximum kinetic energy 2.1 eV at a rate of 1015 per 
second. The light is emitted by a 60 W light bulb.

 a  Explain how light causes the emission of 
electrons.

 b  Calculate the electric current that leaves the 
photo-surface.

 c Determine the work function of the surface.
 d  Estimate the maximum kinetic energy of 

the electrons when the intensity of the light 
becomes 120 W.

 e  Estimate the current from the photo-surface 
when the intensity is 120 W.
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6 Light falling on a metallic surface of work function 
3.0 eV gives energy to the surface at a rate of 
5.0 × 10−4 W per square metre of the metal’s surface. 
Assume that an electron on the metal surface can 
absorb energy from an area of about 1.0 × 10−18 m2.

 a  Estimate how long will it will take the electron 
to absorb an amount of energy equal to the 
work function.

 b Outline the implication of this.
 c  Describe how the photon theory of light 

explains the fact that electrons are emitted almost 
instantaneously with the incoming photons.

7 a  From the graph of electron kinetic energy EK 
versus frequency of incoming radiation, deduce:

  i the critical frequency of the photo-surface
  ii the work function.
 b  What is the kinetic energy of an electron 

ejected when light of frequency 
f = 8.0 × 1014 Hz falls on the surface?

 c  Another photo-surface has a critical frequency 
of 6.0 × 1014 Hz. On a copy of the graph below, 
sketch the variation with frequency of the 
emitted electrons’ kinetic energy.

8 An electron of kinetic energy 11.5 eV collides 
with a hydrogen atom in its ground state. With 
what possible kinetic energy can this electron 
rebound off  the atom?

9 This question will look at the intensity of radiation 
in a bit more detail. The intensity of light, I, 
incident normally on an area A is defi ned to be 

 I = 
P
A, where P is the power carried by the light.

 a  Show that I = Φhf , where Φ is the photon fl ux 
density, i.e. the number of photons incident on 
the surface per second per unit area, and f is 
the frequency of the light.

 b  Calculate the intensity of light of 
wavelength λ = 5.0 × 10–7 m incident on a 
surface when the photon fl ux density is 
Φ = 3.8 × 1018 m–2 s–1.

 c  The wavelength of the light is decreased to 
λ = 4.0 × 10–7 m. Calculate the new photon 
fl ux density so that the intensity of light 
incident on the surface is the same as that 
found in b.

 d  Hence explain why light of wavelength 
λ = 4.0 × 10–7 m and of the same intensity as 
that of light of wavelength λ = 5.0 × 10–7 m 
will result in fewer electrons being emitted 
from the surface per second.

 e  State one assumption made in reaching this 
conclusion.

10 a  What is the evidence for the existence of 
energy levels in atoms?

 b  Electrons of kinetic energy i 10.10 eV, ii 
12.80 eV and iii 13.25 eV collide with 
hydrogen atoms and can excite these to 
higher states. In each case, fi nd the largest n 
corresponding to the state the atom can be 
excited to. Assume that the hydrogen atoms 
are in their ground state initially.

11 a  What do you understand by the term 
ionisation energy?

 b  What is the ionisation energy for a hydrogen 
atom in the state n = 3?

12 a  Find the smallest wavelength that can be 
emitted in a transition in atomic hydrogen.

 b  What is the minimum speed an electron must 
have so that it can ionise an atom of hydrogen 
in its ground state?

13 Consider a brick of mass 0.250 kg moving at 
10 m s−1.

 a Estimate its de Broglie wavelength.
 b  Comment on whether it makes sense to treat 

the brick as a wave.
14 a  Describe an experiment in which the de 

Broglie wavelength of an electron can be 
measured directly.

 b  Determine the speed of an electron whose de 
Broglie wavelength is equal to that of red light 
(680 nm).

0 2 4 6 8 10
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2
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EK/× 10–19 J

f /× 1014 Hz
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15 a  Show that the de Broglie wavelength of an 
electron that has been accelerated from rest 
through a potential diff erence V is given by:

  λ = 
h

   2meV
 b  Calculate the ratio of the de Broglie 

wavelength of a proton to that of an alpha 
particle when both have been accelerated 
from rest by the same potential diff erence.

 c  Calculate the de Broglie wavelength of an 
electron accelerated from rest through a 
potential diff erence of 520 V.

16 a  Find the de Broglie wavelength of a proton 
(mass 1.67 × 10−27 kg) whose kinetic energy is 
200.0 MeV.

 b  What is the de Broglie wavelength of an 
electron in the n = 2 state of hydrogen?

17 Using the uncertainty principle, show that an 
electron in a hydrogen atom will have a kinetic 
energy of a few eV.

18 a State the de Broglie hypothesis.
 b  Calculate the de Broglie wavelength of 

an electron that has been accelerated by a 
potential diff erence of 5.0 V.

 c  Explain why precise knowledge of the 
wavelength of an electron implies imprecise 
knowledge of its position.

19 An experimenter wishes to make a very narrow 
beam of electrons. To do that, she suggests the 
arrangement shown in the diagram. She expects 
that the beam can be made as narrow as possible 
by reducing the size b of the aperture through 
which the electrons will pass.

 a  Explain why in principle it is not possible to 
make a perfectly narrow beam.

 b  Are her chances of producing a narrow beam 
better with slow or fast electrons?

20 A tennis ball is struck so that it moves with 
momentum 6.0 N s straight through an open 
square window of side 1.0 m. Because of the 
uncertainty principle, the tennis ball may deviate 
from its original path after going through the 
window. Estimate the angle of deviation of the 
path of the tennis ball. Comment on your answer.

21 Theoretically it is possible in principle to balance 
a pencil on its tip so that it stands vertically on a 
horizontal table. Explain why in quantum theory 
this is impossible in principle. (You can turn this 
problem into a good theoretical extended essay if 
you try to estimate the time the pencil will stay 
up after it has been momentarily balanced!)

22 The graphs represent the wavefunctions of two 
electrons. Identify the electron with:

 a the least uncertainty in momentum
 b  the least uncertainty in position.
 Explain your answers.

b

electron
beam

x

x

Ѱ

Ѱ
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12.2 Nuclear physics
In this section we will examine ideas we met earlier in some more detail. 
These include Rutherford scattering (and more importantly, deviations 
from it), nuclear energy levels, the neutrino and the mathematics of 
radioactive decay.

Rutherford scattering
In scattering experiments such as Rutherford’s (see Section 7.3), simple 
energy considerations can be used to calculate the distance of closest 
approach of the incoming particle to the target. Consider, as an example, 
an alpha particle (of charge q = 2e) that is projected head-on toward a 
stationary nucleus of charge Q = Ze (Figure 12.22). 

Initially the system has a total energy consisting of the alpha particle’s 
kinetic energy E = EK. We take the separation of the alpha particle and the 
nucleus to be large so no potential energy exists. At the point of closest 
approach, a distance d from the centre of the nucleus, the alpha particle 
stops and is about to turn back. Thus, the total energy now is the electric 
potential energy of the alpha and the nucleus, given by:

E = k 
Qq
d

E = k 
(2e)(Ze)

d

E = k 
2Ze2

d

(We are assuming that the nucleus does not recoil, so its kinetic energy is 
ignored.)

Then, by conservation of energy:

 EK = k 
2Ze2

d

⇒ d = k 
2Ze2

EK

23 Assume that an electron can exist within a 
nucleus (size 10–15 m) such that its associated 
wave forms a fundamental mode standing wave 
with nodes at the edges of the nucleus.

 a Estimate the wavelength of this electron.
 b  Calculate the kinetic energy of the electron in 

MeV.

 c  Using your answer in b, comment on whether 
the electron emitted in beta-minus decay 
could have existed within the nucleus before 
the decay.

Learning objectives

• Understand how the Rutherford 
scattering experiment led to the 
idea of the nucleus.

• Discuss how scattering 
experiments may be used to 
determine nuclear radii.

• Understand the nature of 
nuclear energy levels.

• Understand the nature of the 
neutrino.

• Solve problems involving the 
radioactive decay law.

d

v

2e

Ze

v = 0

Figure 12.22 The closest approach of an 
alpha particle happens in a head-on collision.
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Assuming a kinetic energy for the alpha particle equal to 2.0 MeV 
directed at a gold nucleus (Z = 79) gives d = 1.1 × 10–13 m. This is outside 
the range of the nuclear force, so the alpha particle is simply repelled by 
the electrical force.

If the energy of the incoming particle is increased, the distance of 
closest approach decreases. The smallest it can get will be the radius of the 
nucleus. Experiments of this kind have been used to estimate the nuclear 
radii. A result of these experiments is that the nuclear radius R depends on 
mass number A through:

R = R0A
1
3 where R0 = 1.2 × 10−15 m

This has the unexpected consequence that all nuclei have the same 
density. Worked example 12.14 shows how this is derived.

Worked example
12.14 Show that all nuclei have the same density.

The volume is: 

V = 
4π
3

R3

But R = R0 A
1
3, so:

V = 
4π
3 (1.2 × 10−15 × A

1
3)3

V = 7.24 × 10−45 × A m3

The mass of the nucleus is A u, i.e. A × 1.66 × 10–27 kg. Using density = 
mass

volume, the density is:

ρ = 
A  × 1.66 × 10−27

7.24 × 10−45 × A  
 (note how A cancels out)

ρ ≈ 2.3 × 1017 kg m−3

So all nuclei have the same density.

Another set of experiments aimed at determining nuclear radii involve 
sending beams of neutrons or electrons at nuclei. We know from 
diff raction that if the de Broglie wavelength λ of the electrons or neutrons 
is about the same as that of the nuclear diameter, the electrons and 
neutrons will diff ract around the nuclei. A minimum will be formed at an 
angle θ to the original direction according to:

sin θ ≈ 
λ
b
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where b is the diameter of the diff racting object, i.e. the nucleus. (We 
met this relationship for diff raction in Topic 9.) The advantage of using 
electrons is that the strong force does not act upon them and so they 
probe the nuclear charge distribution. Neutrons also have an advantage 
because, being neutral, they can penetrate deep into matter and get very 
close to the nucleus.

Worked example
12.15 In a neutron diff raction experiment, a beam of neutrons of energy 85 MeV are incident on a foil made out 

of lead and diff racted. The fi rst diff raction minimum is observed at an angle of 13° relative to the central 
position where most of the neutrons are observed. From this information, estimate the radius of the lead 
nucleus.

The neutrons are diff racted from the lead nuclei, which act as ‘obstacles’ of size b. From our knowledge of 

diff raction, the fi rst minimum is given by sin θ ≈ 
λ
b, where λ is the de Broglie wavelength of the neutron.

The mass of a neutron is m = 1.67 × 10−27 kg and, since its kinetic energy is 85 MeV, the wavelength is λ = 
h
p where:

p =    2EKm

p =    2 × 85 × 106 × 1.6 × 10−19 × 1.67 × 10−27

p = 2.13 × 10−19 N s

Using this value of p in the equation for wavelength:

λ = 
6.6 × 10−34

2.13 × 10−19

λ = 3.1 × 10−15 m

Therefore the diameter of the nucleus is given by:

b = 
λ

sin 13° = 
3.1 × 10−15

sin 13°

b = 14 × 10−15 m

This corresponds to a radius of 7×10−15 m.

Deviations from Rutherford scattering
Rutherford derived a theoretical formula for the scattering of alpha 
particles from nuclei. The Rutherford formula states that as the 
scattering angle θ increases, the number of alpha particles scattered at 
that angle decreases very sharply. This is shown in Figure 12.23a. In fact, 
Rutherford’s formula states that the number N of alpha particles scattering 

at an angle θ is proportional to 1/sin4    
θ
2 . If this is the case, the product 

N sin4    
θ
2  should be constant. Table 12.1 contains some of the original 
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data in the Geiger–Marsden experiment with a gold foil. The last column 

in the table shows that the product N sin4    
θ
2  is indeed fairly constant, 

which is strong evidence in support of the Rutherford formula.
The derivation of the Rutherford formula is based on a number of 

assumptions. The most important is that the only force in play during the 
scattering process is the electric force. As the energy of the alpha particles 
increases, the alpha particles can get closer to the nucleus. When the 
distance of closest approach gets to be about 10−15 m or less, deviations 
from the Rutherford formula are observed (Figure 12.23b). This is due to 
the fact that the alpha particles are so close to the nucleus that the strong 
nuclear force begins to act on the alpha particles. 

Therefore, the presence of these deviations from perfect 
Rutherford scattering is evidence for the existence of the strong 
nuclear force.

Angle of 
scattering, θ / °

N
N sin4 

   
θ
2

15  132 000 38.4

30  7 800 35.0

45  1 435 30.8

60  477 29.8

75  211 29.1

105  69 27.5

120  52 29.0

150  33 28.8

Table 12.1 Data from the Geiger–Marsden 
experiment, reproduced in the book by 
E. Rutherford, J. Chadwick and C. D. Ellis 
Radiations from Radioactive Substances, 
Cambridge University Press, 1930.
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Worked example
12.16 Suggest how the results of the scattering of alpha particles would change if the gold (197

79Au) foil was 
replaced by an aluminium (30

13Al) foil of the same thickness.

Aluminium has a smaller nuclear charge and so the alpha particles would approach closer to the nucleus. This 
means that the alpha particles would start feeling the eff ects of the nuclear force and deviations from perfect 
Rutherford scattering would be observed.

Figure 12.23 a The logarithm of the number of alpha particles scattered at some angle θ as a function of θ. b The 
logarithm of the number of alpha particles scattered at an angle of 60° as a function of the alpha particle energy. The 
dotted curve is based on Rutherford scattering. The blue curve is the observed curve. We see deviations when the energy 
exceeds about 28 MeV. The energy at which deviations start may be used to estimate the nuclear radius.
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Nuclear energy levels
The nucleus, like the atom, exists in discrete energy levels. The main 
evidence for the existence of nuclear energy levels comes from the fact 
that the energies of the alpha particles and gamma ray photons that are 
emitted by nuclei in alpha and gamma decays are discrete. (This is to be 
contrasted with beta decays, in which the electron has a continuous range 
of energies.)

Figure 12.24 shows the lowest nuclear energy levels of the magnesium 
nucleus 24

12Mg. Also shown is a gamma decay from the level with energy 
5.24 MeV to the fi rst excited state. The emitted photon has energy 
5.24 − 1.37 = 3.87 MeV.

Figure 12.25 shows an energy level of plutonium (242
94Pu) and a few of 

the energy levels of uranium (238
92U). Also shown are two transitions from 

plutonium to uranium energy levels. These are alpha decays:

242
94Pu → 238

92U + 42α

The energies of the emitted alpha particles are 
4.983 − 0.148 = 4.835 MeV and 4.983 − 0.307 = 4.676 MeV.

Worked example 12.17, overleaf applies these ideas to beta decay.

E / MeV

0

1.37

γ

4.12
4.24

5.24

6.01

E /MeV

0

plutonium

0.045
0.148
0.307

α
α

4.983

uranium

Figure 12.24 Nuclear energy levels of 
magnesium, 24

12Mg. Notice the diff erence 
in scale between these levels and atomic 
energy levels.

Figure 12.25 Energy levels for plutonium and uranium. Transitions from plutonium to 
uranium energy levels explain the discrete nature of the emitted alpha particle in the 
alpha decay of plutonium.
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Worked example
12.17 The nucleus of bismuth (211

83Bi) decays into lead (207
82Pb) in a two-stage process. In the fi rst stage, bismuth 

decays into polonium (211
84Po). Polonium then decays into lead. The nuclear energy levels that are involved in 

these decays are shown in Figure 12.26.

Figure 12.26 The two-stage decay of bismuth into lead.

a Write down the reaction equations for each decay.
b Calculate the energy released in the beta decay.
c Explain why the electron does not always have this energy.

a 211
83Bi → 211

84Po + −1
0e + 00ν– and 211

84Po → 207
82Pb + 42α

b The energy released is the diff erence in the energy levels involved in the transition, i.e. 0.57 MeV.

c The energy of 0.57 MeV must be shared between the electron, the anti-neutrino and the polonium nucleus. So 
the electron does not always have the maximum energy of 0.57 MeV. Depending on the angles (between the 
electron, the anti-neutrino and the polonium nucleus), the electron energy can be anything from zero up to the 
maximum value found in b.

The neutrino
In the 1930s it was thought that beta minus decay was described by:

1
0n → 11p + −1

0e

The mass diff erence for this decay is:

1.008665 u – (1.007276 + 0.0005486) u = 0.00084 u

and corresponds to an energy of:

0.00084 × 931.5 MeV = 0.783 MeV

E /MeV

0

α

β

8.17

7.60

83Bi211

84Po211

82Pb207
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If only the electron and the proton are produced, then the electron, being 
the lighter of the two, will carry most of this energy away as kinetic 
energy. To see this, assume that the neutron is at rest when it decays. Then 
the total momentum before the decay is zero. After the decay the electron 
and the proton will have equal and opposite momenta, each of magnitude 
p. Equating the kinetic energy after the decay to the energy released, Q:

p2

2me
 + 

p2

2mp
 = Q

 p2 = 
2Qmemp

me + mp

And so:

Ee = 
p2

2me
 = 

Qmp

(me + mp)

Ee = 
0.783 × 1.007

5.49 × 10−14 + 1.007

Ee = 0.782 57 ≈ 0.783 MeV

Thus, we should observe electrons with kinetic energies of about 
0.783 MeV. In experiments, however, the electron has a range of energies 
from zero up to 0.783 MeV (Figure 12.27) If the electron is not carrying 
0.783 MeV of energy, where is the missing energy?

Wolfgang Pauli hypothesised the existence of a third particle in 
the products of a beta decay in 1933. Since the energy of the 
electron in beta decay has a range of possible values, it means that 
a third very light particle must also be produced so that it carries 
the remainder of the available energy.

Enrico Fermi coined the word neutrino for the ‘little neutral one’(Fermi 
is shown with Pauli and Heisenberg in Figure 12.28).

0

N

0.783 EK / MeV

Figure 12.27 The number of electrons that 
carry a given energy as a function of energy.

Figure 12.28 W. Pauli (right) , E. Fermi (left) either side of W. Heisenberg.
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As the neutrino is electrically neutral, it has no electromagnetic 
interactions. Its mass is negligibly small and so gravitational interactions 
are irrelevant. It is a lepton, so it does not have strong interactions. 
This leaves the weak interaction as the only interaction with which 
the neutrino can interact. This means that the neutrino can go through 
matter with very few interactions. In fact, about 10 billion neutrinos pass 
through your thumbnail every second, yet you do not feel a thing. For 
every 100 billion neutrinos that go through the Earth only one interacts 
with an atom in the Earth! Most of the neutrinos that arrive at Earth are 
produced in the Sun in the fusion reaction p + p → 21H + e+ + νe. Read the 
fascinating story of the solar neutrino problem in the Nature of science 
section at the end of this topic.

The radioactive decay law
As discussed in Topic 7, the law of radioactive decay states that the rate of 
decay is proportional to the number of nuclei present that have not yet 
decayed:

dN
dt  = −λN

The constant of proportionality is denoted by λ and is called the 
decay constant. To see the meaning of the decay constant we argue as 
follows: in a short time interval dt the number of nuclei that will decay 
is dN = λN dt (we ignore the minus sign). The probability that any one 
nucleus will decay  is therefore:

probability = 
dN
N

probability = 
Nλ dt

N

probability = λ dt

and fi nally, the probability of decay per unit time is:

probability
dt  = λ

The decay constant λ is the probability of decay per unit time.

The decay law is a diff erential equation, which when integrated gives:

N = N0 e−λt

This is the number of nuclei present at time t given that the initial 
number (at t = 0) is N0.

As expected, the number of nuclei of the decaying element decreases 
exponentially as time goes on (Figure 12.29). 

Research into neutrino 
physics is a great 
example of very large 

international research teams that 
work together and collaborate 
widely (by the Kamiokande 
and the super Kamiokande 
Japanese–American collaboration, 
the GALLEX and SAGE 
groups in Italy and Russia and 
the SNO (the Solar Neutrino 
Observatory) in Canada with 
Canadian, American and British 
participation).
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The (negative) rate of decay (i.e. the number of decays per second) is 
called activity, A:

A = −
dN
dt

It follows from the exponential decay law that activity also satisfi es an 
exponential law:

A = λN0 e−λt

Thus, the initial activity of a sample is given by the product of the decay 
constant and the number of atoms initially present, A0 = λN0. Notice also 
that A = λN.

After one half-life, T1
2
, half of the nuclei present have decayed and 

the activity has been reduced to half its initial value. So using either the 
formula for N or A (here we use the N formula):

N0
2  = N0 e−λt

Taking logarithms we fi nd:

λT1
2
 = ln 2

λT1
2
 = 0.693

This is the relationship between the decay constant and the half-life.

Worked examples
12.18 Carbon-14 has a half-life of 5730 yr and in living organisms it has a decay rate of 0.25 Bq g−1. A quantity of 

20 g of carbon-14 was extracted from an ancient bone and its activity was found to be 1.81 Bq. What is the 
age of the bone?

U
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t /s

Figure 12.29 Radioactive decay follows an exponential decay law.

Exam tip
It is important to know that 
the initial activity A0 is λN0.

Exam tip
A graph of A versus N gives a 
straight line whose slope is the 
decay constant.
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Using the relationship between decay constant and half-life:

λ = 
ln 2
T1

2

λ = 
ln 2

5730 yr–1

λ = 1.21 × 10−4 yr−1

When the bone was part of the living body the 20 g would have had an activity of 20 × 0.25 = 5.0 Bq. If the activity 
now is 1.81 Bq, then:

 A = A0 e−λt

 1.81 = 5.0 e−1.21 × 10−4t

 e−1.21 × 10−4t = 0.362

 −1.21 × 10−4t = −1.016

 t = 
1.016

1.21 × 10−4

 t ≈ 8400 yr

12.19 A container is fi lled with a quantity of a pure radioactive element X whose half-life is 5.0 minutes. Element 
X decays into a stable element Y. At time zero no quantity of element Y is present. Determine the time at 
which the ratio of atoms of Y to atoms of X is 5.

After time t the number of atoms of element X is given by N = N0 e−λt. And the number of atoms of element Y is 

given by N = N0 − N0 e−λt. The decay constant is λ = 
ln 2
5.0 = 0.1386 min−1 and so we have that:

 
N0 − N0e−0.1386t 

N0e−0.1386t  = 5

 1 − e−0.1386t = 5 e−0.1386t

 e−0.1386t = 
1
6

 0.1386 × t = 1.7981

 t = 12.9 min

Nature of science
The solar neutrino problem
In 1968, Ray Davis announced results of an experiment that tried to 
determine the number neutrinos arriving at Earth from the Sun. The idea 
was that the very rare interaction of neutrinos with ordinary chlorine 
would produce radioactive chlorine atoms that could then be detected, 
and hence the number of neutrinos determined. The results showed that 
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the number of neutrinos was about one-third of what the theoretical 
calculation predicted. This created the ‘solar neutrino problem’. There 
were three ways out: either the Davis experiment was wrong or the 
theory was wrong, or there was new physics involved.

Happily, it turned out that it was the last possibility that actually was 
in play. The number of neutrinos predicted by theory was based on the 
assumption that the neutrino was massless. If the neutrino had mass, then 
the theory would have to be modifi ed because in that case ‘neutrino 
oscillations’ would take place. This is a rare quantum phenomenon, in 
which the three types of neutrinos could turn into each other. The Davis 
and subsequent experiments all measured electron neutrinos. Much 
later, when advances in instrumentation and computing power allowed 
experiments to detect all three types of neutrinos, the number was in 
agreement with the theory. But the neutrinos produced in the Sun were 
only electron neutrinos! 

By this time, experiments in Japan and elsewhere provided convincing 
evidence that neutrinos had a tiny mass. So, because of neutrino 
oscillations, by the time the electron neutrinos reached Earth some of 
them had turned into muon neutrinos and some into tau neutrinos. On 
the average, about one-third would be electron neutrinos, in agreement 
with Davis’s results! Ray Davis shared the 2002 Nobel prize in Physics.

26 a  Deviations from Rutherford scattering are 
expected when the alpha particles reach large 
energies. Suggest an explanation for this 
observation.

 b  Some alpha particles are directed at a thin foil 
of gold (Z = 79) and some others at a thin 
foil of aluminium (Z = 13). Initially, all alpha 
particles have the same energy. This energy 
is gradually increased. Predict in which case 
deviations from Rutherford scattering will 
fi rst be observed.

27 Show that the nuclear density is the same for 
all nuclei. (Take the masses of the proton and 
neutron to be the same.)

28 a  State the evidence in support of nuclear 
energy levels.

 Radium’s fi rst excited nuclear level is 
0.0678 MeV above the ground state.

 b  Write down the reaction that takes place 
when radium decays from the fi rst excited 
state to the ground state.

 c Find the wavelength of the photon emitted.

? Test yourself

Ze

e 

v 

d 

24 An alpha particle is fi red head-on at a stationary 
gold nucleus from far away. Calculate the initial 
speed of the particle so that the distance of 
closest approach is 8.5 × 10−15 m. (Take the mass 
of the alpha particle to be 6.64 × 10−27 kg.)

25 A particle of mass m and charge e is directed 
from very far away toward a massive (M >> m) 
object of charge +Ze with a velocity v, as shown 
in the diagram. The distance of closest approach 
is d. Sketch (on the same axes) a graph to show 
the variation with separation of:

 a the particle’s kinetic energy
 b the particle’s electric potential energy.
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29 Plutonium (242
94Pu) decays into uranium (238

92U) 
by alpha decay. The energy of the alpha particles 
takes four distinct values: 4.90 MeV, 4.86 MeV, 
4.76 MeV and 4.60 MeV. In all cases a gamma 
ray photon is also emitted except when the alpha 
energy is 4.90 MeV. Use this information to 
suggest a possible nuclear energy level diagram 
for uranium.

30 The diagram shows a few nuclear energy levels 
for 40

18Ar, 40
19K and 40

20Ca.

 Identify the four indicated transitions.
31 a  Find the decay constant for krypton-92, 

whose half-life is 3.00 s.
 b  Suppose that you start with 

1
100 mol of 

krypton. Estimate how many undecayed atoms 
of krypton there are after i 1 s, ii 2 s, iii 3 s.

32 a  State the probability that a radioactive nucleus 
will decay during a time interval equal to a 
half-life.

 b  Calculate the probability that it will have 
decayed after the passage of three half-lives.

 c  A nucleus has not decayed after the passage 
of four half-lives. State the probability it will 
decay during the next half-life.

33 Estimate the activity of 1.0 g of radium-226 
(molar mass = 226.025 g mol–1). The half-life of 
radium-226 is 1600 yr.

34 The half-life of an unstable element is 12 days. 
Find the activity of a given sample of this 
element after 20 days, given that the initial 
activity was 3.5 MBq.

35 A radioactive isotope of half-life 6.0 days used 
in medicine is prepared 24 h prior to being 
administered to a patient. The activity must be 
0.50 MBq when the patient receives the isotope. 
Estimate the number of atoms of the isotope that 
should be prepared.

36 The age of very old rocks can be found from 
uranium dating. Uranium is suitable because of 
its very long half-life: 4.5 × 109 yr. The fi nal stable 
product in the decay series of uranium-238 is 
lead-206. Find the age of rocks that are measured 
to have a ratio of lead to uranium atoms of 0.80. 
You must assume that no lead was present in the 
rocks other than that due to uranium decaying.

37 The isotope 40
19K of potassium is unstable, with a 

half-life of 1.37 × 109 yr. It decays into the stable 
isotope 40

18Ar. Moon rocks were found to contain 
a ratio of potassium to argon atoms of 1 : 7. Find 
the age of the Moon rocks.

38 Two unstable isotopes are present in equal 
numbers (initially). Isotope A has a half-life of 
4 min and isotope B has a half-life of 3 min. 
Calculate the ratio of the activity of A to that of 
B after: a 0 min, b 4 min, c 12 min.

39 A sample contains two unstable isotopes. A 
counter placed near it is used to record the 
decays. Discuss how you would determine each 
of the half-lives of the isotopes from the data.

40 The half-life of an isotope with a very long half-
life cannot be measured by observing its activity 
as a function of time, since the variation in 
activity over any reasonable time interval would 
be too small to be observed. Let m be the mass in 
grams of a given isotope of long half-life.

 a  Show that the number of nuclei present in 

  this quantity is N0 = 
m
µNA where µ is the molar 

  mass of the isotope in g mol–1 and NA is the 
 Avogadro constant.

 b  From A = −
dN
dt  = N0λ e−λt. show that the initial 

  activity is A0 = 
mNA

µ λ  and hence that 

   the half-life can be determined by measuring 
the initial activity (in Bq) and the mass of the 
sample (in grams).

I
II

III

IV
18A40

19K40

20Ca40
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Exam-style questions

1 Light of wavelength λ  is incident on a surface. The stopping voltage is Vs. The wavelength of the light is halved. 
What is the stopping voltage now?

A Vs B between Vs and 2Vs C 2Vs D greater than 2Vs

2 Light of wavelength λ  and intensity I is incident on a metallic surface and electrons are emitted. Which of the 
following change will, by itself, result in a greater number of electrons being emitted?

A increase λ  B decrease λ  C increase I D decrease I

3 The absorption spectra of hydrogen atoms at a low temperature and at a high temperature are compared. What is 
the result of such a comparison?

A The spectra are identical.
B The spectra are identical but the high temperature spectrum is more prominent.
C There are more lines in the absorption spectrum at low temperature.
D There are more lines in the absorption spectrum at high temperature.

4 An electron orbiting a proton in the n = 2 state of hydrogen has speed v. The electron is put in the n = 3 state of 
hydrogen. What is the speed of the electron in the new orbit?

A 
v
9 B 

v
2 C 

3v
2  D 

2v
3

5 A particle of mass m is confi ned within a region of linear size L. Which is an order of magnitude estimate of the 
particle’s kinetic energy?

A 
mh2

L2  B 
h2

mL2 C 
mL2

h
 D 

L2

mh2

6 Two beams of electrons of the same energy approach two potential barriers of the same height. One barrier has 
width w and the other width 2w. Which is a correct comparison of the tunnelling probability and the de Broglie 
wavelength of the transmitted electrons in the two beams?

Probability Wavelength

A same same
B same diff erent
C diff erent same
D diff erent diff erent
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 7 The graph shows the wavefunction of a particle. Near which position is the particle most likely to be found?

 8 The activity of a pure radioactive sample is A when the number of nuclei present in the sample is N. 
Which graph shows the variation of A with N?

ψ

x
A

0
B C D

A

A B

C D

N

A

N

A

N

A

N

 9 Alpha particles of energy E are directed at a thin metallic foil made out of atoms of atomic number Z. 
For what values of E and Z are deviations from Rutherford scattering likely to be observed?

E Z

A low low
B high low
C low high
D high high

10 Which is evidence for the existence of nuclear energy levels?

A The short range of the nuclear force.
B The energies of alpha and gamma particles in radioactive decay.
C The energies of beta particles in radioactive decay.
D The emission spectra of gases at low pressure.
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11 a In a photoelectric eff ect experiment a constant number of photons is incident on a photo-surface. 
  i Outline what is meant by photons. [2]
  ii  On a copy of the axes below, sketch a graph to show the variation of the electric current I that 

leaves the photo-surface, with photon frequency f. [2]

(0, 0)

I

ƒ

4

f / × 1015 Hz

V / V

–4

–2

0

2

6

8

0.5 1.0 1.5 2.0 2.5 3.0

  iii Explain the features of the graph you drew in ii. [2]
b  i State one feature of the photoelectric eff ect that cannot be explained by the wave theory of light. [1]
  ii Describe how the feature stated in i is explained by the photon theory of light. [2]
c In another experiment, a source of constant intensity and variable frequency f is incident on a metallic surface. 

The graph shows the variation of the stopping potential V with photon frequency f, for a particular value of 
intensity.

Use the graph to estimate:
  i the work function of the metallic surface [2]
  ii the Planck constant obtained from this experiment [3]
  iii the longest wavelength of light that will result in electron being emitted from the surface. [2]
d The intensity of the source in c is doubled. Discuss how the graph in c will change, if at all. [2]
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12 In a hydrogen atom an electron of mass m orbits the proton with speed v in a circular orbit of radius r.

a By writing down an expression for the net force on the electron, deduce that v2 = 
ke2

mr , where k is the 
Coulomb constant. [2]

b Using the Bohr condition show that r = 
h2

4πke2m
 × n2. [3]

c Hence deduce that the total energy of the electron is given by E = −1
2 
ke2

r  [2]
d State the signifi cance of the negative sign in the total energy. [1]
e Demonstrate that the Bohr condition is equivalent to 2πr = nλ where λ is the de Broglie wavelength of the 

electron. [2]
 The diagram shows an electron wave in hydrogen.

f  i State what is meant by an electron wave. [1]
  ii Determine the radius of the circular orbit of this electron. [3]
  iii Predict the energy that must be supplied for this electron to become free. [1]
g According to the Bohr model, the electron in the hydrogen atom in f has a well-defi ned circular orbit radius. 

Discuss, by reference to the wave-like properties of the electron, why this is not quite correct in quantum 
theory. [3]

13 a Outline what is meant by the de Broglie hypothesis. [2]
b   i  Show that the de Broglie wavelength of an electron that has been accelerated from rest by a potential 

    diff erence V is given by λ = 
h 

   2mqV
 . [2]

   ii  Calculate the de Broglie wavelength of an electron that has been accelerated from rest by a potential 
diff erence of 120 V. 

c Outline an experiment in which the de Broglie hypothesis is tested. [3]
d A bullet of mass 0.080 kg leaves a gun with speed 420 m s–1. The gun is in perfect condition and has been 

fi red by an expert marksman. The bullet must pass through a circular hole of diameter 5.0 cm on its way 
to its target. A student says that the bullet will miss its mark because of de Broglie’s hypothesis. By suitable 
calculations determine whether the student is correct. [4]
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14 a State what is meant by tunnelling. [2]
b The graph shows the wavefunction of electrons that undergo tunnelling. (The graph does not take 

refl ected electrons into account.) 
  The values on the vertical axis are arbitrary.

x / × 10–10 m

–2 –1 1 2

ψ

3 4

2

2

–1

–2

  Use the graph to determine:
  i the width of the barrier [1]
  ii the ratio of the kinetic energy of the electrons after tunnelling to the kinetic energy before tunnelling [2]
  iii the fraction of the incident electrons that tunnel though the barrier. [2]
c Outline how your answer to b iii would change, if at all, if protons with the same energy were directed 

at the barrier. [1]

15 Carbon-14 is unstable and decays to nitrogen by beta minus emission according to the reaction equation:

 14
6C → 14

7N + −1
0e + ?

a State, for the missing particle in the reaction equation:
  i its name [1]
  ii two of its properties. [2]
b Outline the evidence that made the presence of this particle in beta decay necessary. [2]

 In a living tree, the ratio of carbon-14 to carbon-12 atoms is constant at 1.3 × 10−12.

c Suggest why this ratio will decrease after the tree dies. [2]

 A 15 g piece of charcoal is found in an archaeological site.

d Calculate the number of atoms of carbon-12 in the piece of charcoal. [2]
e The piece of charcoal has an activity of 1.40 Bq. Deduce that the ratio of carbon-14 to carbon-12 atoms 

in the charcoal is 4.85 × 10−13. [3]
f The half-life of 14

6C is 5730 years. Deduce the age of the charcoal. [3]
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16 a Outline the evidence in support of nuclear energy levels. [2]
b The diagram shows nuclear energy levels for 244

96Cm and 240
94Pu. 

  i  On a copy of the diagram, indicate the alpha decay of 244
96Cm into 240

94Pu that is followed by the 
emission of a photon of energy 0.043 MeV. [1]

  ii Deduce the energy of the emitted alpha particle. [1]

0.294

5.902

Energy / MeV

0.142
0.0433
0.0

0

5.9 MeV

≈ 30 MeV

≈ –40 MeV

R r

EP

c The diagram shows the variation of the potential energy of an alpha particle with distance from the nuclear 
centre. The nuclear radius is R. The total energy of an alpha particle within the nucleus is 5.9 MeV.

  i  The potential energy for distances r > R is entirely electric potential energy. Suggest why, for these 
distances, there is no contribution to the potential energy from the strong nuclear force. [2]

  ii Explain why the alpha particle cannot leave the nucleus according to the laws of classical mechanics. [2]
  iii  The alpha particle does in fact leave the nucleus. By reference to the laws of quantum mechanics 

explain how this is possible. [2]
d The lifetimes of nuclei decaying by alpha decay can vary from 10−7 s to 1010 years. Suggest, by reference 

to the diagram in c and your answer to c iii, what might cause such great variation in lifetime. [2]
e Use the uncertainty principle to deduce that the kinetic energy of an alpha particle confi ned within a 

nucleus is of order 1 MeV. [3]
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17 a i  Neutrons of energy 54 MeV are directed at lead nuclei. A strong minimum in the number of scattered 
neutrons is observer at a scattering angle of 16°. Estimate the diameter of lead nuclei. [3]

  ii Show that the density of all nuclei is about 2 × 1017 kg m– 3. [3]
b In Rutherford scattering, alpha particles of energy 5.2 MeV are directed head-on at lead nuclei. 

Estimate the distance of closest approach between the alpha particles and the centre of a lead nucleus. [3]
c The graph shows how the number of alpha particles that are observed at a fi xed scattering angle depends 

on alpha particle energy according to Rutherford’s scattering formula. 

E0

Log N

  i State one assumption the Rutherford scattering formula is based on. [1]
  ii On a copy of the diagram above, indicate deviations from the Rutherford scattering. Explain your answer.

 [2]
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Appendices
1 Physical constants
The values quoted here are those usually used in calculations and problems. Fewer signifi cant digits 
are often used in the text. The constants are known with a much better precision than the number 
of signifi cant digits quoted here implies.

Atomic mass unit 1 u = 1.661 × 10−27 kg = 931.5 MeV c−2

Avogadro constant NA = 6.02 × 1023 mol−1

Boltzmann constant k = 1.38 × 10−23 J K−1

Coulomb’s law constant 
1

4πε0
 = 8.99 × 109 N m2 C−2

Electric permittivity ε0 = 8.85 × 10−12 N−1 m−2 C2

Gravitational constant G = 6.67 × 10−11 N kg−2 m2

Magnetic permeability μ0 = 4π × 10−7 T m A−1

Magnitude of electronic charge  e = 1.60 × 10−19 C

Mass of the electron me = 9.11 × 10−31 kg = 5.49 × 10−4 u = 0.511 MeV c−2

Mass of the neutron mn = 1.675 × 10−27 kg = 1.008 665 u = 940 MeV c−2

Mass of the proton mp = 1.673 × 10−27 kg = 1.007 276 u = 938 MeV c−2

Planck constant h = 6.63 × 10−34 J s

Speed of light in a vacuum c = 3.00 × 108 m s−1

Stefan–Boltzmann constant σ = 5.67 × 10−8 W m−2 K−4

Universal gas constant R = 8.31 J mol−1 K−1

Solar constant S = 1.36 × 103 W m−2

Fermi radius R0 = 1.2 × 10−15 m

A few unit conversions
astronomical unit 1 AU = 1.50 × 1011 m

atmosphere 1 atm = 1.01 × 105 N m−2 = 101 kPa

degree 1° = 
π

180° rad

electronvolt 1 eV = 1.60 × 10−19 J

kilowatt–hour 1 kW h = 3.60 × 106 J

light year 1 ly = 9.46 × 1015 m

parsec 1 pc = 3.26 ly

radian 1 rad = 
180°

π
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Appendices 2 Masses of elements and selected isotopes
Table A2.1 gives atomic masses, including the masses of electrons, in 
the neutral atom. The masses are averaged over the isotopes of each 
element. In the case of unstable elements, numbers in brackets indicate 
the approximate mass of the most abundant isotope of the element in 
question. The masses are expressed in atomic mass units, u. Table A2.2 
gives the atomic masses of a few selected isotopes

525

Atomic number Name and symbol Atomic mass / u

1 Hydrogen, H 1.0080

2 Helium, He 4.0026

3 Lithium, Li 6.941

4 Beryllium, Be 9.012 18

5 Boron, B 10.811

6 Carbon, C 12.000 000

7 Nitrogen, N 14.007

8 Oxygen, O 15.999

9 Fluorine, F 18.998

10 Neon, Ne 20.180

11 Sodium, Na 22.999

12 Magnesium, Mg 24.31

13 Aluminium, Al 26.981

14 Silicon, Si 28.086

15 Phosphorus, P 30.974

16 Sulphur, S 32.066

17 Chlorine, Cl 35.453

18 Argon, Ar 39.948

19 Potassium, K 39.102

20 Calcium, Ca 40.078

21 Scandium, Sc 44.956

22 Titanium, Ti 47.90

23 Vanadium, V 50.942

24 Chromium, Cr 51.996

25 Manganese, Mn 54.938

26 Iron, Fe 55.847

27 Cobalt, Co 58.933

28 Nickel, Ni 58.71

29 Copper, Cu 63.54

Atomic number Name and symbol Atomic mass / u

30 Zinc, Zn 65.37

31 Gallium, Ga 69.723

32 Germanium, Ge 72.59

33 Arsenic, As 74.921

34 Selenium, Se 78.96

35 Bromine, Br 79.91

36 Krypton, Kr 83.80

37 Rubidium, Rb 85.467

38 Strontium, Sr 87.62

39 Yttrium, Y 88.906

40 Zirconium, Zr 91.224

41 Niobium, Nb 92.906

42 Molybdenum, Mo 95.94

43 Technetium, Tc (99)

44 Ruthenium, Ru 101.07

45 Rhodium, Rh 102.906

46 Palladium, Pd 106.42

47 Silver, Ag 107.868

48 Cadmium, Cd 112.40

49 Indium, In 114.82

50 Tin, Sn 118.69

51 Antimony, Sb 121.75

52 Tellurium, Te 127.60

53 Iodine, I 126.904

54 Xenon, Xe 131.30

55 Caesium, Cs 132.91

56 Barium, Ba 137.34

57 Lanthanum, La 138.91

58 Cerium, Ce 140.12

Table A2.1 Atomic numbers and atomic masses of the elements.
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Atomic number Name and symbol Atomic mass / u

59 Praseodymium, Pr 140.907

60 Neodymium, Nd 144.24

61 Promethium, Pm (144)

62 Samarium, Sm 150.4

63 Europium, Eu 152.0

64 Gadolinium, Gd 157.25

65 Terbium, Tb 158.92

66 Dysprosium, Dy 162.50

67 Holmium, Ho 164.93

68 Erbium, Er 167.26

69 Thulium, Tm 168.93

70 Ytterbium, Yb 173.04

71 Lutetium, Lu 174.97

72 Hafnium, Hf 178.49

73 Tantalum, Ta 180.95

74 Tungsten, W 183.85

75 Rhenium, Re 186.2

76 Osmium, Os 190.2

77 Iridium, I 192.2

78 Platinum, Pt 195.09

79 Gold, Au 196.97

80 Mercury, Hg 200.59

81 Thallium, Tl 204.37

Atomic number Name Atomic mass / u

1 Hydrogen, H 1.007 825

1 Deuterium, D 2.014 102

1 Tritium, T 3.016 049

2 Helium-3 3.016 029

2 Helium-4 4.002 603

3 Lithium-6 6.015 121

3 Lithium-7 7.016 003

4 Beryllium-9 9.012 182

5 Boron-10 10.012 937

5 Boron-11 11.009 305

6 Carbon-12 12.000 000

6 Carbon-13 13.003 355

6 Carbon-14 14.003 242

Atomic number Name and symbol Atomic mass / u

82 Lead, Pb 207.2

83 Bismuth, Bi 208.980

84 Polonium, Po (210)

85 Astatine, At (218)

86 Radon, Rn (222)

87 Francium, Fr (223)

88 Radium, Ra (226)

89 Actinium, Ac (227)

90 Thorium, Th (232)

91 Protactinium, Pa (231)

92 Uranium, U (238)

93 Neptunium, Np (239)

94 Plutonium, Pu (239)

95 Americium, Am (243)

96 Curium, Cm (245)

97 Berkelium, Bk (247)

98 Californium, Cf (249)

99 Einsteinium, Es (254)

100 Fermium, Fm (253)

101 Mendelevium, Md (255)

102 Nobelium, No (255)

103 Lawrencium, Lr (257)

Atomic number Name Atomic mass / u

7 Nitrogen-14 14.003 074

7 Nitrogen-15 15.000 109

8 Oxygen-16 15.994 915

8 Oxygen-17 16.999 131

8 Oxygen-18 17.999 160

19 Potassium-39 38.963 708

19 Potassium-40 39.964 000

92 Uranium-232 232.037 14

92 Uranium-235 235.043 925

92 Uranium-236 236.045 563

92 Uranium-238 238.050 786

92 Uranium-239 239.054 291

Table A2.2 Atomic masses of a few selected isotopes.

Table A2.1 contd.
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3 Some important mathematical results
In physics problems, the following are useful.

a−x = 
1
ax  axay = ax+y  

ax

ay  = ax−y

log a = x ⇒ 10x = a ln a = x ⇒ ex = a

ln(ab) = ln a + ln b  ln  
a
b = ln a − ln b

ln(ax ) = x ln a  ln(1) = 0  e0 = 1

sin 2x = 2 sin x cos x

cos 2x = 2 cos2 x − 1 = 1 − 2 sin2 x = cos2 x − sin2 x

The quadratic equation ax2 + bx + c = 0 has two roots given by

x = 
−b ±    b2 − 4ac

2a

The following approximations are useful:

sin x ≈ x − 
x3

6  + …

and

cos x ≈ 1 − 
x2

2  + …

valid when x in radians is small.
From geometry, we must know the following expressions for lengths, areas 
and volumes.

Property Formula

Circumference of a circle of radius R 2π R

Area of a circle of radius R π R2

Surface area of a sphere of radius R 4π R2

Volume of a sphere of radius R 4π R3

3

Volume of a cylinder of base radius R and height h π R2h

The length of an arc of a circle of radius R that subtends an angle θ at the 
centre of the circle is s = Rθ. In this formula the angle must be expressed 
in radians. An angle of 2π radians is equivalent to an angle of 360°, so

1 radian = 
360°
2π  = 57.3°
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Answers to test yourself questions

  d 
8.99 × 109 × 7 × 10−16 × 7 × 10−6

(8 × 102 )2

   ≈ 
10 × 109 × 5 × 10−16 × 5 × 10−6

64 × 104

   ≈ 
25 × 10−12

64 × 104  ≈ 3 × 10−17

  e 
6.6 × 10−11 × 6 × 1024

(6.4 × 106)2

 ≈ 
27 × 10−11 × 6 × 1024

(6 × 106)2

   ≈ 
40 × 1013

36 × 1012 ≈ 10

1.2 Uncertainties and errors
 23 sum = 180 ± 8 N; diff erence = 60 ± 8 N
 24 a 2.0 ± 0.3
  b 85 ± 13
  c 2 ± 3
  d 100 ± 6
  e 25 ± 8
 25 F = (7 ± 2) × 10 N
 26 a 18 ± 2 cm2

  b 15 ± 1 cm
 27 area = 37 ± 3 cm2; perimeter = 26 ± 1 cm
 28 1%
 29 12%
 30 The line of best fi t intersects the vertical axis at 

about 4 mA, which is within the uncertainty in the 
current. A line within the error bars can certainly be 
made to pass through the origin.

 31 The line of best fi t intersects the vertical axis at 
about 10 mA, which is outside the uncertainty in 
current. No straight line within the error bars can 
be made to pass through the origin.

 32 circle
 33 a 5 V
  b 6.9 s
  c R = 2 MΩ
 34 b α = 3.4

Topic 1 Measurements and 
uncertainties

1.1 Measurement in physics
Many of the calculations in the problems of this section 
have been performed without a calculator and are 
estimates. Your answers may diff er. 
 1 3.3 × 10−24 s
 2 3.6 × 1051

 3 3.3 × 1060

 4 2.6 × 109

 5 2 × 1011

 6 6.7 × 1011

 7 1.0 × 1025

 8 2.0 × 1027

 9 4 × 1017 kg m−3

 11 a 4 × 10−19 J
  b 54 eV
 12 2.2 × 10−5 m3

 13 8.4 × 10−3 m
 14 a 0.2 kg
  b 1 kg
  c 0.2 kg
 15 5 × 109 kg m−3

 16 about 0.7
 17 2 × 1028

 18 4 × 1042

 20 27 W
 21 391 J

 22 a 
243
43  ≈ 

250
50  = 5

  b 2.80 × 1.90 ≈ 3 × 2 = 6

  c 312 × 
480
160

 ≈ 
23 × 102 × 5 × 102

1.5 × 102

   
15
1.5 × 102 = 103

Note: Only numerical answers have been provided. Expanded answers requesting 
explain or discuss, show on the graph, etc, can be viewed in the online material.
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Answers to test yourself questions Topic 2 Mechanics

2.1 Motion
 1 15 km h−1

 2 

1.3 Vectors and scalars
 35

37  a A + B: magnitude = 18.2, direction = 49.7°
  b A − B: magnitude = 9.2, direction = −11.8°
  c A − 2B: magnitude = 12.4, direction = −52.0°
 38 a 5.7 cm at 225°
  b 201 km at −52°
  c 5 m at −90°
  d 8 N at 0.0°
 39 a A: magnitude 3.61, direction 56.3°
  b B: magnitude 5.39, direction 112°
  c A + B: magnitude 8.00, direction 90°
  d A − B: magnitude 4.47, direction −26.6°
  e 2A − B: magnitude 6.08, direction 9.46°
 40 (2, 6)
 41 Magnitude 14.1 m s−1, direction south-west (225°)
 42 Δp =    2 −    3 p = 0.52p
 43 a 8 m s−1 at 0.0°
  b 5.66 m s−1 at 135°
  c  5.66 m s−1 at 45°; it is the sum of the answers to a 

and b
 44 A (−7.66, 6.43)
  B (−8.19, −5.74)
  C (3.75, −9.27)
  D (7.43, −6.69)
  E (−5.00, −8.66)
 45 C has magnitude 6√3 ≈ 10.4 and direction 270° to 

the positive x-axis
 46 a 25.1 N at 36.2° to the positive x-axis
  b 23.4 N at 65.2° to the positive x-axis
  c 25.0 N at direction 3.13° to the positive x-axis

 3 a 30 km
  b 60 km
 4 a 4.0 m s−1

  b 0 m s−1

 5 3.0 m s−2

 6 126 m
 7 −1.6 m s−2

 8 8.0 s
 9 60 m s−1

 10 a 220 m
  b 200 m
  c 20 m
  d less
 11 a 24.5 m
 12 a 20 m s−1

 13 2.0 m s−2

 14 

15 

t

d

0.5
0

1 1.5 2 2.5 3

v

t /s

0
10 2 3 4 5 6

t /s

v
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 23 a 3.2 m from top of cliff 
  b 3.56 s
  c −27.6 m s−1

  d 41.4 m
  e  average speed = 11.6 m s−1; average 

velocity = −9.83 m s−1

 24 a 60 m
  b 40 m s−1

 25 1.0 m
 26 a 1.5 m
  b 5.7 m s−1

27 

 16 

 17 

 18 

 19 

 20 5.0 s
 21 a negative
  b zero
  c positive
  d positive

 28 12 m

0
0

0.5 1 1.5 2
t /s

v

0
0

0.5 1 1.5 2
t /s

s

0
0

1 2 3 4
t /s

s

0
1 2 3 4 t /s

a

0 0.5 1 1.5 2 2.5 3
0

0

–5

–10

–15

5

10

2.5

5

7.5

10

12.5

15

t /s

0.5 1 1.5 2 2.5 3
t /s

vx /m s–1

vy /m s–1

a

b

–8

–10

–12

–14

–6

0.5 1 1.5 2 2.5 3
t /s

a /m s–2

c
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 35 

 32 a 39 m s−1 at 70° below the horizontal
  b speed is less and angle is greater

2.2 Forces
 34 

 36 They are the same.
 37 

 38 

 29 

a b

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3
t /s

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3
t /s

x /m y /m

a b

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3
t /s

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5 3
t /s

x /m y /m

 30 Unfortunately the chimp gets hit (assuming the 
bullet can get that far)

 31 a  i vx = 30 m s−1; vy = 20 m s−1

    ii 34° 
    iii g = 20 m s−2

  b  horizontal arrow for velocity, vertical for 
acceleration

  c  range and maximum height half as large, 
as shown here 

0

2

4

6

8

10

0 10 20 30 40 50 60
x /m

y /m

w

f

R

W

T

T

W

W

R

T1

T3T2

T1

W

T

R

Wf

 39 A 30 N to the right
  B 6 N to the right
  D 8 N to the left
  D 15 N to the right
  E 10 N down
  F 20 N up
 40 28 N up
 41 There is no vertical force to balance the weight.
 42 a top
  b bottom
 43 1.2 kg
 44 80 N
 45 200 N
 46 sin θ = 

m
M
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 64 3240 N so estimated at 3000 N to 1 s.f.
 65 a 0.21 m s−1

 66 a 59 W
  b 0.74
  c 250 s
 67 3750 N
 69 

 47 a decreasing mass
  b increasing mass
 48 0.43 m s−2

 49 a  i mg
    ii mg
    iii mg − ma
    iv 0
  b The man is hit by the ceiling.
 50 c 210 N
  d 5.0 m s−2

 53 a 15.0 N
  b yes
 54 3.0 m s−2

2.3 Work, energy and power
 55 1.2 × 102 J
 56 −7.7 J
 57 3.5 × 102 J
 58 7.3 N
 59 0.16 J
 60 a i 8.9 m s−1 ii 6.3 m s−1

  b 8.1 m s−1; 10 m s−1

 61 21 N
 62 a 88 J
  b 9.4 m s−1

 63 

2000

4000

6000

8000

2000

4000

6000

8000

2000

4000

6000

8000

2000

4000

6000

8000

0
0 20 40 60 80

s /m

EP/J

0
0 20 40 60 80

s /m

EK/J

0
0 1 2 3 4

t /s

EP/J

0
0 1 2 3 4

t /s

EK/J

200

400

600

800

200

400

600

800

0
0 10 20 30

kinetic

potential

kinetic

potential

40
d /m

J

0
0 1 2 3 4

t /s

J
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Topic 3 Thermal physics

3.1 Thermal concepts
 2 a, b 513 J kg−1 K−1

 3 2800 J kg−1 K−1

 4 4100 J kg−1 K−1

 5 73.1°C
 6 a 1.18 × 105 J K−1

  b 87.4 min
 7 35 g
 8 3.73 × 108 J
 9 a 83.6 min
 10 a 2.2 × 104 J
  b 3.3 × 105 J
  c 4.2 × 104 J
 11 111 g
 12 95° C

3.2 Modelling a gas
 13 8 × 1024

 14 1.5
 15 3.3
 16 3.0 g
 17 16.04 × 105 m–3 Pa
 18 4.2 × 10–3 m3

 19 1.46 × 109 Pa
 20 87.9 g
 21 10.1 min
 22 

 70 a T = mg sin θ
  b W = mgd sin θ
  c W = −mgd sin θ
  d zero 
  e zero
 71 a 50 m
  b 90 m
  c 15 s from start
  d 

  e 

0

–10

–20

–30

10

20v /m s–1

2 4 6 8 10 12 14 t /s

0

20

40

60

80

100
E /J

EK

EP

0 25 50 75 100 125 150 175 d /m

  f from 5 s on
  g 22.5 W
  h 45 W

2.4 Momentum and impulse
 72 6.00 N
 73 a 0.900 N s
  b 7.20 N
 74 zero
 75 a 1.41 N s away from the wall
 76 7.0 m s−1 to the right
 77 a 96 N s
  b 32 m s−1

  c −32 m s−1

 78 a 2.0 m s−1

 79 b 20 N
 81 a 1 s
  b About 50 N s
  c About 50 N
 82 14 J
 83 50.0 kg

p

 V

b

ac

 23 10 atm
 24 a 1.0 × 103 Pa
  b 1.2 × 1022

  c 7.3 × 10−2 m3

 25 56 g; 0.045 m3

 26 1.04 × 105 Pa
 27 a 0.030
  b 1.81 × 1022

  c 0.87 g
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 18 

4.3 Wave characteristics
 15 

 28 a 2.24 × 10−2 m3

  b 0.179 kg m−3

  c 1.43 kg m−3

 29 1.35 kg m−3

 30 2300 m s−1

 32 a 2.1 × 10−23 J

  b 
v4
v32

 = 2

Topic 4 Waves

4.1 Oscilliations
5 a ii 8.0 s
 b 

EP/J

t /s

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7

4.2 Travelling waves
 10 a From left to right: down, down, up
  b From left to right: up, up, down
 11 

 16 

1 unit
2 units

2 cm

t = 0.5 s t = 1.0 s t = 1.5 s

1 cm

1 cm
1 cm

1 unit

1 unit

1 unit
2 units

2 cm

t = 0.5 s t = 1.0 s t = 1.5 s

1 cm

1 cm
1 cm

1 unit

1 unit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x/cm

y/cm

0 10 20 30 40

 17 

 12 a 1.29 m
  b 1.32 × 10−2 m
 13 b i

    ii compression at x = 4 cm
  c ii compression at x = 5 cm
 14 a 850 Hz
  b   i 0.30 m
    ii 0.10 m

 23 b 82%

 24 b yes, 
I0
8

  c no light transmitted

20 4 6 8 x /cm
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  d  The net charge of a person is zero because 
of the protons that have been neglected in this 
estimate. This leads to zero force.

 7 6.0 N C−1

 8 3.84 × 105 N C−1 to the right
 9 5.77 × 105 N C−1 at 3.2° below the horizontal
 10 13 A
 11 a 1.2 A
  b 5.5 × 10−5 m s−1

 12 4.3 × 10−5 m s−1

 13 a 3.6 × 104 C
  b 2.2 × 1023

 14 a 0
  b 0
  c 1.6 × 106 N C−1

  d 9.0 × 105 N C−1

5.2 Heating eff ect of electric currents
 17 a yes
 18 14 V
 19 12 Ω
 20 15 Ω
 21 a 8.0 V across 4 Ω resistor; 12 V across 6 Ω resistor
  b 0 V
 22 a 400 Ω
  b 0.57 m
 23 a 2.7 Ω
  b 12.4 Ω
  c 1.0 Ω
 24 6.48 V
 25 a A1 reads 0.16 A; A2 reads −0.10 A
  b 1.2 V, 1.8 V and 1.0 V (lower R)
 26 1.5 A in R1 and 0.60 A in R2 and R3
 27 10 V
 28 a 4.2 A
  b 1.1 A
 29 0.60 m

4.4 Wave behaviour
 25 a 24°
  b 1.9 × 108 m s−1

  c 1.1 × 10–6 m
 26 a 1.0 × 10−8 s
  b 6 × 106

 27 1.1 cm
 28 13.1°
 31 800 m

4.5 Standing waves
 36 354  Hz
 37 2
 38 a 225 Hz
  b 1.51 m
 40 0.83 m; 1.4 m
 41 a 342 m s−1

  b 6.7 cm
 42 a n = 5 and n = 6
  b 2.8 m
 43 2
 44 16 cm s–1 

 45 b 8.0 m
  c π; y = −5.0 cos (45πt)
 46 b 13 × 103 m s–1 

  c 5.6 kHz

Topic 5 Electricity and 
magnetism

5.1 Electric fi elds
 1 a 29 N

  b i 
F
4 ii 

F
2 iii F

 2 90 N to the right
 3 3.22 cm from the left charge
 4 73 N at 225° to the horizontal
 5 a 8.0 × 10−9 C
  b 5.0 × 1010 electronic charges
 6 a 2 × 1028

  b 1027 N
  c  One assumption is that the body consists entirely 

of water, but a more signifi cant assumption is the 
use of Coulomb’s law for bodies that are fairly 
close to each other and are not point charges.
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 41 a into page
  b zero
  c force up
 42 a 0.012 T into page
  b yes
  c no
 43 a no
  b It will rotate counter-clockwise.
 44 2.25 N

 45 a 
eB

2πme

  b 
eB

2πmp

 46 a out of the paper
  b left

Topic 6 Circular motion and 
gravitation

6.1 Circular motion
 1 a 5.07 rad s−1; 18 m s−1

  b 0.81 Hz
 2 1.2 × 103 m s−2

 3 a 7.20 m s−2 north west
  b 8.0 m s−2

 4 21 rpm
 5 a 10 N
  b 2.83 m s−1

  c 0.80 m
 6 84.5 min
 7 a 3.2 × 109 m s−2

  b  The normal reaction force on the probe would 
not be zero so it could stay on the surface.

 8 a 30 km s−1

  b 6.0 × 10−3 m s−2

  c 3.6 × 1022 N
 9 4.7 km
 10 a 

5.3 Electric cells
 30 2.0 Ω
 32 a V 

I

slope = −r
vertical intercept = emf

ε

9.2 V
0.46 A

9.2 V
0.92 A

2 V
0.5 A

2 V
0.5 A

2 V
1 A

2 V
1 A

2.8 V
1.38 A

a

b

  b  i the negative of the internal resistance
    ii the emf of the source
 33 a 1.2 Ω
  b 12 V
 34 

 35 a 16 V
  b 3.25 Ω
 36 a 0.75 A
  b +6.8 W in 9.0 V cell and −2.2 W in 3.0 V cell
  c  The power in the 3.0 V cell is negative, implying 

that it is being charged.

5.4 Magnetic fi elds
 38 a B into page
  b F into page
  c B out of page
  d force zero
  e force zero
 40 a force down
  b force right

friction

weight

reaction

  b about 17 per minute
 11 a 30 m s−1

  b 13 m s−1
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 12 v =     
Mgr
m  

 13 top string tension = 13.1 N, bottom = 8.22 N
 14 a 49 m s−1

  b 1800 N
  c 30 m s−2

6.2 The law of gravitation
 15 a 1.99 × 1020 N
  b 4.17 × 1023 N
  c 1.0 × 10−47 N
 16 a zero
  b zero

  c 
Gm2

4R2

  d 
Gm(m + M )

4R2

 17 1
81

 18 1
2

 19 3
 20 twice as large
 21 0.9
 22 at P, g = 0; at Q, g is directed vertically upwards
 23 a 4.2 × 107 m
  b  It looks down at the same point on the equator 

so is useful for communications.
 24 a 7.6 × 103 m s−1

  b about 10 hours
 25 a T 2 ∝ r n+1

  b n = 2

Topic 7 Atomic, nuclear and 
particle physics

7.1 Discrete energy and radioactivity
 3 4.9 × 10–7 m
 6 2 |e|
 8 210

83 Bi → 0
−1 e + ν–e + 00 γ + 210

84 Po

 9 239
94 Pu → 42 α + 235

92 U
 10 0.5 mg
 11 b 4 min
  d 12 min
 12 plot d against 

1
√
 
c

 13 plot ln I against x

7.2 Nuclear reactions
 16 545.3 MeV; 8.79 MeV
 17 8.029 MeV; 12.37 MeV
 18 a 2.44 × 10−11 m
  b gamma ray
 19 a 236

92 U → 2 × 117
46 Pd + 2 × 00n

  c 179 MeV
 20 184 MeV
 21 18 MeV
 22 17.5 MeV

7.3 The structure of matter 
 26 a n– = u–  d

– 
d
–
; Q  n–  = −2

3 + 13 + 13 = 0

  b p– =  u–  u–  d
– 

; Q  p– = −2
3 − 23 + 13 = −1

 27  u–  s
 28 –1
 29 a violate
  b conserve
  c conserve
  d violate
 31 a Q = 0, S = +1
  b no
 32 a Q = 1
  b S = 0
 33 a conserve
  b conserve
  c violate
  d violate
 34 a νe

  b νμ

  c ν–τ

  d ν–e

  e ν–e and ντ 
 35 a electron lepton number
  b electron and muon lepton number
  c electric charge
  d baryon number
  e energy and muon lepton number
  f baryon number and electric charge
 40 a mu = 312 MeV c –2, md = 314 MeV c –2

  b 626 MeV c –2

 42 

time
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Topic 8 Energy production

8.1 Energy sources
 1 b 3.7 × 105 J m–3 

 2 a 5.0 × 108 J
  b 1.6 × 1016 J
 3 a 2.5%
 4 a 1.0 × 109 W
  b 2.4 × 109 W
  c 1.2 × 105 kg s–1

 5 6.3 km
 6 7.2 × 106 kg day–1

 8 a 185 MeV or 2.96 × 10–11 J
  b 6.77 × 1018 s–1

 9 a 8.20 × 1013 J kg–1

  b 2.7 × 106 kg
 10 a 3.9 × 1019 s–1

  b 1.5 × 10–5 kg s–1

 13 a 12.2 (so about 12) m2

  b 

 45 W − → u + d (→ hadrons); W − → e− + ν–e; 
W − → μ− + ν–μ

 46 a 

  b 

W–

e–

d u
νe

W–

e–

μ– νμ
νe

W–

μ–

νμνe

e–

W+

μ+

νμd

u

W–

μ–

νμu

s

Z

νμ

νμ

e–

e+

Z

e– e–

νμ νμ

 43 a d → u + e− + ν–e

  b 

 44 a 

  b 

  c 

  d 

  c 

Z

e–

e+

e–

e+

25 kW 30 kW 30 kW

85 kW

 14 6.5 m2

 15 3.6 h
 16 a 338 K
  b 800 W
  c 0.40 (40%)
 17 3.6 × 1011 J
 18 a i increases by a factor of 4
   ii increases by a factor of 8
   iii increases by a factor of 32
 20 2.0 kW
 21 4.3 m
 22 2.0 × 108 W
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8.2 Thermal energy transfer
 26 a yes
  b no
 28 81
 29 c 1.8
 30 b 0.6
 31 278 K

 32 a T ∝ 
1

√d
  b 1.4 K
 33 b 2.4 W m–2

 35 a (4.5 ± 0.1) × 102 K
 38 b 0.29
  c 250 W m–2

  d 258 K
 39 d ii 242 K
 44 approximately 2 K increase in temperature

Topic 9 Wave phenomena(HL)

9.1 Simple harmonic motion
2 a −

π
2

3 a 5.0 mm
 b −3.7 mm
 c 0.99 s
 d ±4.0 mm
4 a 8.0 cos (28πt )
 b y  = –4.7 cm, v  = −5.7 m s–1, a  = 3.6 × 102 m s–2

5 v  = 14 m s–1; a  = 4.2 × 104 m s–2

6 a 520 Hz
 c 6.0 mm
 d 1.0 m
 e 4.2 mm
 7 a 0.51 cm
  b twice the amplitude
  c –0.25 sin (5πt )
 8 

 9 b 1.6 s
  c 0.40 m s–1

  d 0.24 N
  e 0.012 J
 10 a 9.94 mm
  b 2.35 N

 11 a mass = M(
x
R)3

  b force = GMm(
x
R

3 )

  d period = 2π    
R3

GM
  e 85 minutes
  f same
 12 a 0.57 s
 13 a 27.0 m
  b 34.2 m s–2

  c 3.28 s
  d 17.7 m

9.2 Single-slit diff raction
 14 38.2°
 15 20 cm
 16 a λ ≈ 24b
  b i New curve in blue; 
   ii Same as original (shown in red) 
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9.3 Interference
 17 8.5 mm
 19 n = 3
 20 a 6.46 × 10–7 m
 21 a 2.92 λ
 22 a 0.0°; 13.89°; 28.69°; 46.05°; 73.74°
  b n = 4
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 39 a 490 Hz
  b i 0.66 m ii 0.66 m
 40 a 670 Hz
  b i 0.54 m ii 0.54 m
 42 6.9 m s−1

 43 4.0 m s−1

 45 b 0.36 m s–1

 46 9.3 × 106 m s–1

 47 a 1.4 × 106 m s–1

 48 ±3.8 GHz
 49 b 3.65 × 106 m s–1 and 8.21 × 106 m s–1

Topic 10 Fields (HL)

10.1 Describing fi elds
 1 b V = 25

Gm
d

 2 a −1.25 × 107 J kg−1

  b −6.25 × 109 J
 3 a −7.63 × 1028 J
  b −1.04 × 106 J kg−1

  c 1.0 × 103 m s−1

 4 

 24 103.4 nm
 25 b 

θ/rad

Intensity
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1
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5
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× 
10
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 J

  c 

9.4 Resolution
 27 no; can resolve 3.6 cm
 28 a 115 km
 29 a 1.5 × 10−4 rad
  b 58 km
 30 a 3.4 × 10−3 rad
  b cannot resolve, as 3.4 × 10−3 > 4.1 × 10−6 rad
 31 3.3 × 10−4 < 0.088 rad, so seen as extended object
 32 2.5 × 1012 m
 33 a 2.8 × 10−7 rad
 34 a 8.5 × 10−6 m
  b 329
 35 a 0.92 nm

9.5 The Doppler eff ect
 37 a 570 Hz
  b i 0.68 m ii 0.60 m
 38 a 440 Hz
  b i 0.71 m ii 0.78 m

 5 a 9 : 1
  b 3.6 × 106 m s−1

 7 the work required to move the mass on which the 
force is acting from r  = a to r  = b

 9 a 
Q

πε0d
 or 

4kQ
d

  b zero
 10 −15 kV
 11 a 2.55 × 106 V
  b E  = 0
 12 3.6 × 107 J
 13 1.44 × 10–7 J
 14 5.93 × 106 m s−1
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 37 d 
q 2

16πε0r
 or 

kq 2

4r
 38 b 1.4 × 10−16 s
  c 1.7 × 10−18 J

Topic 11 Electromagnetic 
induction (HL)

11.1 Electromagnetic induction
 1 

 15 a 11.8 N at 75.4° below the horizontal
  b 5.1 × 105 V
  c 5.1 × 10−4 J
 16 a 0.8 μC (smaller sphere) and 1.2 μC
  b  6.37 × 10−6 C m−2 (smaller sphere) and 

4.24 × 10−6 C m−2

  c  7.2 × 105 N C−1 (smaller sphere) and 
4.8 × 105 N C−1

 18 a 0.30 × 10−3 J
  b −0.30 × 10−3 J
  c −0.60 × 10−3 J
 19 a −7.19 V
  b −1.6 × 10−19 C

 20 a  
qa

2πε0(d 2 + a 2 )3/2 or 
2kqa

(d 2 + a 2 )3/2 vertically down

  b  
qd

2πε0(d 2 + a 2 )3/2 or 
2kqd

(d 2 + a 2 )3/2 horizontally to 

   the left

 21 W = 
3ke2

r  = 1.4 × 10−18 J

10.2 Fields at work
 22 a 7.6 × 103 m s−1

  b 95 minutes
 24 a  about 35 870 km (i.e. about 42 250 km from the 

Earth’s centre)
 25 Orbit 1 is not possible, orbit 2 is.
 26 The normal reaction force from the spacecraft fl oor 

is zero.
 27 a The total energy is E = − 

GMm
4R , i.e. negative.

  b r  = 4R

  c v =     
3GM
2R

 28 −5.29 × 1033 J
 29 a B
  b A
  c A
 30 a Its total energy is negative.

  b 
5R
2

 31 positive because the total energy increases
 34 c about 4
 35 c 1.1 × 106 m
 36 a F = 

GM 2

4R2

  c T = 7.8 h
  f ii 3.9 × 10−9 J yr−1

  g 2.6 × 108 yr
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 15 a 2 A
  b 5 V
  c 1 s
  d 

 4 counter-clockwise
 5 a clockwise, then zero, then counter-clockwise
  b counter-clockwise, then zero, then clockwise
 6 a counter-clockwise, then zero, then clockwise
  b clockwise, then zero, then counter-clockwise
 7 a force is upward
  b force is upward
 8 right end is positive
 9 a clockwise
  b counter-clockwise
 10 28 mV

11.2 Transmission of power
 14 b  The graph in question 14 remains unchanged.
  a, c  The emf has double the amplitude at the high 

speed but the dependence on angle is otherwise 
the same. Note that no numbers have been put 
on the emf axis as we do not know the rate of 
rotation.

emf

θ/rad1 2

a

c

3 4 5 6

80P / W

t /s

60

40

20

0
0

0.5 1 1.5 2

 19 4.9 × 104 V
 20 a 30%
  b 1.2%
 21 410 W

11.3 Capacitance
 22 About 1100 km2

 23 6.6 nC
 24 0.18 A
 25 a 180 mC
  b 0.81 J
  c 16 W
 26 a 360 μF
  b 7.2 × 10–4 C and 1.4 × 10–3 C
  c 2.2 × 10–3 J and 4.3 × 10–3 J
 27 a 80 μF
  b 4.8 × 10–4 C each
  c 9.6 × 10–4 J and 4.8 × 10–4 J
 28 a  The 24 pF has charge 1.5 × 10–10 C and the other 

4.5 × 10–10 C.
  b 5.4 × 10–9 J
 29 a 18 J
  b  6.0 s if we assume that the lamp will be lit for a 

time equal to the time constant
 31 a 0.70 mC
  b 1.8 mA
  c 27 V
 32 a just over 2 s (2.1 s)
  b 42 kΩ
 33 a 1.5 ms
  b 80 μA
 34 a 1.6 μA
  b 13 μJ
  c 13 μJ

Topic 12 Quantum and nuclear 
physics (HL)

12.1 The interaction of matter with 
radiation
 1 b 7.24 × 1014 Hz
 2 b 0.671 V
 3 b 1.6 × 10−4 A
  c 0.20 eV
  d 2.1 eV
  e 3.2 × 10−4 A

 16 a 88 V; 50 Hz
  b 10.5 A
 17 a 23.4%
  b 15%
 18 0.0825 T
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 4 b ii 2.7 × 10−7 m
 5 b 3.90 eV
 6 a 16 min
 7 a i 5.0 × 1014 Hz
   ii 2.08 eV
  b 1.25 eV
  c the graph is parallel to the original graph
 8 11.5 eV or 1.3 eV
 9 b i  = 1.5 W m–2

  c f  = 3.0 × 1018 m–2 s–1

  d  There are fewer photons incident on the surface 
per second and so fewer electrons are emitted.

  e  One assumption is that, at both wavelengths, 
the same percentage of photons incident on the 
surface cause emission of electrons.

 10 b i no excitation
   ii 4
   iii 6
 11 b 1.51 eV
 12 a 9.1 × 10−8 
  b 2.2 × 106 m s−1

 13 a 2.65 × 10−34 m
 14 b 1.1 × 103 m s−1

 15 b √8 ≈ 2.83
  c 5.4 × 10–11 m
 16 a 2.0 ×10−15 m
  b 6.6 × 10−10 m
 18 b 5.5 × 10–10 m
 20 θ ≈ 10–35 rad
 22 a top diagram
  b bottom diagram
 23 a 2 × 10–15 m, i.e. of order 10–15 m
  b of order 106 MeV

12.2 Nuclear physics
 24 3.6 × 107 m s−1

 25 

 28 b 226
88 Ra → 226

88 Ra + 00 γ 
  c 1.83 × 10−11 m
 30 I and IV are beta plus decays, II is a gamma decay 

and III is beta minus decay
 31 a 0.231 s−1

  b i 4.78 × 1021 
   ii 3.79 × 1021

   iii 3.01 × 1021

 32 a 0.5
  b 0.875
  c 0.5
 33 3.66 × 1010 Bq
 34 1.10 × 106 Bq
 35 4.20 × 1011

 36 3.8 × 109 yr
 37 4.11 × 109 yr
 38 a 0.75
  b 0.95
  c 1.50

d

Energy

EP

EK

r
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Glossary
average speed the ratio of distance travelled to total time 

taken
average velocity the ratio of displacement to total time 

taken
Avogadro constant the number of particles in one mole
background radiation radiation from natural sources
bar magnet a rectangular piece of iron that has a magnetic 

fi eld 
baryon a particle made up of three quarks
baryon number a conserved quantum number; it is 

assigned to each quark and by extension to baryons
battery a source of emf
best estimate the average value of a set of measurements of 

a given quantity that will serve as the quoted value for that 
quantity

beta particle an electron
beta minus decay a decay producing an electron and an 

anti-neutrino
beta plus decay a decay producing a positron and a 

neutrino
binding energy the minimum energy that must be 

supplied to completely separate the nucleons in a nucleus 
or the energy released when a nucleus is assembled

black body a theoretical body that refl ects none of the 
radiation incident on it and so absorbs all of it 

blue-shift an decrease in the observed wavelength 
boiling the change from the liquid to the vapour state at a 

specifi c constant temperature
bottom a fl avour of quark with electric charge – 13 e, but 

heavier than the strange quark
Boyle’s law the relation between pressure and volume of a 

fi xed quantity of an ideal gas when the temperature is kept 
constant 

capacitance the charge that can be stored on a capacitor 
per unit voltage

capacitor a device that can store electric charge
carbon brushes conducting, soft material that joins the slip 

rings to the external circuit in an ac generator
centripetal acceleration the acceleration due to a 

changing direction of velocity
centripetal force a force pointing to the centre of a 

circular path
chain reaction a self-sustaining reaction
charge carrier charged particles that are able to move, 

creating an electric current
charge polarisation the separation of charge when a 

dielectric is exposed to an external electric fi eld 
Charles’ law the relation between volume and temperature 

of a fi xed quantity of an ideal gas when the pressure is kept 
constant

absolute uncertainty a quantity giving the extremes a 
measured value falls within 

absolute zero the temperature at which all random motion 
of molecules stops

absorption spectra the set of wavelengths of photons 
absorbed by a substance

ac generator a rotating coil in a magnetic fi eld that 
generates ac voltage

acceleration of free fall the acceleration due to the pull 
of the Earth on a body

accurate a measurements where the systematic error is 
small and so close to the ‘true’ value

activity the rate of decay of a radioactive sample
albedo the ratio of scattered to incident intensity of 

radiation
alpha decay a decay producing an alpha particle
alpha particle the nucleus of helium-4
alternating current (ac) current in which electrons 

oscillate instead of moving with same drift speed in the 
same direction

alternating voltage voltage that takes positive as well as 
negative values

ammeter an instrument that measures the electric current 
through it

Amontons’ law or Gay-Lussac’s law the relation 
between pressure and temperature of a fi xed quantity of an 
ideal gas when the volume is kept constant

amplitude the largest value of the displacement from 
equilibrium of an oscillation

angular frequency same as angular speed
angular momentum the product of mass, speed and orbit 

radius of a particle
angular separation the angle that the distance between 

two objects subtends at the observer’s eye
angular speed the ratio of angle turned to time taken
antinode a point in a medium with a standing wave where 

the displacement is momentarily a maximum
anti-particle a particle with the same mass as its particle 

but with all other properties opposite, such as electric 
charge

atmosphere a non-SI unit of pressure
atomic (or proton) number the number of protons in a 

nucleus
atomic mass the mass of an atom measured in units of u
atomic mass unit a unit of mass equal to 1

12 of the mass of 
a neutral atom of carbon-12

average another word for mean
average power for sinusoidally varying voltages and 

currents the average power in a conductor is half the peak 
value
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Glossary destructive interference the superposition of two 
identical waves that arrive at a point 180° out of phase

dielectric an insulator that shows charge polarisation
diff raction the spreading of a wave past an aperture or an 

obstacle
diff raction grating a series of very many and very narrow 

slits
diode a device that lets current through it only in one 

direction
diode bridge rectifi er a circuit that achieves full-wave 

rectifi cation
dipole a pair of two equal and opposite electric charges
direct current (dc) current in which electrons move in 

the same direction with the same average drift speed
discrete energy that can take a set of specifi c values as 

opposed to a continuous range of values
dispersion the dependence of refractive index on 

wavelength
displacement the change in position; for an oscillation, 

the diff erence between the position of a particle and its 
equilibrium position

distance of closest approach the smallest distance 
between an incoming particle and the target in a scattering 
experiment

distance the length of the path followed by a particle or 
object

Doppler eff ect the change in measured frequency when 
there is relative motion between source and observer

down a fl avour of quark with electric charge – 13e
drag force a force of resistance to motion 
dynamic or kinetic friction a force opposing motion 

when a body moves 
eddy currents small induced currents in a conductor 

where the fl ux is changing that dissipate energy
effi  ciency the ratio of useful work or power to input work 

or power
elastic potential energy the energy stored in a spring 

when it is compressed or stretched
electric charge a conserved property of matter
electric fi eld the fi eld produced by electric charges
electric fi eld strength the electric force per unit charge 

experienced by a small point positive charge
electric potential the work done per unit charge by an 

external agent in bringing a small point positive charge 
from infi nity to a point

electric potential energy the work that needs to be done 
by an external agent in order to bring a set of charges from 
where they were separated by an infi nite distance to their 
current position

electric resistance the ratio of the voltage across a device 
to the current through it

electrical energy same as electric potential energy
electromagnetic an interaction mediated by the exchange 

of photons

charm a fl avour of quark with electric charge + 23 e, but 
heavier than the up quark

circular slit an opening in the shape of a circle through 
which diff raction takes place 

coeffi  cient of dynamic friction the ratio of the force of 
friction to the normal reaction force on a body while the 
body is sliding on a surface

coeffi  cient of static friction the ratio of the maximum 
force of friction that can develop between two bodies to 
the normal reaction force on a body while the body is at 
rest

coherent sources whose phase diff erence is constant in time
compression a point in a medium through which a wave is 

travelling that has maximum density
condensation the change from the vapour to the liquid 

state
conduction the transfer of heat through electron and 

molecular collisions
conductor an object or material through which electric 

current can pass
conservation of energy the principle that energy cannot 

be destroyed or created but can only be changed from one 
form into another

conservation of momentum when the net force on 
a system is zero, the total momentum of the system is 
constant

conservative forces forces for which work done is 
independent of the path followed. 

conserved a quantity that stays the same before and after an 
interaction

constructive interference the superposition of two 
identical waves that arrive at a point in phase

contact force another name for a reaction force
control rod a rod that regulates the rate of energy release 

in a nuclear fi ssion reactor by regulating the absorption of 
neutrons

convection current motion of a fl uid as result of 
diff erences in fl uid density

convection the transfer of heat in fl uids through diff erences 
in fl uid density

Coulomb’s law the electric force between two point 
charges is proportional to the product of the charges and 
inversely proportional to the square of their separation; 

 F = 
1

4πε0 
q1q2

r 2

crest a point on a wave of maximum displacement
critical angle the angle of incidence for which the angle of 

refraction is a right angle
critical mass the smallest mass of fi ssionable material that 

can sustain fi ssion reactions
decay constant the probability per unit time for a nucleus 

to decay
decay series the sequence of decays that occurs until a 

radioactive element reaches a stable nuclide 
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force pair two forces acting on diff erent bodies that are 
equal and opposite according to Newton’s third law

fractional uncertainty the ratio of the absolute 
uncertainty to the mean value of a quantity 

free-body diagram a diagram showing a body in isolation 
with all forces acting on it drawn as arrows

freezing the change from the liquid to the solid state at a 
specifi c constant temperature

frequency the number of full oscillations or waves in unit 
time

friction laws empirical ‘laws’ about frictional forces
fuel a source of energy 
fuel rods containers of nuclear fuels, e.g. oxides of 

uranium-235 or plutonium-239, in a nuclear fi ssion reactor
full-wave rectifi cation the turning of ac current into dc 

current during both halves of the cycle
fundamental unit in the SI system, the kilogram, metre, 

second, kelvin, mole, ampere and candela are fundamental 
units; all other units are combinations of these and are 
called derived units

gamma decay a decay producing a gamma ray photon
gamma ray a photon
Gay-Lussac’s law or Amontons’ law the relation 

between pressure and temperature of a fi xed quantity of an 
ideal gas when the volume is kept constant

gravitational fi eld the fi eld produced by mass; its strength 
is the gravitational force per unit mass experienced by a 
small point mass

gravitational fi eld strength the gravitational force per 
unit mass experienced by a small point mass

gravitational interaction an interaction mediated by the 
exchange of gravitons

gravitational potential the work done per unit mass by an 
external agent in bringing a small point mass from infi nity 
to a point 

gravitational potential energy the work that must be 
performed by an external agent to raise a mass to certain 
height from a position where the height is zero, or to bring 
a set of masses to their current position from when they 
were separated by an infi nite distance 

greenhouse eff ect the phenomenon in which infrared 
radiation emitted by the Earth’s surface is absorbed by 
greenhouse gases in the atmosphere and then re-radiated in 
many directions, including back down to Earth

greenhouse gas a gas in the atmosphere that absorbs 
infrared radiation

ground state the state of lowest energy
hadron a particle made up of quarks
half-life the time for the activity of a radioactive sample to 

be reduced to half its initial value
half-wave rectifi cation the turning of ac current into dc 

current by allowing the passage of current during one half 
of the cycle only

heat exchanger system that extracts thermal energy from 
the moderator of  a nuclear reactor

electromagnetic waves transverse waves moving at the 
speed of light in vacuum consisting of oscillating electric 
and magnetic fi elds at right angles to each other

electroweak interaction the interaction that is the 
unifi cation of the electromagnetic and the weak nuclear 
interactions

elementary particles particles that have no constituents
emf the work done per unit charge in moving charge across 

the terminals of a battery
emission spectrum the set of wavelengths of photons 

radiated by a substance 
emissivity the ratio of the intensity radiated by a body 

to the intensity radiated by a black body of the same 
temperature

energy something that can be stored and which can be 
used in order to do things

energy balance equation an equation expressing the 
equality of incoming and outgoing intensities of radiation

energy density the energy that can be obtained from a 
unit volume of fuel

energy level diagram a diagram showing the discrete 
energies a system can take 

equation of state the equation relating pressure, volume, 
temperature and number of moles of a gas

equilibrium the state when the net force on a system is 
zero

equipotential surfaces set of points that have the same 
potential

error bar the representation of absolute uncertainty in a 
graph of plotted points

escape velocity the minimum speed at launch so that a 
particle can move to infi nity and never return

exchange particle an elementary particle used as the 
intermediary of an interaction

excited state a state of energy higher than the ground state 
energy

expanding universe the distance between distant galaxies 
is increasing as space between them stretches

expansion another name for rarefaction
family lepton number a quantum number assigned to 

each lepton in each family
Faraday’s law the induced emf in a loop is the rate of 

change of magnetic fl ux linkage through the loop
Feynman diagram a pictorial representation of an 

interaction
fi rst harmonic the mode of vibration of a standing wave of 

lowest frequency  
fl avour a type of quark
fl uid resistance force a force of resistance to motion when 

a body moves through a fl uid
fl ux linkage the magnetic fl ux in a loop times the number 

of turns in the loop
force something that accelerates a body
force of reaction a force that develops as a result of two 

bodies being in contact
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magnetic force the force experienced by a magnetic fi eld 
on a moving charge or an electric current 

magnetic hysteresis the lagging of an eff ect behind its 
cause, as when the change in magnetism of a body lags 
behind changes in the magnetic fi eld

magnitude the length of a vector; the size of a quantity
Malus’s law the transmitted intensity of polarised light 

through a polariser is reduced by a factor of cos2 θ
mass (or nucleon) number the number of protons plus 

neutrons in a nucleus
mass defect the diff erence in mass between the mass of the 

nucleons making up a nucleus and the nuclear mass
mean the sum of a set of measurements divided by the 

number of measurements
mean value the average value of a set of measurements of 

a given quantity that will serve as the quoted value for that 
quantity

melting the change from the solid to the liquid state at a 
specifi c constant temperature

meson a particle made up of one quark and one anti-quark
method of mixtures a method to measure specifi c heat 

capacity by measuring the temperature increase when a hot 
body is put into a liquid in a calorimeter

moderator body whose molecules slow down the fast 
neutrons produced in a fi ssion reaction through collisions 
with the neutrons

modulated the change in the two-slit intensity pattern 
when the single-slit diff raction eff ect is taken into account

molar mass the mass of one mole of a substance
mole a quantity of a substance containing as many particles 

as atoms in 12 g of carbon-12
motional emf the emf generated when a conductor moves 

in a region of magnetic fi eld
net force the one force whose eff ect is the same as that of a 

number of forces combined
neutrino a neutral particle with very small mass that 

interacts very weakly
Newton’s fi rst law particle moves with a constant velocity 

(which may be zero) when no forces act on it
Newton’s law of gravitation there is a force of attraction 

between any two point masses that is proportional to the 
product of the masses and inversely proportional to the 
square of their separation; the force is directed along the 
line joining the two masses

Newton’s second law the net force on a body is the rate 
of change of the body’s momentum

Newton’s third law when a body A exerts a force on body 
B, body B will exert an equal but opposite force on body A

node a point in a medium with a standing wave where the 
displacement is always zero

non-renewable sources of energy that are being used 
at a much faster rate than that at which they are being 
produced and so will run out

heat the energy transferred as a result of a temperature 
diff erence

Higgs particle the particle whose interactions with other 
particles gives mass to those particles

Hooke’s law the tension in a spring is proportional to the 
extension or compression

hydroelectric power plant producing power by  
converting the potential or kinetic energy of water 

ideal gas an idealised version of a gas obeying the gas laws 
at all pressures, volumes and temperatures

impulse the product of force and the time interval for 
which the force acts; it equals the change in momentum

inertia the tendency of a massive body to remain in its 
current state of motion

instantaneous speed the speed at an instant of time; the 
rate of change of distance with time

instantaneous velocity the velocity at an instant of time; 
the rate of change of displacement with time

insulator an object or material which electric current 
cannot pass through

intensity power of radiation per unit area; power per unit 
area carried by a wave – intensity is proportional to the 
square of the amplitude of the wave

interaction vertex a building block of Feynman diagrams 
representing a fundamental interaction process

internal energy the total random kinetic energy and 
intermolecular potential energy of the molecules of a 
substance

inverse square law a law where a physical quantity is 
inversely proportional to the square of the distance from 
the source of that quantity; intensity of light from a source 
obeys an inverse square law

ionising the ability to knock electrons off  atoms
isolated  a system whose total energy stays constant
isotopes nuclei of the same element containing the same 

number of protons but diff erent numbers of neutrons
kinetic energy the energy a body has as a result of its 

motion
Kirchhoff 's current law ΣIin = ΣIout

Kirchhoff 's loop law ΣV = 0
Lenz’s law the direction of the induced emf is such as to 

oppose the change in fl ux that created it
lepton an elementary particle 
linear momentum the product of mass and velocity
longitudinal wave a wave where the displacement is 

parallel to the direction of energy transfer
magnetic fi eld a fi eld created by electric currents and 

moving charges
magnetic fi eld lines imaginary curves whose tangents give 

the magnetic fi eld
magnetic fl ux the product of the component of the 

magnetic fi eld strength normal to an area
magnetic fl ux density another name for the magnetic 

fi eld strength B; it is the force per unit charge on a charge 
moving with unit velocity at right angles to the fi eld
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potential diff erence the work done per unit charge in 
moving a small point positive charge between two points

potential energy the energy a system has as a result of its 
state

power the rate at which work is being done or energy is 
being dissipated

precise measurements where the random error is small
pressure the normal force on an area per unit area
primary cell a source of emf that, once discharged, has to 

be discarded
primary energy energy that has not being processed in 

any way
pulse an isolated disturbance in a medium carrying energy 

and momentum
pumped storage system plant in which water is pumped 

back up to higher elevations during off -peak hours so 
that it can again be released later during periods of high 
demand for electricity

quantised a quantity that can take on a discrete set of 
values

quantised energy energy that takes values from a set of 
values that are not continuous

quantum a unit of something, for example, energy
quark an elementary particle making up nucleons (and 

hadrons) appearing in six fl avours
quark confi nement the principle that free quarks cannot 

be observed
radial the direction towards or away from the centre of a 

spherical body
radiation energy in the form of electromagnetic waves
radioactivity the phenomenon in which nuclei emit 

particles and energy randomly and spontaneously 
random uncertainty an error due to inexperience of the 

observer and the diffi  culty of reading instruments
rarefaction a point in a medium through which a wave is 

travelling that has minimum density
ray the direction of energy transfer of a wave
Rayleigh criterion the condition for resolving two 

objects; resolution is possible when the central maximum 
in the diff raction pattern of one source coincides with the 
fi rst minimum of the diff raction pattern of the other 

real gas a gas obeying the gas laws approximately for 
limited ranges of pressures, volumes and temperatures

red-shift an increase in the observed wavelength
refl ection the scattering of radiation off  a surface such that 

the angle of incidence is equal to the angle of refl ection
refraction the change in speed of a wave as it enters 

another medium and the subsequent change of direction 
(except at normal incidence)

refractive index the ratio of the speed of light in vacuum 
to the speed of light in a material  

renewable sources of energy from a source that has, for all 
practical purposes, an infi nite lifetime

resistivity the resistance of a conductor of unit length and 
unit cross-sectional area

nuclear fi ssion the reaction in which a heavy nucleus splits 
into two medium-sized nuclei plus neutrons, releasing 
energy 

nuclear fusion the reaction in which two light nuclei join 
to form a heavier nucleus, releasing energy

nucleon a proton or neutron
nuclide a nucleus with a specifi c number of neutrons and 

protons 
Ohm’s law at constant temperature the current through 

most metallic conductors is proportional to the voltage 
across the conductor

order of magnitude an estimate given as just a power 
of 10

pair annihilation the disappearance of a particle and its 
anti-particle when they collide

pair creation the production of a particle and its anti-
particle from a vacuum

parallel connection resistors connected so that they have 
the same potential diff erence across them

parallel plates two parallel and equally but oppositely 
charged plates

path diff erence the diff erence in the distance from a point 
to two sources of waves 

penetrating the ability to move deep into a material
period the time needed to produce one full oscillation or 

wave 
periodic motion that repeats
permittivity of vacuum the constant ε appearing in 

Coulomb’s law when the charges are situated in a vacuum
phase change the phase of a wave increases by π (radians) 

upon refl ection from a medium of higher refractive index

phase diff erence the quantity 
shift

period × 360° or 

 
shift

wavelength × 360°

phase the state of a substance depending on the separation 
of its molecules; we consider the solid, liquid and vapour 
phase in this course

photoelectric eff ect the phenomenon in which 
electromagnetic radiation incident on a metallic surface 
forces electrons to move from the surface

photon the particle of light, a quantum of energy
photo-surface a metallic surface that ejects electrons when 

electromagnetic radiation is incident on it
photovoltaic cell a device that converts solar energy into 

electrical energy
plane polarised light whose electric fi eld oscillates on one 

plane
point particle a particle that is assumed to be a 

mathematical point
polariser a device such that light passing through it 

emerges polarised
position generally a vector from some origin to the place 

where a particle is situated
positron the anti-particle of the electron
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standing wave a wave formed from the superposition 
of two identical travelling waves moving in opposite 
directions

state of a gas a gas with a specifi c value of  pressure, 
volume, temperature and number of moles

static friction a force opposing the tendency to motion 
when a body is at rest

Stefan–Boltzmann law the power radiated by a black 
body is proportional to the body’s surface area and the 
fourth power of its kelvin temperature; P = σAT4

stopping voltage the voltage in a photoelectric 
experiment that makes the photocurrent zero

strange a fl avour of quark with electric charge – 13e, but 
heavier than the down quark

strong nuclear interaction an interaction mediated by the 
exchange of gluons

superposition the displacement when two waves meet is 
the sum of the individual displacements 

systematic error an error due to incorrectly calibrated 
instruments – it is the same for all data points and cannot 
be reduced by repeated measurements

temperature a measure of the ‘coldness’ or ‘hotness’; the 
absolute temperature is a measure of the average random 
kinetic energy of the particles of a substance

tension the force developed in a string or spring as a result 
of stretching and compressing

terminal speed the eventual constant speed attained by a 
body experiencing a speed-dependent resistance force.

thermal equilibrium the state in which the temperature 
remains constant

thermistor a resistor whose resistance varies strongly with 
temperature

thin fi lm interference a type of interference caused by 
refl ected rays from the two boundaries of a thin fi lm

Thomson model an early model of the atom as a positive 
sphere of positive charge with electrons moving about in 
the sphere

time constant the time after which the charge on a 
discharging capacitor is reduced to about 37% of its 
original value

top a fl avour of quark with electric charge + 23e, but heavier 
than the charm

total internal refl ection when the angle of incidence is 
greater than the critical angle, the incident ray only refl ects 
with no refracted ray

total mechanical energy the sum of the kinetic energy, 
gravitational potential energy and elastic potential energy 
of a body

transfer of thermal energy the transfer of energy from 
one body to another as a result of a temperature diff erence

transformer a device that takes a given ac voltage as input 
and delivers a higher or lower ac voltage 

transition the change from one energy level to another 
with the associated release or absorption of energy

resolution the ability to see as distinct two objects that are 
distinct

resolving power the ability of a diff raction grating to see as 
distinct two wavelengths that are close to each other

restoring force a force directed towards the equilibrium 
position of a system

right-hand grip rules the right-hand grip rule for a 
current-carrying wire gives the direction of the magnetic 
fi eld due to the current in a wire; the right-hand grip rule 
for a solenoid gives the direction of the magnetic fi eld due 
to the current in a solenoid; the right-hand rule gives the 
direction of the magnetic force on a moving charge

root mean square (rms) value of a current or a voltage 
that would give the same average power dissipation in a dc 
circuit component as in the ac circuit

Sankey diagram a pictorial way to represent energy losses 
and transfers

scalar a quantity that has magnitude but no direction
Schrödinger theory the theory that determines the 

wavefunction of a system
Schwarzschild radius the distance from the centre of a 

star where the escape speed is the speed of light
secondary cell a rechargeable source of emf
secondary energy energy that has been processed in some 

way so as to make it useful
series connection resistances connected one after the 

other so they take the same current 
simple harmonic motion (SHM) oscillatory motion 

in which the acceleration is opposite and proportional to 
displacement from equilibrium

simple pendulum a small mass attached to a fi xed length 
of string that oscillates

slip rings conducting rings used to connect the rotating 
coil of a generator to the external circuit so that ac current 
is delivered to it

Snell’s law the law relating the angles of incidence and 
refraction to the speeds of the wave in two media

solar constant the intensity of the Sun’s radiation at the 
position of the Earth’s orbit

solenoid a long, tightly wound coil
specifi c energy the energy that can be obtained from a 

unit mass of fuel
specifi c heat capacity the energy required to raise the 

temperature of a unit mass by one degree
specifi c latent heat of fusion the energy needed to 

change a unit mass from the solid to the liquid phase at 
constant temperature

specifi c latent heat of vaporisation the energy needed 
to change a unit mass from the liquid to the vapour phase 
at constant temperature

standard deviation a measure of the spread of a set of 
measurements around the mean

Standard Model the presently accepted model of 
elementary particles and interactions for quarks and leptons
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transverse wave a wave where the displacement is at right 
angles to the direction of energy transfer 

trough a point on a wave of minimum displacement
tunnelling the ability of subatomic particles to move into 

regions forbidden by energy conservation
uniform motion motion with constant velocity 
uniformly accelerated motion motion with constant 

acceleration
unpolarised light whose electric fi eld oscillates on many 

planes
up a fl avour of quark with electric charge + 23e
upthrust an upward force exerted on a body immersed in 

a fl uid
vaporisation the change from the liquid to the vapour state
vector a quantity that has magnitude and direction
voltage the potential diff erence between two points in a 

circuit
voltmeter an instrument that measures the potential 

diff erence across its ends
wave a periodic disturbance that carries energy and 

momentum with no large-scale motion of the medium
wavefront surfaces of constant phase (usually only drawn 

through crests)
wavefunction a function of time and position whose 

magnitude squared is related to the probability of fi nding a 
particle somewhere

wavelength the length of a full wave; the distance between 
two consecutive crests or troughs

weak nuclear interaction an interaction mediated by the 
exchange of W and Z bosons

weight the force of attraction between the mass of the 
Earth and a body

Wien’s displacement law the wavelength at which most 
of the power of a black body is radiated is inversely 

 proportional to the body’s temperature; λ = 
2.90 × 10–3

T
work done the product of the force and the distance 

travelled in the direction of the force 
work function the minimum amount of energy that must 

be supplied to an electron so it can escape a metal
work–kinetic energy relation the work done by the net 

force on a body equals the change in the body’s kinetic 
energy
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absolute (kelvin) temperature  116, 330
absolute uncertainties  12–16
absolute zero  116, 132, 134
absorption of photons  337
absorption spectra  273, 493
acceleration  37–43

centripetal  251–3
Newton’s second law  67–75
in orbital motion  415
and projectile motion  45–51
in SHM  147–50, 346

maximum  351, 352–3
acceleration-displacement graphs  148, 150, 

351–2
acceleration of free fall  43–4

air resistance in  51–2
and gravitational fi eld strength  261, 262
and Newton’s law  67–8
and weight  58
see also projectile motion

acceleration-time graphs  40, 52
SHM  149

ac circuits  446–50
accuracy  10
ac generators  444–6, 447–8
activity  279–81, 513
ac voltage  445, 446, 450–3, 470–1
addition of uncertainties  13
addition of vectors  22, 23–4, 28–9
air molecules  157–8, 185
air resistance  51–2, 60

and power  93
see also frictional forces

albedo  333, 335
alpha decay  275–6, 277–8

discrete energies in  509
alpha particles  275–6, 277

energies of  289–90, 509
scattering with  295–7, 505–8

alternating current (ac)  444–50
rectifi cation to dc  454–5, 469–71
in transformers  450, 451–4

alternating voltage see ac voltage
ammeters  222–3
Amontons’ law  134
ampere  1, 201, 240–1
amplitude  146

in SHM  148, 151, 350, 351
from energy graphs  356–8
of waves  155, 156, 163–4
standing waves  182, 183, 185

angle of diff raction  377–8
angle of incidence  172, 173, 175–6
angle of refl ection  172
angle of refraction  173, 175–6

angular frequency in SHM  346, 351
angular momentum, quantisation of  492–5
angular separation  377, 379
angular speed  249–50
annihilation  303–4, 490–1
anti-neutrinos  276, 305, 510–12
antinodes  182

waves in pipes  185–6, 187–8
waves on strings  183

anti-particles  298, 299, 300
annihilation/production  490–1
of leptons  301

asperities  61
atmosphere (unit)  128
atomic mass  127
atomic mass unit  126, 285
atomic (proton) number  274, 275

on decay series  277–8
atoms  116

electron collisions with  207
energy level diagrams of  271
hydrogen  272–3, 494, 499
models of  295–7
in a mole  126
transitions  272–3, 481, 494

average power  446–7, 450, 452–3
averages  11–12
average speed  39, 42
average velocity  35–6, 38, 39, 42
Avogadro constant  1, 126–7

background radiation  280
ballistic motion  421
bar magnets, fi eld round  233
baryon numbers  299, 300–1
baryons  298, 299, 300
batteries  227–9

in circuits  212, 465–6
life of  230
see also cells

best estimate  11, 12
best-fi t lines  16–18
beta decay  276
beta minus decay  276, 510–11

in decay series  277–8
exchange particles in  305

beta particles  276, 277
beta plus decay  276
binding energy  285–8, 293
binding energy curve  288, 293
black-body radiation  330–2
black holes  422
blue-shift  387–8
Bohr model  492–5, 496
boiling  120

see also vaporisation
Boltzmann equation  137–9
bosons  304–5
Boyle’s law  129–31

calibration of thermometers  117
candela  1
capacitance  457–62

and dielectric  458–9
and energy stored  462–4
in parallel  459–60
in series  460–2

capacitors  457–71
charging  464–6, 470
discharging  464, 466–9, 470–1
energy stored in  462–4
in parallel  459–60
in rectifi cation  469–71
in series  460–2

capacity of cells  230
carbon dioxide  336, 337
cells  227–31

in circuits  212, 213, 220–2
discharging  230

Celsius scale  117
centrifugal force  256
centripetal acceleration  251–3
centripetal forces  81, 253–6

charges in fi elds  238–9
gravitational force as  262–3

chain reactions  290, 319
change of phase  120–3
charge  200–5

in capacitors  457–62, 470–1
charging capacitors  464–6, 470
discharging capacitors  466–9
energy stored  462–4

conservation of  299
in electric fi elds  403–11

equipotential surfaces  407, 409–10
force on  402–3
inverse square law  423–4

on elementary particles  298–9, 300, 301
and exchange particles  305

in magnetic fi elds  234–6, 238–9
moving see moving charge
of nuclei  274
point  198–9, 200, 403–6
properties  196–7

charge carriers  197, 202
see also electrons

charge polarisation  458
charging capacitors  464–6, 470
Charles’ law  132
chemical energy  78, 227–8

Index
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equation for  351, 352
of standing waves  182, 183
and transverse waves  154–6
in uniformly accelerated motion  41, 42, 43
and work done  79
see also distance travelled; position

displacement-distance graphs
wave motion  155, 157

longitudinal waves  158
displacement-energy graphs  151
displacement-time graphs

SHM  148, 149, 150, 352–3
standing waves  182, 183
waves  155–6, 178

distance travelled  36–7, 38, 42
and work done  79, 81–2
see also displacement; position

division of uncertainties  14, 16
Doppler eff ect  381–8
double-slit interference  179–80, 365–9
double-source interference  177–9
drag forces  60

see also air resistance
drift speed  201–3, 209
duality of matter  488–9, 497
dynamic friction  61–2

Earth
albedo of  333, 335
energy from the Sun  322, 329, 333
escape velocity  420–1
greenhouse eff ect  335–7
magnetism of  232
motion of  250
temperature of  117–18, 334–7

and energy balance  334–5
eddy currents  452
effi  ciency  93–5

of photovoltaic cells  323
of power plants  317–18

elastic collisions  105
elastic potential energy  86

in simple harmonic motion  151
of stretched springs  84
and total mechanical energy  87, 88

electrical devices, rating of  211
electrical energy  78, 227
electric cells  227–31
electric charge see charge
electric current see current
electric fi elds  196–205, 402–11

between parallel plates  410
and capacitance  458–9
in EM waves  158–9, 481
equipotential surfaces  407, 409–10
and polarisation  167–70
and potential diff erence  203–5
in the Rutherford model  296–7

electric fi eld strength  200–1
on potential-distance graphs  408–9

in ac circuits  446–7
and battery emf  228–9
charging capacitors  464–6
in circuits  213–19

multi-loop  220–2
parallel resistors  214–15
series resistors  213–14

discharging capacitors  467, 469, 470–1
eddy currents  452
induced see induced current
measuring with ammeters  222–3
peak  446, 450
in potential dividers  224
rms  448–50, 452–3

current-carrying wires
force between two  240–1
magnetic fi eld around  232–4
magnetic force on  236–8

current-voltage graphs  208
photoelectric eff ect  484

de Broglie hypothesis  488–90, 494
decay

of particles  299, 500
radioactive  275–82, 289–90, 512–14

decay constant  512–14
decay rate  513–14
decay series  277–8
derived units  1–2
destructive interference  178–9, 367

and path diff erence  365, 367
and single-slit diff raction  361–2
on standing waves  182
thin fi lms  373

deterministic systems  259
deuterium  292
dielectric materials  458–9, 464
diff raction  176–7, 361–4

of electrons  489, 498, 506
multiple-slit  369–71
of neutrons  505–6
and resolution  376–80

diff raction gratings  371–2
and resolution  379–80

diode bridges  454–5, 469–71
diodes  208, 454
dipoles, electric fi eld from  402–3
direct current (dc)  201, 445–6
rectifi cation produces  454–5
discharging capacitors  464, 466–9

in rectifi cation  470–1
discharging cells  230
discrete energy  270–3, 482, 493

and nuclear transitions  509–10
dispersion of light  174, 175
displacement  36–7

in free fall  43–4
and longitudinal waves  157–8
and projectile motion  45–6, 48, 49
in SHM  147–50, 346

circuits  212–19
ac circuits  446–50
capacitors in  459–62, 463–4

with resistors  464–71
meters in  222–3
multi-loop  220–2
potential dividers in  224
resistors in  213–19

with capacitors  464–71
circular motion  81, 249–56

and angular speed  249–50
charges in fi elds  238–9
see also orbits

circular slits, resolution in  378
climate change  337
coal as fuel  316–18
coeffi  cient of dynamic friction  61–2
coeffi  cient of static friction  61–2
coherent light  366, 367
collisions  105–6

of electrons with lattice atoms  207
compasses  232
components of forces  65–7
components of vectors  25–30
compression

in springs  59
in waves  156

sound waves  157, 158
condensation  120

specifi c latent heat of  121
conduction  329
conductors  197

free electrons in  201–3
confi nement, quark  306
conservation of charge  197
conservation of energy  78–9

and induced current/emf  440
conservation of momentum  103–4, 105, 108

in nuclear physics  289
conservation of total energy of systems  87
conservative forces  86
constant velocity  35–7
constructive interference  178–9, 180

diff raction gratings  371
of electrons  490
thin fi lms  373
two sources  365, 366–7

contact forces  59–60, 61
control rods  320
convection  329
convection currents  329
Copenhagen interpretation  496
coulomb, defi nition of  241
Coulomb’s law  198–9, 282
crest of waves  153, 182
critical angle  175–6
critical mass  290, 319
critical (threshold) frequency  485, 486, 

487–8
current  201–3, 207–9, 210
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on Sankey diagrams  317
and temperature diff erence  87, 117, 118
thermal energy/heat  79, 87, 329–37
by waves  153

longitudinal waves  157
standing waves  182
transverse waves  154, 159

equation of state  129, 135–7, 138
equilibrium  64–7
equipotential surfaces  407, 409–10

between parallel plates  410
error bars  16–18
errors  19

propagation of  12–16
in SHM problems  349

reading errors  9, 11–12
systematic  7–9
see also uncertainty

escape velocity  419–22
estimates  2, 3–4, 9

best estimate  11, 12
ethics  293, 326
exchange particles  302–5
excited state  272, 273
explosions

nuclear explosions  290, 291
in nuclear reactors  320–1

Faraday’s law  437–9
Feynman diagrams  303–5
fi eld lines  233, 409–10
fi elds  396–424

applications of  415–24
connection with potential  408–9
describing  396–412
electric see electric fi elds
gravitational see gravitational fi elds
magnetic see magnetic fi elds

fi eld strength  408–9
electric  200–1, 408–9
gravitational  58, 260–2, 400–1

on potential-distance graphs  408–9
magnetic  436

fi ssion see nuclear fi ssion
fl uid resistance  51–2

see also frictional forces
fl uids  60

convection in  329
fl ux linkage  435–7

in ac generators  444–6
Faraday’s law  437–9

force-distance graphs  81–2
force-extension graphs  83–4
force pairs  63
forces  57–62, 302

centripetal  81, 238–9, 253–6, 262–3
electric see electric force
and equilibrium  64–7
fl uid resistance  51–2

kinetic energy
in conduction  329
in the photoelectric eff ect  484–7

as leptons  301
in photoelectric eff ect  483–6
symbol for  274
uncertain location of  495–6, 497–9
wave-like properties  489–90, 494–5

electronvolt  204–5
electroweak interaction  282, 306
elementary particles  298–302
elements, spectra of  270–3, 496
emf (electromotive force)  212

of batteries  227–9, 465–6
induced  434, 437–9, 444–6, 451
motional  434–5

emission spectra  270–3, 493
emissivity  330, 331, 332
EM waves see electromagnetic waves
energy  78–9

of alpha particles  289–90, 509
of beta particles/electrons  509, 511
binding energy  285–8, 293
change of state  121
conservation of  78–9

and induced current/emf  440
converting to mass/matter  285–8, 491
discrete energy  270–3, 482, 493, 509–10
and greenhouse eff ect  337
internal  87, 118–19, 138–9
kinetic see kinetic energy
mechanical energy  86–92
nuclear fi ssion produces  290–1, 293

in reactors  321
nuclear fusion produces  291–2, 293
of photons  271, 481–3

gamma emission  277, 509
potential see potential energy
quanta of  481, 486–7
radioactive decay releases  289–90
resistors generate  211
in SHM  151, 354–8
sources of  314–26
stored in capacitors  462–4
Sun gives  322, 329, 333
thermal see thermal energy
transfers see energy transfer
and uncertainty principle  500
waves carry  163–4

energy balance equation  334–5
energy density  314–15
energy-displacement graphs, SHM  355, 356
energy level diagrams  271
energy levels

molecular  337
nuclear  273, 277, 509–10
transitions  271–3, 481, 494

nuclear  509–10
energy transfer

rate and power  92–3

electric force  64, 198–9
and electric fi elds  200–1, 402–3
inverse square law for  423–4
particle acceleration  204–5

electricity
generation  444

fossil fuels  316
hydroelectric power  324
nuclear power  319–21
pumped storage  324–5
solar power  322
wind power  325
and gravitation compared  412

transmission of  453–4
electric potential  403–11

between parallel plates  410
connection with fi elds  408–9
equipotential surfaces  407, 409–10
tunnelling through  500–1

electric potential energy  403–5
electric power  210–11

dissipation in circuits  217
see also power

electromagnetic force  283
electromagnetic induction  434–41

in ac generators  444–6
Faraday’s law  437–9
Lenz’s law  440–1
magnetic fl ux  435–7
in transformers  451–2

electromagnetic interaction  299, 300
exchange particles  303–4, 305
as fundamental force  282
and leptons  301

electromagnetic radiation
in the photoelectric eff ect  483
wavelength emitted  330–1
see also gamma rays; infrared; light

electromagnetic spectrum  159
electromagnetic waves  158–60

all bodies emit  330
light as  481
polarisation  167–70

electromotive force see emf
electron in a box  499
electron microscopes  380
electrons

in atoms
and binding energy  286, 287
Bohr model  492–5, 496
transitions and spectra  271–3, 494

in beta minus decay  276, 305
and charge  196, 197
collisions with lattice atoms  207
diff raction  489, 498, 506
discovery of  297
electron-positron pairs  491
Feynman diagrams  303–4, 305
free  197, 201–3
interference of  489, 490, 497
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hadrons  298–301, 306
exchange particles  305

half-life  279–82, 513–14
half-wave rectifi cation  454
harmonics  183–6

waves on pipes  185–6, 187, 188
waves on strings  183–4, 187

heat  118–20
and change of phase  120–3
see also thermal energy

heat exchangers  319
heat transfer  79, 87, 329–37

and temperature diff erence  87, 117, 118
height reached of projectiles  50, 52
Heisenberg uncertainty principle  497–500
helium  275, 291–2
Higgs particle  306–7
Hooke’s law  59, 83
hydroelectric power  323–5, 444
hydrogen

electrons in
Bohr model  492–5, 496
kinetic energy of  499
transitions  272–3, 494

in nuclear fusion  291, 292
spectra  270–3, 493, 496
transitions of  272–3

hysteresis, magnetic  452

ideal ammeters  222
ideal gases  128–9, 131

equation of state  135–7, 138
internal energy of  138–9

ideal voltmeters  223
images, resolution of  376–9
impulse  101–3
inclined planes  74–5, 94–5
induced current  435–6, 437–8

ac generators produce  446
and Lenz’s law  440–1

induced emf  434, 437–9
ac generators produce  444–6
in transformers  451

inelastic collisions  105
inertia  63
infrared radiation (IR)  335–7
instantaneous speed  39
instantaneous velocity  38–9
insulators  197

as dielectric materials  458
intensity

and Doppler eff ect  382
in the photoelectric eff ect  484–5
of radiation  331, 332–3
transmitted through polarisers  169
in two-slit interference  368–9
of waves  163–4

in interference  180
intensity patterns  180

diff raction gratings  371–2, 379

gamma decay  276–7
energies of  277, 509

gamma rays  276–7
energies of  277, 509

gas constant  135
gases

Boltzmann equation  137–9
bonds between particles in  116
change of phase  120, 121
convection in  329
equation of state  135–7, 138
gas laws  129–37

graphs of  130, 131–2, 133–4
ideal  128–9, 131, 135–7

internal energy of  138–9
modelling  126–40
pressure-temperature law  133–5
pressure-volume law  129–31
real gases  129, 131
speed of molecules in  137–9
volume-temperature law  131–3

gas power plants  317
Gay-Lussac’s law  134
gluons as exchange particles  305
gradient on graphs  17

uncertainty in  18–19
graphs

best-fi t lines  16–18
gradient and intercept  18–19

gravitation  259–63
and electricity compared  412
and planetary motion  420

gravitational fi elds  260, 396
connection with potential  408–9

gravitational fi eld strength  260–2
between Earth and Moon  400–1
potential-distance graphs give  408–9
and weight  58

gravitational force
between point masses  259–60
and gravitational fi eld strength  260–2
inverse square law for  423–4
and Newton’s third law  64
in orbital motion  262–3, 415–16
and work done  397

gravitational interaction  282, 305
gravitational potential  398–402

connection with fi elds  408–9
equipotential surfaces  407

gravitational potential energy  86, 396–8
and escape velocity  419–22
in orbital motion  415–18
and total mechanical energy  87, 88, 89–91

gravitational potential well  397
gravitons  305, 424
gravity, work done by  85–6
greenhouse eff ect  335–6
greenhouse gases  317, 335–7
ground state  272, 273

free-body diagrams  62
fundamental  282–3
in ideal and real gases  128–9
inter-particle  116, 118–19
magnetic  234–8, 240–1
and momentum  98–103
in Newton’s fi rst law of motion  63
in Newton’s second law of motion  
67–75
in Newton’s third law of motion  63–4
in orbital motion  415–16
and pressure  127–8
restoring  147, 346
in SHM  346
work done by  79–82

on a particle  82–3
force-time graphs  101–3
fossil fuels  315, 316–18
fractional uncertainties  12–14, 15
free-body diagrams  62
free electrons  197, 201–3
free fall see acceleration of free fall
freezing  120

specifi c latent heat of fusion  121
frequency

of ac, in RC circuits  470–1
in circular motion  249, 252
critical  485, 486, 487–8
and Doppler eff ect  381–8
in the photoelectric eff ect  485, 486–7
of rotation of ac generators  445

power from  447–8
in SHM  149, 351, 353

angular  346, 351
and standing waves  184, 187–8
of voltage in transformers  451
of waves  154, 156, 157

frictional forces  60–2
centripetal  254–5
and effi  ciency  93–4
in orbital motion  418
work done by  88–9, 92
see also air resistance

friction laws  61
fringe separation  367
fringe spacing  180
fringes and slit width  368
fuel rods  319
fuels

energy density  314–15
fossil fuels  316–18
in nuclear power reactors  319–21

full-wave rectifi cation  454–5
fundamental forces  282–3
fundamental interactions  282, 305

see also interactions
fundamental units  1, 236
fusion, nuclear see nuclear fusion
fusion, specifi c latent heat of  121
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mass (nucleon) number  274
and binding energy  288
on decay series  277–8

mass-spring system  147–8, 346–7, 348, 349
matter

duality of  488–9
energy conversion to  491
interaction with radiation  481–502
particle model of  116
structure of  295–307

matter waves  488–90
Maxwell’s equations  159
mean  11–12
measurements  1–7

current and voltage  222–3
heat capacity and latent heat  123–4
temperature  117

mechanical energy  86–92
melting  120, 121–3
melting temperature  121, 122–3
mesons  298, 299, 300, 305
metals

free electrons in  197, 201–3
resistivity  209

methane as a greenhouse gas  336
method of mixtures  123–4
metre  1
metric multipliers  2
microscopic-macroscopic connection  205
modelling climate change  337
modelling gases  126–40
moderator  319, 320
modulated intensity  369
molar mass  127
molecular energy levels  337
molecules  116

of air and waves  157–8, 185
in ideal and real gases  128–9
kinetic energy and conduction  329
in a mole  126, 127
motion of  121, 137–9

moles  126–7
in the equation of state  135–7

mole (unit)  1
momentum  98–108

angular, quantisation of  492–5
conservation of  103–4, 105, 108
in nuclear physics  289
and exchange particles  302
in Heisenberg uncertainty principle  
497–9
and impulse  101–3
and kinetic energy  105–6
of photons  482, 483
quanta of  486–7
rocket equation  107–8
transfer by waves  153

morals and ethics  293
motion  35–53

acceleration of free fall  43–4

lepton numbers  301–2
leptons  301–2

exchange particles  304, 305
neutrinos as  512

light
diff raction  361–4

and resolution  376–80
and Doppler eff ect  387–8
interference  179–80, 365–73
in the photoelectric eff ect  483–6
and photons  481–3
polarisation  167–70
refl ection of  172, 173
refraction  172–5
stars and escape velocity  422
total internal refl ection  175–6
wave nature of  170, 172, 181, 364

light bulbs  208–9, 211
lightning  410–11
linear momentum  98
linear speed in circular motion  249–50
lines, best-fi t  16–18
liquids  116

change of phase  120, 121–3
convection in  329
positive ion charge carriers in  197

longitudinal waves  156–8
loudness and Doppler eff ect  382

magnetic fi eld lines  233
magnetic fi elds  232–41

in EM waves  159, 481
induced emf in  434–5, 437–9
and Lenz’s law  440–1
and magnetic fl ux  435–7
motion of charges in  238–9
in transformers  450–1, 452
see also electromagnetic induction

magnetic fi eld strength  436
magnetic fl ux  435–7, 440–1

in transformers  450–1
magnetic fl ux density  234–5
magnetic fl ux linkage see fl ux linkage
magnetic forces

on a current-carrying wire  236–8
on moving charges  234–6
two current-carrying wires  240–1

magnetic hysteresis  452
magnitude of vectors  21, 25, 27–8, 29
Malus’s law  168–9
mass

converting to energy  285–7, 289–90
and gravitation  259–62, 398–402

equipotential surfaces  407, 409
inverse square law for  423–4

and Higgs particles  306–7
and momentum  98–9, 107–8
point masses  259–62, 396
in second law of motion  67–75, 98–9

mass defect  285–7

multiple-slit diff raction  369–71
and resolution  376–7
single-slit diff raction  362–3
in two-slit interference  368–9

interactions  299–300, 301
exchange particles in  302–5
fundamental  282, 305
standard model of  306

intercept on graphs, uncertainty in  18–19
interference  177

double-slit  179–80, 365–9
and double-slit diff raction  361
double-source  177–9
of electrons  489, 490, 497
and multiple-slit diff raction  369–71
thin fi lm  372–3

internal energy  87, 118–19
of ideal gases  138–9

internal resistance  228–9
inter-particle forces  116, 118–19
inter-particle potential energy  118–19
inverse square law  163–4, 423–4
ionising power  275, 277
isochronous oscillations  147
isolated systems  87
isothermal curves/isotherms  130, 137
isotopes  275

joule (unit)  80

kelvin  1, 116, 117, 330
kilogram  1
kinematical quantities  35–7
kinetic energy  82

of accelerated particles  204–5
of electrons

in hydrogen atoms  499
in the photoelectric eff ect  484–7

and escape velocity  419–22
in hydroelectric power  324
of molecules

in phase changes  121
and temperature  116, 137–9

and momentum  104, 105–6
in orbital motion  415–18
of particles  118–19

in conduction  329
in decay  289–90
in fi ssion  290

in SHM  151, 354–8
and total mechanical energy  87–8, 89, 91
of wind, in wind power  325–6
and work done  82–3

kinetic friction  61
Kirchhoff ’s current law  214, 221–2
Kirchhoff ’s loop law  220–2

lamp fi lament, I-V graph  208–9
latent heat  121, 123–4
Lenz’s law  440–1
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neutrons see neutrons
pair annihilation/production  490–1
protons see protons
quarks  298–301
standard model  282, 283, 306, 307
tunnelling of  500–1
wave nature  488–9, 497
work done by forces on  82–3

path diff erence  177–9, 367
diff raction gratings  371
interference from two sources  365
single-slit diff raction  361–2
thin fi lms  373

peak current  446, 450
peak power  446, 450
peak voltage  350, 445, 446

in RC circuits  470–1
pendulums  90

simple  146, 147, 347–9
penetrating power  275, 277
percentage uncertainty  12–13
period  146

of ac, in RC circuits  471
in circular motion  249
of orbits  263

electrons  494
in SHM  148, 346, 350–3

energy graphs  355–6, 356–7
mass-spring system  347
simple pendulum  348–9

of waves  154, 156, 157
periodic motion  146
permittivity  198
phase changes

and refl ection  166, 167
in thin fi lm interference  372–3

phase diff erence  367
and interference  178

thin fi lms  372
in SHM  149
and wavefronts  163

phases of matter, change of  120–3
photoelectric eff ect  483–8
photons  481–3

absorption of  337
discovery of  297
emission  271, 272, 273, 277
as exchange particles  302, 305
in Feynman diagrams  303–4
inverse square law for  424
in pair annihilation/production  491
in the photoelectric eff ect  486, 487
symbol for  274

photovoltaic cells  322–3
pions  299
pipes, standing waves in  185–6, 187–8
Planck’s constant  486, 488, 492, 497
planets  259, 263, 416, 420
escape velocity  419–22
plastic collisions  105

nuclear fi ssion  290–1, 293
nuclear reactors  319–20, 321

nuclear fusion  291–3, 322
nuclear power  319–21
nuclear reactions  285–93
nuclei  274–5

binding energy of  285–8
discovery of  296–7
energy level structure  273
in fi ssion  290–1
in radioactive decay  275–82

decay series  277–8
energy released  289–90
numbers of  512–13

radius of  506–7, 508
and strong interaction  282

nucleon number see mass (nucleon) number
nucleons  274, 288

see also neutrons; nuclei; protons
nuclides  274, 275

see also nuclei

Ohm’s law  207–10
oil as a fossil fuel  316
optical fi bres, total internal refl ection in  

176
orbital radius, Bohr model of  493
orbital speed  415–16, 417–18
orbits  250, 262–3, 415–19

of electrons, Bohr model  492–5
of planets  259
and weightlessness  423

orders of magnitude  2–3
oscillations  146–52

simple harmonic motion  147–52, 346–58
see also waves

pair annihilation/production  490–1
parallel

capacitors in  459–60
resistors in  214–19

parallel plate capacitors  457–8
parallel plates  410
particle model of matter  116
particle nature of light  481–2
particles  126–7

atoms see atoms
decay of  299, 500
discovery of  297
electrons see electrons
elementary  298–302
exchange particles  302–5
in Heisenberg uncertainty principle  497
Higgs particle  306–7
kinetic energy of  118–19

in conduction  329
leptons  301–2, 304, 305, 512
molecules see molecules
motion in phase changes  121
neutrinos see neutrinos

and air resistance  51–2
and gravitational fi eld strength  261, 262
and Newton’s law  67–8
and weight  58

circular  81, 238–9, 249–56
fl uid resistance  51–2
graphs of  40

acceleration-time  40, 52
position-time see position-time graphs
velocity-time see velocity-time graphs

Newton’s laws of  63–4, 67–75, 98–100
non-uniform  38–43
orbital see orbits
projectile motion  45–51, 52
uniformly accelerated  37–51

motional emf  434–5
moving charge

magnetic force on  234–6
work done  203–5, 209, 403–4

and emf  212
in wires  411

multiple-slit diff raction  369–71
multiplication of uncertainties  14, 15
multiplication of vectors  21
multipliers, metric  2
muons  301

negative feedback  337
net force  64, 65, 67
neutrinos  276, 301, 510–12

solar  514–15
symbol for  274

neutron number  274, 275
neutrons

anti-particle of  300
as baryons  298
in beta minus decay  276, 305
diff raction of  505–6
discovery of  297
in fi ssion  290–1, 319–20
in nuclei  273, 282
and binding energy  285–7

Newton’s constant of universal gravitation  
259

Newton’s fi rst law of motion  63
Newton’s law of gravitation  259–60
Newton’s second law of motion  67–75, 

98–100
Newton’s third law of motion  63–4
nitrous oxide as a greenhouse gas  336
nodes  182

waves in pipes  185–6, 187–8
waves on strings  183

non-ohmic conductors  209
non-renewable energy  315, 326
normal reaction forces  59–60, 61

and weightlessness  423
nuclear energy levels  273, 509–10

in gamma emission  277
nuclear explosions  290, 291
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interaction with matter  481–502
thermal  329
see also radioactive decay

radioactive decay  275–82
energy released in  289–90
law of  278–81, 512–14

radioactivity  275
radio telescopes  380
radius of nuclei  506–7, 508
random uncertainties  7, 9–10, 12
rarefaction in waves  156

sound waves  157, 158
Rayleigh criterion  376–9
rays  162–3
RC circuits  464–71
reaction forces  59–60, 61, 423
reading errors  9, 11–12
real gases  129, 131
reconstructing vectors  27–8
rectifi cation  454–5, 469–71
red-shift  387–8
refl ection

of light  172, 173
polarisation by  170
of pulses  166–7
in thin fi lm interference  372–3
total internal  175–6

refraction  172–5, 176
in thin fi lm interference  372–3

refractive index  173–5
relativity  481, 482
relaxation  272
renewable energy  315, 322–6
resistance  207–10

in ac circuits  446
in parallel  215–19
and power generated  211
and power losses  453, 454
in rectifi cation  470–1
in series  213

resistivity  209–10
resistors  210

in ac circuits  447
in circuits with capacitors  464–71
in multi-loop circuits  220–2
in parallel  214–19
and potential dividers  224
power and energy generated in  210–11
in series  213–19

resolution  376–80
resolving power  379–80
restoring force  147, 346
risk and nuclear power  320–1
rms  448–50, 452
rocket equation  107–8
root mean square (rms)  448–50, 452
roots and uncertainties  14, 15, 16
rounding  5–6
Rutherford scattering  295–7, 505–8

electric  210–11, 217
and energy carried by waves  163–4
hydroelectric power  323–5, 444
and intensity  332–3
radiated/emitted, and temperature  330–2
transformer losses  451–3
transmission losses  453–4
wind power  325–6

powers of numbers  14, 15, 16
power stations  317–18

ac generation in  444
hydroelectric  323–5, 444
nuclear power  319–21
transmission of electricity  453–4

power transmission  453–4
precision  10
predictions  263
prefi xes in the SI system  2
pressure  127–8

in gases  129
in gas laws  129–31, 133–7

and sound waves  158
pressure-temperature law  133–5
pressure-volume law  129–31
primary cells  229–30
primary energy  314–15
prisms  172, 174, 175
probability

and electron location  495–6
in radioactive decay  281–2, 512
in tunnelling  500–1

probability waves  496
production, pair  490–1
projectile motion  45–51, 52
protons  196, 297

as baryons  298
in beta minus decay  305
in nuclei  273, 282, 285–7

pulses  153
pumped storage systems  324–5

quanta
of angular momentum  492–5
of energy  481, 486–7, 493
of momentum  486–7

quantised charge  197
quantum mechanics  496, 502

pair annihilation/production  490–1
tunnelling  500–1

quarks  298–301
confi nement  306
on Feynman diagrams  304, 305
prediction of  307

radial fi elds  261
radiation

black-body  330–2
electromagnetic see electromagnetic 
radiation
as heat transfer  329

plutonium  320
point charges  198–9, 200, 403–6
point masses  259–62, 396
point particle  62
point sources and wavefronts  163
polarisation  167–70
polarisers  168–9
poles  232
position  35–7

uncertainty in  497–9
in uniformly accelerated motion  38–40, 
42, 43
see also displacement; distance travelled

position-time graphs  40
projectiles  49, 52
uniform acceleration  39, 40, 42
uniform motion  35

positive feedback  337
positive ions as charge carriers  197
positrons  276, 303–4, 491
potential

connection with fi eld  408–9
electric  403–11, 500–1
equipotential surfaces  407, 409–10
gravitational  398–402, 407, 408–9

potential barriers  500
potential diff erence  203, 210

across a battery  228–9
and capacitors  457–9

charging capacitors  465–6
discharging capacitors  466, 468, 469
energy stored in  462–4
in parallel  459–60
in series  460–2

in circuits  213–19
multi-loop  220–2

measuring, voltmeters  222–3
and potential dividers  224
and resistance  207–9, 210
terminal  228–9
see also voltage

potential-distance graphs
electric fi elds  406–7
fi eld strength from  408–9
gravitational fi elds  401, 419

potential dividers  224
potential energy  86

elastic  84, 86, 151
total mechanical energy  87, 88

electric  403–5
gravitational see gravitational potential 
energy
in hydroelectric power  323–4
inter-particle  118–19
in SHM  151, 354–8

power  92–3
in ac circuits  446–8, 449–50
and albedo  333
average power  446–7, 450, 452–3
in batteries  228, 229–30
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and energy transfer  87, 117, 118
of gases in gas laws  131–7
and power of emitted radiation  330–2
and resistance of conductors  209
and specifi c heat capacity  119–20
and speed of molecules  137–9

tension  58–9
and centripetal forces  255–6

terminal speed  51–2
tesla  234, 236
thermal energy  118–23

fossil fuel power stations  317–18
generated in resistors  211
work done by frictional forces  88, 89

thermal energy transfer  79, 87, 329–37
thermal equilibrium  117
thermal radiation  329

see also radiation
thermistors, V-I graph of  208
thermometers  117
thin fi lm interference  372–3
Thomson model  295–6
time

and oscillations  147, 152
and uncertainty principle  500

time constant  466–9
Tolman-Stewart experiment  197
total energy  79, 87, 118–19

and escape velocity  419–22
mechanical energy  87–92
in orbital motion  415–19
in SHM  151, 354–5, 356

total internal refl ection  175–6
total mechanical energy  87–92
transfer of energy see energy transfer
transformations of energy  151, 354–5
transformers  450–4
transitions  271–3, 481, 494
nuclear energy levels  509–10
transmission of electricity  453–4
transmutation  290
transverse waves  154–6, 159
travelling waves  153–61, 182
trough of waves  153
tubes, standing waves in  185–6, 187–8
tunnelling  500–1

uncertainty in measurements  7–10
on graphs  16–19
propagation of  12–16, 349
and standard deviation  11
see also errors

uncertainty principle  497–500
unifi cation  283
unifi ed atomic mass unit  285
uniform fi elds, gravitational  396
uniformly accelerated motion  37–51
uniform motion  35–7
units  1–2

ampere  1, 201, 240–1

black-body  331
electromagnetic spectrum  159
emission  270–3, 493
of hydrogen  270–3, 493, 496

speed
angular speed  249–50
average speed  39, 42
in circular motion  249–50, 251
drift speed  201–3, 209
instantaneous speed  39
of light  159, 172–4, 481
maximum in SHM  351–2, 355–6
of molecules  137–9
orbital speed  415–16, 417–18
and power  93
of rockets, varying with mass  107–8
of sound  187–8
terminal speed  51–2
of waves  154, 156, 157

spheres, charge around  406
spring constant  59
springs, stretching  59, 83–4
standard deviation  11
standard model  282, 283, 306, 307
standing waves  182–8, 495, 501
stars  292, 422
state of a gas  129
static friction  61–2
Stefan-Boltzmann law  330
step-down transformers  451, 453
step-up transformers  451, 453
stopping voltage  484–5, 486–7, 488
straight-line graphs, best fi t lines  17
straight-line motion  35–7
strangeness (quarks)  299–300, 301
stretching springs  59, 83–4
strings, standing waves on  183–4, 186, 187
strong interaction  299, 300

exchange particles  305
as fundamental force  282

strong nuclear force  508
structure of matter  295–307
subtraction of uncertainties  13
subtraction of vectors  22, 24–5, 28
Sun  322, 329, 332–3
superposition  165–6, 177–8

standing waves from  182
surface temperature  330
surroundings  78–9, 87, 88, 89
symbols

for circuits  212, 457
for nuclides and particles  274

system  78–9, 87–92
and momentum  103, 107

systematic errors  7–9, 10, 12
systems, deterministic  259

taus  301
temperature  116–18

of Earth  117–18, 334–7

Sankey diagrams  316–17, 325
satellites  263, 398, 415–18
scalars  21
scale diagrams  23–4
scattering experiments  295–7, 505–8
Schrödinger theory  495, 501
Schwarzschild radius  422
scientifi c notation  5
second  1
secondary cells  229–30
secondary energy  314–15
series

capacitors in  460–2
resistors in  213–14, 215–19

SHM see simple harmonic motion
signifi cant fi gures (s.f.)  4–6, 11–12
simple harmonic motion  147–51, 346–58

defi ning equation  349–53
energy in  151, 354–8
graphs of  150

acceleration-displacement  148, 150, 
351–2
acceleration-time  149
displacement-energy  151
displacement-time  148, 149, 150, 352–3
energy-displacement  355, 356
velocity-time  148, 149

and waves  154
simple harmonic oscillations  146–52
simple pendulums  146, 347–9
isochronous oscillations  147
single-slit diff raction  361–4
SI system  1–2

see also units
slits

circular slits, resolution in  378
width of  180, 368–9
see also interference

small angle approximation  348
Snell’s law  173, 174, 175
society and energy  326
solar constant  332–3
solar neutrinos  514–15
solar panels  322
solar power  315, 322–3
solenoids, magnetic fi elds round  233
solids

change of phase  120, 121–3
particles in, bonds between  116

sound  157
and Doppler eff ect  381–7
speed of  187–8

source of fi elds  396
special relativity  482
specifi c energy  314–15, 320
specifi c heat capacity  119–20
measuring  123–4
specifi c latent heat  121–2
spectra

absorption  273, 493
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and gravitational potential energy  396–7
and heating  119
moving charge  203–5, 209, 403–4

and emf  212
in wires  411

and potential diff erence  203–5
and power  92–3
in stretching springs  83–4

work function  486, 487, 488
work-kinetic energy relation  82–3

Young’s double-slit experiment  365–7

diff raction gratings  371–2
multi-slit  370–1
resolution  377–80

and dispersion  174
and Doppler eff ect  382–5, 387–8
of electrons  489–90, 494–5
in emission spectra  270–1, 272, 273
in interference  180

thin fi lms  373
two-sources  365–7

of particles  488–9
of photons  272, 273, 277
of standing waves  183–4, 185–8
in Wien’s displacement law  330–1

wave nature of electrons  489–90
wave nature of light  364, 485–6
wave-particle duality  497
waves  153–4

behaviour of  172–81
characteristics of  162–70
diff raction of  176–7, 369–71, 376–80
Doppler eff ect  381–8
electromagnetic  158–60
energy carried by  163–4
graphs of

displacement-distance  155, 157, 158
displacement-time  155–6, 178, 182, 
183

interference  177–80, 361, 365–73
longitudinal  156–8
matter  488–90
probability  496
standing  182–8, 495, 501
superposition  165–6, 177–8, 182
transverse  154–6, 159
travelling  153–61, 182
see also oscillations

wave speed of EM waves  481
weak interaction  299, 300, 301

exchange particles  304, 305
as fundamental force  282

weight  58, 60
and gravitation  259
work done by  85–6

weightlessness  423
white light  172, 174, 175
Wien’s displacement law  330–1
wind power  325–6
wires

current-carrying  236–8, 240–1
magnetic fi elds round  232–3
resistance of  207

work done
in a battery  227–8
and binding energy  286
by forces  79–83

frictional forces  88–9, 92
gravity/weight  85–6
magnetic forces  240

and gravitational potential  398–9, 401–2

atomic mass unit  126, 285
of charge  197
electronvolt  204–5
farad  457, 458
tesla  234, 236

Universe  117, 388
upthrust  60
uranium nuclear fuel  319–20

vacuum  159, 173–4
vaporisation  120, 121
vapours

change of phase of  120, 121
see also gases

vectors  21–30
addition of  22, 23–4, 28–9
components of  25–30
multiplication by scalars  21
reconstructing  27–8
subtraction of  22, 24–5, 28

velocity
in acceleration of free fall problems  43–4
average velocity  35–6, 38, 39, 42
in circular motion  249, 251–2, 253
constant velocity  35–7
escape velocity  419–22
instantaneous velocity  38–9
and momentum  98–100
and impulse  101–3
in Newton’s fi rst law of motion  63
in non-uniform motion  38–43
in projectile motion  45–51
in SHM  148–9, 150, 151
equations for  351, 352–3, 354
in uniformly accelerated motion  37–51
in uniform motion  35–7

velocity-time graphs  40
projectiles  47, 52
SHM  148, 149
uniform acceleration  37, 39, 42
uniform motion  35

voltage  210
in ac circuits, and power  446–7
peak  445, 446, 450
in RC circuits  470–1
and power losses  453–4
rms  449–50
stopping voltage  484–5, 486–7, 488
see also potential diff erence

voltmeters  222–3
volume of gases  129–33, 135–7
volume-temperature law  131–3

water vapour as a greenhouse gas  336, 337
wavefronts  162–3

in diff raction  176–7, 361
Doppler eff ect  381–3

wavefunctions  495–6, 501
wavelength  153, 155

in diff raction  176–7, 361–3
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